
Smoothed Analysis of the 2-Opt Algorithm

for the General TSP∗

Matthias Englert
DIMAP and Dept. of Computer Science

University of Warwick
englert@dcs.warwick.ac.uk

Heiko Röglin
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Dept. of Computer Science
RWTH Aachen University

July 21, 2016

Abstract

2-Opt is a simple local search heuristic for the traveling salesperson problem, which
performs very well in experiments both with respect to running time and solution qual-
ity. In contrast to this, there are instances on which 2-Opt may need an exponential
number of steps to reach a local optimum. To understand why 2-Opt usually finds lo-
cal optima quickly in experiments, we study its expected running time in the model of
smoothed analysis, which can be considered as a less pessimistic variant of worst-case
analysis in which the adversarial input is subject to a small amount of random noise.

In our probabilistic input model an adversary chooses an arbitrary graph G and
additionally a probability density function for each edge according to which its length
is chosen. We prove that in this model the expected number of local improvements

is O(mnφ · 16
√
lnm) = m1+o(1)nφ, where n and m denote the number of vertices and

edges of G, respectively, and φ denotes an upper bound on the density functions.

1 Introduction

An instance of the traveling salesperson problem (TSP) consists of a set of cities and the
pairwise distances between these cities. The goal is to find the shortest tour that visits
every city exactly once and returns to the starting city in the end. The TSP is one of the
most studied optimization problems and numerous theoretical and experimental results
have been obtained. In experiments the most successful heuristics for the TSP are based
on the principle of local search. These heuristics start with some solution and improve it

∗This work was supported in part by the EU within the 6th Framework Programme under contract
001907 (DELIS) and by DFG grants VO 889/2 and WE 2842/1. An extended abstract appeared in
Proc. of the 18th ACM-SIAM Symposium on Discrete Algorithms (SODA 2007). This extended abstract
also contains additional results that have already appeared in Algorithmica [ERV14].
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by local operations until a local optimum is reached. Even though the TSP is NP-hard to
approximate, in many cases these heuristics quickly compute very good solutions.

The 2-Opt algorithm is a particularly simple local search heuristic for the TSP. It
starts with an arbitrary initial tour and incrementally improves this tour by exchanging
two edges from the current tour with two edges that are not in the current tour (ensuring
that after the exchange another tour is obtained and that this tour is shorter than the
current tour). We will call such a local improvement an improving 2-change. 2-Opt
terminates if the current tour admits no improving 2-change anymore. Lueker [Lue75] has
constructed instances for the general TSP on which 2-Opt can make an exponential number
of local improvements. In contrast to this, in experiments the 2-Opt heuristic needs only
a subquadratic number of local improvements until it reaches a local optimum [JM97].

The reason for the big discrepancy between Lueker’s result and the experimental ob-
servations is that worst-case instances for 2-Opt have a very artificial structure and do
not occur naturally in applications. In order to provide a theoretical underpinning of
this statement, we study the running time of the 2-Opt algorithm in the framework of
smoothed analysis, which has originally been invented by Spielman and Teng [ST04] to
explain the practical success of the simplex method. This model can be considered as a
less pessimistic variant of worst-case analysis in which the adversarial input is subject to a
small amount of random noise and it is by now a well-established alternative to worst-case
analysis.

In the model we consider, an adversary specifies an arbitrary graph G = (V,E) with n
nodes and m edges. The nodes represent the cities and the edges represent the roads
between the cities along which the salesperson can travel. Every edge e ∈ E has a cer-
tain length d(e) ≥ 0. Instead of fixing each edge length deterministically, the adversary
can only specify, for each edge e ∈ E, a probability density function fe : [0, 1] → [0, φ]
according to which the length d(e) is chosen independently of the other edge lengths. The
parameter φ ≥ 1 determines how powerful the adversary is. The adversary can, for exam-
ple, choose for each edge length an interval of length 1/φ from which it is chosen uniformly
at random. This shows that in the limit for φ → ∞ the adversary is as powerful as in a
classical worst-case analysis, whereas the case φ = 1 constitutes an average-case analysis
with uniformly chosen edge lengths. We call an instance of this form a φ-perturbed graph.
Note that the restriction to the interval [0, 1] is merely a scaling issue and entails no loss
of generality. In particular, the restriction d(e) ≥ 0 is without loss of generality as well
because negative distances can be avoided by adding the same sufficiently large number
to each distance. This does neither affect the behavior of 2-Opt nor does it change the
relative order of different tours because every tour contains exactly n edges.

The TSP is often defined only for complete graphs, in which the distance between every
pair of cities is finite. In contrast to this, we do not need to assume that the graph G
is complete. This model is slightly more general because by leaving out edges, one can
explicitly forbid the salesperson to travel directly between certain cities. However, it makes
only sense to apply the 2-Opt algorithm to graphs for which at least some tour is known
because for general graphs it is already NP-hard to find an initial tour.

When talking about the number of local improvements, it is convenient to consider
the state graph. For a given graph G, the nodes of this directed graph correspond to the
possible tours in G and an arc from a node v to a node u is contained if and only if u
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can be obtained from v by performing one improving 2-change. Observe that the state
graph is acyclic because the tour length is strictly decreasing on any path. We study the
length of the longest path in the state graph because this is the maximal number of local
improvements the 2-Opt algorithm can make, regardless of the initial tour and regardless
of which local improvement is chosen if multiple are possible in the current tour.

Theorem 1. For every φ-perturbed graph with n vertices and m edges the expected length

of the longest path in the 2-Opt state graph is O(mnφ · 16
√

lnm) = m1+o(1)nφ.

This theorem provides an explanation why worst-case examples do not occur in exper-
iments. It shows that already a small amount of randomness in the edge lengths makes
it very unlikely to obtain an instance on which 2-Opt can take more than a polynomial
number of steps. In practice, random noise can originate, for example, from measurement
errors. We can also use random noise to model influences that we cannot quantify exactly
but for which we do not have any reason to believe that they are adversarial.

1.1 Related Work

Lueker [Lue75] has constructed TSP instances whose state graphs contain exponentially
long paths. This result was generalized to k-Opt, for arbitrary k ≥ 2, by Chandra, Karloff,
and Tovey [CKT99]. These negative results, however, use arbitrary graphs that cannot
be embedded into low-dimensional Euclidean space. In [ERV14] we have extended these
results and constructed two-dimensional Euclidean instances whose 2-Opt state graphs
contain exponentially long paths. Also for every other Lp metric, we have constructed
two-dimensional instances with exponentially long paths in the 2-Opt state graph.

For Euclidean instances in which n points are placed independently uniformly at ran-
dom in the unit square, Kern [Ker89] has shown that the length of the longest path in the
state graph is bounded by O(n16) with probability at least 1 − c/n for some constant c.
Chandra, Karloff, and Tovey [CKT99] have improved this result by bounding the expected
length of the longest path in the state graph by O(n10 log n). For instances in which n
points are placed uniformly at random in the unit square and the distances are measured
according to the Manhattan metric, Chandra, Karloff, and Tovey have shown that the
expected length of the longest path in the state graph is O(n6 log n).

In [ERV14] we have considered a more general probabilistic input model and improved
the previously known bounds. The probabilistic model underlying our analysis allows
different points to be placed independently according to different continuous probability
distributions in the unit hypercube [0, 1]d, for some constant dimension d ≥ 2. The
distribution of a point p is determined by a density function fp : [0, 1]d → [0, φ] for some
given φ ≥ 1. We have proved that in this model the expected length of the longest path
in the 2-Opt state graph is O(n4φ) for the Manhattan metric and O(n4+1/3 log(nφ)φ8/3)
for the Euclidean metric.

For the case that every point is perturbed by Gaussian noise with standard deviation σ,
the results in [ERV14] give rise to a bound on the expected length of the longest path in
the 2-Opt state graph that is polynomial in n and 1/σd for the Euclidean metric. This
has been improved by Manthey and Veenstra [MV13] who proved for this case an upper
bound that is polynomial in n and 1/σ.
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2 Outline of the Analysis

Before we prove Theorem 1, we prove a weaker (yet polynomial) bound on the expected
number of 2-changes. The proof of this weaker bound illustrates our proof technique and
it sheds light on the problems one has to solve in order to derive a better bound. We
discuss these problems and outline our approach in Section 2.2.

In the following we use the notation [n] to denote the set {1, 2, . . . , n} for n ∈ N.

2.1 A Simple Polynomial Bound

Theorem 2. For every φ-perturbed graph with n vertices and m edges the expected length
of the longest path in the 2-Opt state graph is at most m2n2 ln(n)φ.

Proof. First we observe that every tour has length at most n because it contains n edges
and every edge has length at most 1 in our probabilistic input model. Let ∆ denote
the smallest improvement made by any improving 2-change. Then every sequence of `
consecutive improving 2-changes decreases the length of the tour by at least `∆. Hence,
regardless of the initial tour, after n/∆+1 improving 2-changes the length of the tour must
have decreased below zero, which is not possible. Thus a lower bound for the smallest
possible improvement ∆ immediately implies an upper bound of n/∆ on the length of the
longest path in the 2-Opt state graph.

In the following we first prove that for any ε > 0,

Pr [∆ ≤ ε] ≤ m2εφ. (2.1)

We denote the improvement made by a 2-change in which the edges e1 and e2 are exchanged
with the edges e3 and e4 by

∆(e1, e2, e3, e4) = d(e1) + d(e2)− d(e3)− d(e4).

With this notation we can write the smallest possible improvement made by any improving
2-change as

∆ = min
e1,e2,e3,e4

∆(e1,e2,e3,e4)>0

∆(e1, e2, e3, e4),

where the minimum is taken over all tuples (e1, e2, e3, e4) ∈ E4 for which e1, e3, e2, e4 is a
4-cycle in G because only these tuples could possibly form a 2-change.

First we bound the probability that a fixed 2-change in which the edges e1 and e2

are exchanged with the edges e3 and e4 is improving but yields an improvement of at
most ε. This corresponds to the event ∆(e1, e2, e3, e4) ∈ (0, ε]. We use the principle
of deferred decisions and assume that the lengths d(e2), d(e3), and d(e4) have already
been fixed arbitrarily. Then the event ∆(e1, e2, e3, e4) ∈ (0, ε] is equivalent to the event
d(e1) ∈ (κ, κ+ε], where κ = d(e4)+d(e3)−d(e2) is some fixed value. As d(e1) is a random
variable whose density is bounded from above by φ, the probability that d(e1) assumes a
value in a fixed interval of length ε is at most εφ. Hence,

Pr [∆(e1, e2, e3, e4) ∈ (0, ε]] ≤ εφ.
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We apply a union bound over all possible 2-changes. There are at most
(
m
2

)
< m2

2
choices for the set {e1, e2} and, once this set is fixed, there are two choices for the
set {e3, e4} because e1, e3, e2, e4 has to be a 4-cycle. Hence, the total number of different
2-changes is bounded from above by m2, which yields

Pr [∆ ∈ (0, ε]] ≤ Pr [∃e1, e2, e3, e4 : ∆(e1, e2, e3, e4) ∈ (0, ε]] ≤ m2εφ.

This concludes the proof of (2.1).
With the help of (2.1) we can prove the theorem. We have argued above that the

number of steps that 2-Opt can make is bounded from above by n/∆. Let T denote the
length of the longest path in the state graph. This number can only be greater than or
equal to t ∈ N if n/∆ ≥ t, which is equivalent to ∆ ≤ n/t. Hence, due to (2.1),

Pr [T ≥ t] ≤ Pr
[
∆ ≤ n

t

]
≤ m2nφ

t
.

One important observation is that T is always bounded from above by n! because this is
an upper bound on the number of different tours, which equals the number of nodes in
the state graph. Hence, we obtain the following bound for the expected value of T :

E [T ] =
n!∑
t=1

Pr [T ≥ t] ≤
n!∑
t=1

m2nφ

t
= m2nφ ·

n!∑
t=1

1

t
≤ m2n2 ln(n)φ.

Here we used the inequality
∑n!

t=1
1
t ≤ 1 + ln(n!) ≤ n ln(n), which holds for n > 3.

2.2 How to Improve the Simple Bound

The bound in Theorem 2 is only based on analyzing the smallest improvement ∆ made by
any of the 2-changes. Intuitively this is too pessimistic because most of the 2-changes might
yield a much larger improvement than ∆. For example, two consecutive 2-changes yield an
improvement of at least ∆ plus the improvement ∆′ of the second smallest 2-change. This
observation alone, however, does not suffice to improve the bound substantially. In our
analysis of the Manhattan and the Euclidean TSP [ERV14] we have shown that one can
regroup the 2-changes in any sufficiently long path in the state graph to pairs such that
each pair of 2-changes is linked by an edge, meaning that one edge added to the tour in
the first 2-change of the pair is removed from the tour in the second 2-change of the pair.
Then we have analyzed the smallest improvement made by any pair of linked 2-changes.
This improvement is at least ∆ + ∆′ but one can hope that it is much larger because it
is unlikely that the 2-change that yields the smallest improvement and the 2-change that
yields the second smallest improvement form a pair of linked steps. We have shown that
this is indeed the case and use this result to prove stronger bounds on the expected length
of the longest path in the 2-Opt state graph.

The analysis of the Manhattan TSP in [ERV14] can easily be adapted to the model of
φ-perturbed graphs studied in this article. This results in a bound of O(m3/2nφ) for the
expected length of the longest path in the state graph (observe that for complete graphs
this coincides with the bound of O(n4φ) for the Manhattan TSP proved in [ERV14]).
In order to prove Theorem 1, we will not only consider linked pairs of 2-changes but
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longer sequences of linked steps. We call a sequence S1, . . . , Sk of 2-changes linked if for
each i ∈ [k − 1] the steps Si and Si+1 are linked by an edge. For the Manhattan and
the Euclidean TSP this is not easily possible due to dependencies between the steps in
a linked sequence. In φ-perturbed graphs these dependencies are less severe because the
edge lengths are independent random variables, which makes it possible to study also
larger values of k.

In order to control the dependencies, we introduce the notion of witness sequences in
Section 3.1. These are linked sequences that satisfy some additional technical properties.
In Section 3.2 we show that any witness sequence yields a significant improvement with
high probability and in Section 3.3 we prove that the steps in any path in the state graph
of length t > n4k+1 can be grouped into at least t/4k+1 disjoint witness sequences of
length k. We will see in Section 3.4 that these results together yield the desired bound on
the expected length of the longest path in the state graph if one sets k =

√
lnm.

3 Proof of Theorem 1

3.1 Definition of Witness Sequences

In this section, we define three different types of witness sequences. As mentioned above,
a witness sequence S1, . . . , Sk has to be linked, i.e., for i ∈ [k − 1], there must exist an
edge that is added to the tour in step Si and removed from the tour in step Si+1.

Lemma 3. There are at most 4k−1mk+1 different linked sequences of length k.

Proof. There are at most m2 different choices for the first step S1 because there are at
most

(
m
2

)
≤ m2/2 choices for the two edges that are removed from the tour in step S1 and,

once these are fixed, at most two choices for the edges added to the tour in step S1 (re-
member that the edges must form a 4-cycle alternating between edges added and removed
from the tour).

Once Si is fixed, there are at most 4m choices for Si+1 because there are two choices
for the edge that links Si and Si+1, at most m choices for the other edge removed from
the tour in step Si+1, and, once these are fixed, at most two choices for the edges added
to the tour in step Si+1.

We call a sequence of steps ε-bad if every step in the sequence is improving but yields
an improvement of at most ε. The probability that a fixed 2-change is an improvement
by at most ε is bounded from above by εφ. Ideally we would like to show an upper bound
of (εφ)k on the probability that each step in a given linked sequence S1, . . . , Sk is an
improvement by at most ε. However, for general linked sequences this is not true because
the steps can be dependent in various ways (some steps might even repeat). We need to
introduce further restrictions on linked sequences to obtain a good upper bound on the
probability that every step is a small improvement.

In the following definitions, we assume that a linked sequence S1, . . . , Sk of 2-changes
is given. For i ∈ [k], in step Si the edges ei−1 and fi−1 are removed from the tour and the
edges ei and gi are added to the tour, i.e., for i ∈ [k− 1], ei denotes an edge that links the
steps Si and Si+1. These definitions are illustrated in Figure 3.1.
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ei+1Si Si+1
ei

fi

gi+1

. . .ei−1Si−1

gi−1 gi

fi−1fi−2

ei−2. . .

Figure 3.1: Illustration of the notation used in Section 3.1. Every node in the shown graph
corresponds to a 2-change. The arcs going into a node u represent the edges removed from
the tour in step u and the arcs going out of a node u represent the edges added to the
tour in step u.

Definition 4 (witness sequences of type 1). If for every i ∈ [k], the edge ei does not occur
in any step Sj with j < i, then S1, . . . , Sk is called a k-long witness sequence of type 1.

A k-long witness sequence of type 1 possesses enough randomness to obtain an upper
bound of (εφ)k for the probability that it is ε-bad because every step introduces an edge
that has not occurred in the steps before (see Lemma 7).

Definition 5 (witness sequences of type 2). If for every i ∈ [k], the edge ei does not occur
in any step Sj with j < i and if each endpoint of fk−1 occurs in some step Sj with j < k
(not necessarily the same for both endpoints), then S1, . . . , Sk is called a k-long witness
sequence of type 2.

Observe that every k-long witness sequence of type 2 is also a k-long witness sequences
of type 1. Hence, also for every witness sequences of type 2, we obtain the desired bound
of (εφ)k for the probability that it is ε-bad. Due to the additional restriction on fk−1, the
number of k-long witness sequences of type 2 is at most k24kmk (see Lemma 7). Even
though it seems like a minor detail, it is very important that the exponent of m in this
bound is only k and not k + 1 as for k-long witness sequences of type 1. The reason
why this is important is that, as we will see later, the quotient of the exponents of m
and ε in the upper bound for the probability that there exists an ε-bad witness sequence
determines the exponent of m in the bound for the expected length of the longest path in
the state graph. For witness sequences of type 1 this quotient is (k+ 1)/k = 1 + 1/k while
it is only k/k = 1 for witness sequences of type 2. Since we aim for the exponent 1 + o(1),
witness sequences of type 1 are only helpful in our analysis for k = ω(1) while witness
sequences of type 2 of any length yield a good enough bound on the expected length of
the longest path in the state graph.

Definition 6 (witness sequences of type 3). If for every i ∈ [k − 1], the edge ei does
not occur in any step Sj with j < i, if ek and gk both occur in steps Sj with j < k (not
necessarily the same), and if fk−1 does not occur in any step Sj with j < k then S1, . . . , Sk
is called a k-long witness sequence of type 3.

Also every witness sequences of type 3 possesses enough randomness to bound the
probability that it is ε-bad by (εφ)k because every step introduces a new edge. The number
of witness sequences of type 3 is bounded from above by k24k+1mk (see Lemma 7). Hence,
the same reasoning as for witness sequences of type 2 applies and witness sequences of
type 3 of any length yield a good enough bound on the expected length of the longest
path in the state graph.
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3.2 Probability of the Existence of a Bad Witness Sequence

In this section, we analyze the probability that there exists an ε-bad k-long witness se-
quence.

Lemma 7. The probability that there exists

a) an ε-bad k-long witness sequence of type 1 is bounded from above by 4k−1mk+1(εφ)k,

b) an ε-bad k-long witness sequence of type 2 is bounded from above by k24kmk(εφ)k,

c) an ε-bad k-long witness sequence of type 3 is bounded from above by k24k+1mk(εφ)k.

Proof. a) We consider k-long witness sequences of type 1 first. In accordance with
Lemma 3 the number of such sequences is at most 4k−1mk+1. Now fix an arbitrary k-long
witness sequence S1, . . . , Sk of type 1. We use the same notation as in Figure 3.1 to denote
the edges involved in this sequence. In the first step, the edges e0 and f0 are replaced
by the edges e1 and g1. As in the proof of Theorem 2, we use the principle of deferred
decisions and assume that the lengths of the edges e0, f0, and g1 are determined by an
adversary. The improvement of step S1 can be expressed as a simple linear combination
of the lengths of the involved edges. Hence, for fixed lengths of e0, f0, and g1, the event
that S1 is an improvement by at most ε corresponds to the event that the length d(e1)
of e1 lies in some fixed interval of length ε. Since the density of d(e1) is bounded by φ,
the probability that d(e1) takes a value in this interval is bounded by εφ.

Now we consider a step Si with i ≥ 2 and apply again the principle of deferred decisions.
We assume that arbitrary lengths for the edges ej and fj with j < i and for gj with j ≤ i
are chosen. Since the edge ei is not involved in any step Sj with j < i, its length is
not determined. Hence, analogously to the first step, the probability that step Si is an
improvement by at most ε is bounded from above by εφ for every realization of the steps Sj
with j < i. Applying this argument to every step Si yields the desired bound of (εφ)k. A
union bound over all witness sequences of type 1 concludes the proof of a).

b) Since S1, . . . , Sk−1 is a (k − 1)-long witness sequence, there are at most 4k−2mk

choices for these steps. The number of different vertices involved in steps Si with i < k is
at most 4 + 2(k − 2) = 2k because the first step introduces four new vertices and every
other step at most two. Since the endpoints of the edge fk−1 must be chosen among those
vertices that have been involved in the steps Si with i < k, there are at most

(
2k
2

)
< 2k2

choices for fk−1. Furthermore, for fixed Sk−1 there are two choices for the edge ek−1

that links Sk−1 and Sk. If the edges ek−1 and fk−1 are determined, there are two choices
for ek and gk. Hence, in total there are at most 8k2 possible choices for step Sk. This
implies that the number of different k-long witness sequences of type 2 is bounded by
8k24k−2mk < k24kmk.

Applying the same arguments as for witness sequences of type 1, yields for every
witness sequence of type 2 that it is ε-bad only with a probability of at most (εφ)k. A
union bound over all witness sequences of type 2 concludes the proof of b).

c) Since S1, . . . , Sk−1 is a (k − 1)-long witness sequence, there are at most 4k−2mk

choices for these steps. The number of different edges involved in steps Si with i < k is at
most 4 + 3(k − 2) < 3k because the first step introduces four new edges and every other
step at most three. Hence, when the steps S1, . . . , Sk−1 are fixed, there are at most two
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choices for the edge ek−1 that links Sk−1 and Sk and there are at most
(

3k
2

)
≤ 9k2/2 choices

for the set {ek, gk}. Once ek−1 and {ek, gk} are fixed, there are two choices for fk−1. The
total number of k-long witness sequences of type 3 can thus be bounded from above by
18k24k−2mk < k24k+1mk.

Similar to witness sequences of type 1, we can bound the probability that a fixed k-
long witness sequence of type 3 is ε-bad from above by (εφ)k because also the last step
introduces an edge that does not occur in the steps before, namely fk−1.

Definition 8. In the following, we use the term k-witness sequence to denote a k-long
witness sequence of type 1 or an i-long witness sequence of type 2 or 3 with i ≤ k.

Observe that in general a k-witness sequence can contain non-improving 2-changes,
which increase the length of the tour. As 2-Opt does not make such 2-changes, we are
only interested in k-witness sequences in which every 2-change is improving.

Definition 9. We call a k-witness sequence improving if every 2-change in the sequence

is an improvement. Moreover, by ∆
(k)
ws we denote the smallest total improvement made by

any improving k-witness sequence.

The reason why the previous definition treats witness sequences of type 1 differently
than those of type 2 or 3 is that, as discussed above, witness sequences of type 1 are only
helpful in our analysis if they are long enough while witness sequences of type 2 or 3 of
any length are helpful. Lemma 7 shows that it is unlikely that there exists an improving
k-witness sequence whose total improvement is small.

Corollary 10. For any natural number k ≥ 3 and 0 < ε ≤
(

64m(k−1)/(k−2)φ
)−1

,

Pr
[
∆(k)

ws ≤ ε
]
≤ 800 · (mεφ)2.

Proof. Due to Lemma 7 and the fact that witness sequences of type 2 or 3 must consist
of at least two steps, a union bound over all k-witness sequences yields

Pr
[
∆(k)

ws ≤ ε
]
≤ 4k−1mk+1(εφ)k +

k∑
i=2

i24imi(εφ)i +
k∑

i=2

i24i+1mi(εφ)i

≤ 4k−1mk+1(εφ)k + 5
∞∑
i=2

i2(4mεφ)i

= 4k−1mk+1(εφ)k + 5 · (4mεφ)2(4− 12mεφ+ (4mεφ)2)

(1− 4mεφ)3

≤ 4k−1mk+1(εφ)k + 5 ·
(16

15

)3
· (4mεφ)2 ·

(
4 +

1

162

)
≤ 4k−1mk+1(εφ)k + 25 · (4mεφ)2.

Here we used, in the third step, that
∑∞

i=1 i
2ai = a(a+1)

(1−a)3
for any a ∈ [0, 1). In the fourth

and fifth step, we used that the upper bound on ε in the corollary implies 4mεφ ≤ 1/16.

The above inequality implies the corollary because for ε ≤
(
64m(k−1)/(k−2)φ

)−1
, the

second term in the sum is at least as large as the first one.
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3.3 Finding Witness Sequences

In the previous section, we have shown an upper bound on the probability that there
exists an ε-bad k-witness sequence. In this section, we show that in every long enough
sequence of consecutive 2-changes, one can identify a certain number of disjoint k-witness
sequences. In this way, we obtain a lower bound on the improvement made by any long

enough sequence of consecutive 2-changes in terms of ∆
(k)
ws .

Lemma 11. Let n ≥ 8, k ∈ N, and let S1, . . . , St denote a sequence of consecutive 2-
changes performed by the 2-Opt heuristic with t ≥ n4k−1. The sequence S1, . . . , St shortens

the tour by at least t/4k+1 ·∆(k)
ws .

Basically, we have to show that one can find t/4k+1 disjoint k-witness sequences in
the given sequence S1, . . . , St of consecutive 2-changes. To do this, we first introduce a
so-called witness DAG (directed acyclic graph) which represents the sequence S1, . . . , St
of 2-changes. In order to not confuse the constructed witness DAG W with the input
graph G, we use the terms nodes and arcs when referring to the DAG W and the terms
vertices and edges when referring to G. For every step Si in the given sequence there is
one node in W . Every node has at most two incoming and either zero or two outgoing arcs
and every arc is labeled with an edge of the graph G. Consider a node that corresponds
to a step Si in which the edges e and e′ are exchanged with the edges f and f ′. If there
exists a step Sj with j > i in which the edge f is removed from the tour then let j1 > i
denote the smallest such index, i.e., the edge f is removed from the tour in step Sj1 and
does not occur in the steps Si+1, . . . , Sj1−1. Similarly if there exists a step Sj with j > i
in which the edge f ′ is removed from tour then let j2 > i denote the smallest such index.
Only if both j1 and j2 are defined, the node that corresponds to Si has outgoing arcs. It
has one outgoing arc to the node that corresponds to Sj1 and that is labeled with f and it
has a second outgoing arc to the node that corresponds to Sj2 and that is labeled with f ′.

We call nodes of W without outgoing arcs leaves. By the height of a node u, we denote
the length of a shortest path from u to a leaf of W . We associate with each node u of
height at least k−1 a sub-DAG Wu of W . The sub-DAG Wu associated with such a node u
is the induced sub-DAG of those nodes of W that can be reached from u by traversing at
most k − 1 arcs. The following two lemmas directly imply Lemma 11.

Lemma 12. Let u be a node of height at least k− 1 in W . The 2-changes represented by

the nodes in the sub-DAG Wu yield a total improvement of at least ∆
(k)
ws .

Lemma 13. Let n ≥ 8. Every witness DAG that represents a sequence of t ≥ n4k−1

2-changes contains at least t/4k+1 nodes of height at least k− 1 whose corresponding sub-
DAGs are pairwise disjoint.

Proof of Lemma 12. Assume that a sub-DAG Wu with root u of height at least k − 1
in W is given. Any path from u to some other node in Wu corresponds to a sequence of
2-changes. Let P be such a path. From the definition of W it follows that every node on P
corresponds to a step Si where the indices are strictly increasing along P (in particular,
every node on P corresponds to a step with a different index). In the following, we show
that at least one path in Wu corresponds to a k-witness sequence or a sequence whose
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total improvement is at least as large as the total improvement of one of the k-witness
sequences.

In order to identify such a path, we unroll the sub-DAG Wu to a complete binary
tree T of height k− 1. The root of T is the node u and every node in T whose distance to
the root is smaller than k−1 has two children, namely (copies of) its two direct successors
in Wu. In general, the binary tree T contains multiple nodes that represent the same
step Si. However, if P is a downward path in T from the root u to some other node,
then it is still the case that each node on P corresponds to a step Si where the indices are
strictly increasing along P .

Let v be an inner node of T , let a be one of its outgoing arcs, let e be the label of a,
and let P be the downward path from the root u to the node v in T , not including v itself.
We say that the arc a is non-continuable if the edge e occurs in one of the steps that are
represented by the nodes of P and continuable otherwise. (Observe that this does not
necessarily mean that one of the arcs on the path from u to v has label e.) The intuition
underlying this definition is as follows: We would like to find a downward path in Wu

starting at the root u whose nodes correspond to a witness sequence. Only paths in which
all arcs are continuable can correspond to witness sequences of type 1 or 2. For witness
sequences of type 3 all arcs except for the last one must be continuable.

Now let v be a leaf of T . Then v does not have any outgoing arcs. Nevertheless, as
every node of T , it corresponds to a step in which two edges are added to the tour. We
call the leaf v non-continuable if both these edges occur in steps that are represented by
the nodes of the downward path from the root u to the node v in T , not including v itself,
and continuable otherwise. The intuition underlying this definition is as follows: Any
downward path in Wu starting at the root u to a leaf v can only correspond to a witness
sequence of type 1 if all its arcs are continuable and if the leaf v is also continuable.

If T contains a downward path that corresponds to a k-witness sequence of type 1 then
we are done. Assume that T does not contain such a path. Then the following property
must be true for any path P from the root u to a leaf v of T : at least one of the arcs of P
is non-continuable or v is non-continuable. This is the case because any path from u to a
continuable leaf v that contains only continuable arcs corresponds to a k-witness sequence
of type 1 (the continuable arcs correspond to the edges e1, e2, . . . , ek in Definition 4). Now
we remove all nodes from T below non-continuable arcs to get a subtree T ′ of T . To be
more precise, a node v of T is contained in T ′ if and only if the downward path from u
to v in T does not contain a non-continuable arc. We will show that we can find a witness
sequence of type 2 or 3 in T ′.

Let vi+1 be one node with maximum distance from the root in T ′ and let vi be its
parent. Let the 2-changes represented by the nodes on the downward path P from the
root u to vi+1 be S1, . . . , Si+1. If vi has two children in T ′ then let v′i+1 denote the
child different from vi+1 and let S′i+1 denote the step that is represented by v′i+1. In
Figure 3.2, we summarize the notation that we use in the following. In step Sj for j ≤ i−1
and j = i+ 1, the edges ej−1 and fj−1 are exchanged with the edges ej and gj . In step Si,
the edges ei−1 and fi−1 are exchanged with the edges ei and e′i, and in step S′i+1, the
edges e′i and f ′i are exchanged with the edges e′i+1 and g′i+1. We denote by Ei all edges
that are involved in steps Sj with j ≤ i. Similarly, by Ei−1 we denote all edges that are
involved in steps Sj with j ≤ i− 1.

11



ei+1

Si

Si+1ei

fi gi+1

ei−1Si−1

gi−1
e′i

fi−1fi−2

ei−2. . .
e′i+1S′i+1

f ′i g′i+1

Figure 3.2: Summary of our notation. We assume that the nodes corresponding to Si+1

and S′i+1 are leaf nodes of T ′ and non-continuable.

Observe that all leaves in T ′ must be non-continuable. For leaves of height smaller
than k − 1 this follows from the definition of T ′. If any such leaf v had a continuable
arc in T then this arc and the corresponding child of v would also be contained in T ′.
Leaves of height k − 1 in T ′ cannot be continuable because otherwise the path to such a
leaf would represent a k-witness sequence of type 1, as discussed above. Our construction
ensures that S1, . . . , Si is an i-witness sequence of type 1 because the path from the root u
to the leaf vi+1 consists of continuable arcs only. The sequence S1, . . . , Si+1, however,
is not a witness sequence of type 1 because all leaves of T ′ are non-continuable, which
implies ei+1, gi+1 ∈ Ei.

In the following we will shrink the tree T ′ until a witness sequence of type 2 or 3 is
found. For this, we define the operation contract(Si, Si+1). This operation will only be
applied if the node that corresponds to Si has only a single child in T ′ (namely the one
that corresponds to Si+1) and if the net effect of Si and Si+1 together corresponds to
a single 2-change S. In this case the operation contract(Si, Si+1) replaces the nodes vi
and vi+1 that represent the steps Si and Si+1 by a node the represents the 2-change S.
We call the tree that results from this operation again T ′. The following invariant will
remain true throughout the construction: The only nodes that were produced by a contract
operation are leaves in the current tree T ′. Furthermore each leaf that was created by a
contract operation has the same net effect as the contracted steps and it is non-continuable.
For every leaf that was produced by contract operations, the steps contracted form a
descending path in the original tree T ′ in which every node has at most one child.

The following case analysis shows that it is always possible to either identify a wit-
ness sequence of type 2 or 3 or to apply the operation contract(Si, Si+1). We use the
notation returnj(R1, . . . , R`) to denote that R1, . . . , R` is an `-long witness sequence of
type j.

Since vi+1 is non-continuable, we can assume ei+1, gi+1 ∈ Ei.
If e′i /∈ Ei−1, then v′i+1 exists in T ′. Since vi+1 is a node of maximum distance to the
root, v′i+1 must also be a leaf in T ′ and hence it is also non-continuable due to the
invariant. This is equivalent to e′i+1, g

′
i+1 ∈ Ei.

1. If fi−1 ∈ Ei−1, then return2(S1, . . . , Si).
From now on we assume fi−1 /∈ Ei−1.

2. If e′i ∈ Ei−1, then consider the following cases.

12



(a) If fi /∈ Ei, then return3(S1, . . . , Si+1).

(b) If ei+1, gi+1 ∈ Ei−1, then return2(S1, . . . , Si).
S1, . . . , Si is a witness sequence of type 2 because one endpoint of fi−1 equals
one endpoint of e′i and the other one equals one endpoint of either ei+1 or gi+1.

(c) If fi ∈ Ei and (ei+1 ∈ Ei \ Ei−1 or gi+1 ∈ Ei \ Ei−1), then contract(Si, Si+1).
In this case one can assume w.l.o.g. that gi+1 = fi−1 and ei+1 ∈ Ei−1 since Ei \
Ei−1 = {ei, fi−1} and the edges ei, ei+1, and gi+1 are pairwise distinct because
they occur in the same 2-change Si+1. The contract-operation replaces vi
and vi+1 by a node that represents the 2-change S := (ei−1, fi)→ (e′i, ei+1).

3. If e′i /∈ Ei−1, then ei+1, gi+1, e
′
i+1, g

′
i+1 ∈ Ei. Consider the following cases.

(a) If fi /∈ Ei or f ′i /∈ Ei, then return3(S1, . . . , Si+1) or return3(S1, . . . , Si, S
′
i+1),

respectively.

From now on we assume fi, f
′
i ∈ Ei.

(b) If ei+1, gi+1, e
′
i+1, g

′
i+1 ∈ Ei−1, then return2(S1, . . . , Si).

S1, . . . , Si is a witness sequence of type 2 due to the invariant and the fact that
the endpoints of fi−1 coincide with some endpoints of ei+1, gi+1, e

′
i+1, g

′
i+1.

(c) If |{ei+1, e
′
i+1, gi+1, g

′
i+1}∩(Ei\Ei−1)| ≥ 1, then assume w.l.o.g. gi+1 ∈ Ei\Ei−1

and return2(S1, . . . , Si−1, S) for the 2-change S defined below.
In this case Ei \ Ei−1 = {ei, e′i, fi−1}. Furthermore, ei+1 6= e′i and gi+1 6= e′i
because ei+1 and gi+1 both share one endpoint with ei whereas e′i and ei do not
share any endpoints. Furthermore, the edges ei, ei+1, and gi+1 are pairwise
distinct because they occur in the same 2-change Si+1. As in case 2 (c), we
assume w.l.o.g. that gi+1 = fi−1 and ei+1 ∈ Ei−1.

It must be fi 6= e′i as otherwise step Si would be reversed in step Si+1. Further-
more, the edges fi, ei, and, fi−1 = gi+1 are pairwise distinct because they occur
in the same 2-change Si+1. Hence, fi ∈ Ei−1. For the step S := (ei−1, fi) →
(e′i, ei+1), the sequence S1, . . . , Si−1, S is a witness sequence of type 2 because
fi ∈ Ei−1 and e′i /∈ Ei−1. Observe that the original sequence S1, . . . , Si+1

yields the same net effect and hence the same improvement as the sequence
S1, . . . , Si−1, S.

If the operation contract(Si, Si+1) is performed in Case 2 (c) then the invariant stays
true. If the node vi+1 was not created by a previous contraction this follows easily because
Case 2 is only reached if vi has only one child and contract(Si, Si+1) replaces vi and vi+1

by a node that represents the 2-change (ei−1, fi)→ (ei+1, e
′
i), which is the net effect of Si

and Si+1 together. Furthermore ei+1, e
′
i ∈ Ei−1 and hence the new node is non-continuable.

With the same arguments it also follows that the invariant stays true if the node vi+1 was
created by previous contractions.

We repeatedly apply the case analysis above to a node in T ′ with maximum distance to
the root until a witness sequence is found. Observe that the operation contract(Si, Si+1)
is only performed in Case 2 (c) and that each time it is performed the number of nodes
in T ′ decreases by one. Furthermore it is not possible that T ′ shrinks to a single node
because this node would be a leaf that must be non-continuable due to the invariant.
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However, the root of T ′ is always continuable because there are no previous steps in which
the edges added to the tour can occur. Hence after finitely many occurrences of the
operation contract(Si, Si+1) one of the other cases must be reached. In all other cases,
immediately a witness sequence of type 2 or 3 is returned.

The witness sequence returned is in general not a sequence of steps that are contained
in the DAG Wu because the last step S (and only the last step) in the returned sequence is
potentially the result of some contract operations. This is, in particular, true for Case 3 (c)
in which the steps Si and Si+1 are contracted without explicitly calling the operation
contract. Due to the invariant, we know that the steps that are contracted into the
last step S have the same net effect as S. Furthermore these steps have pairwise distinct
indices because they lie on a downward path in T . So the improvement of every step is
counted at most once. Hence, the improvement of the witness sequence returned always
equals the total improvement of some steps that are contained in Wu. This concludes the
proof.

Proof of Lemma 13. Let W be a witness DAG that consists of t nodes that represent the
steps S1, . . . , St. By definition a node in W has either two direct successors or none at all.
The case that a node has no successors can only occur if at least one of the edges that is
added to the tour in the corresponding step is not removed anymore in later steps. Since
the final tour that is obtained after performing the steps S1, . . . , St contains exactly n
edges, at most n of the nodes of W can be leaves. Hence W contains at least t− n nodes
with two outgoing arcs.

We defined the height of a node v in W to be the minimum distance from v to one
of the leaves of W . Since every node in W has an indegree of at most two, there are at
most n2k−1 nodes in W whose height is smaller than k − 1. Hence, there are at least
t− n2k−1 nodes in W with an associated sub-DAG of depth k − 1. We construct a set of
disjoint sub-DAGs in a greedy fashion: We take an arbitrary sub-DAG Wu and add it to
the set of disjoint sub-DAGs that we construct. After that, we remove all nodes of Wu

from the DAG W . We repeat these steps until no complete sub-DAG Wu is left in W .
In order to see that the constructed set consists of at least t/4k+2 disjoint sub-DAGs,

observe that each sub-DAG of depth k − 1 contains at most 2k − 1 nodes because the
outdegree of every node is at most two. Each node can be contained in at most 2k − 1
sub-DAGs of depth k− 1 because the indegree of every node is at most two. Hence, every
sub-DAG Wu can only intersect with at most (2k − 1)2 ≤ 4k other sub-DAGs. Thus, the
number of pairwise disjoint sub-DAGs must be at least⌊

t− n2k−1

4k

⌋
≥
⌊
t/2

4k

⌋
≥ t

4k+1
,

where both inequalities follow from the assumption t ≥ n4k−1. For the second inequality
we additionally used the assumption n ≥ 8.

3.4 The Expected Number of 2-Changes

Now we can prove Theorem 1.
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Proof of Theorem 1. We combine Corollary 10 and Lemma 11 to obtain an upper bound
on the probability that the length T of the longest path in the state graph exceeds t.
Let n ≥ 8. For t ≥ n4k−1, the tour is shortened by the sequence of 2-changes by at least

t/4k+1 ·∆(k)
ws . Hence, for t ≥ n4k−1,

Pr [T ≥ t] ≤ Pr

[
t

4k+1
·∆(k)

ws ≤ n
]

= Pr

[
∆(k)

ws ≤
n4k+1

t

]
.

Combining this inequality with Corollary 10 yields for t ≥ t′ := d4k+4nm(k−1)/(k−2)φe,

Pr [T ≥ t] ≤ 800

(
4k+1nmφ

t

)2

.

Note that the restriction t ≥ t′ is necessary to apply Corollary 10. We can bound the
expected number of 2-changes as follows:

E [T ] =

∞∑
t=1

Pr [T ≥ t] ≤ t′ +
∞∑

t=t′+1

800

(
4k+1nmφ

t

)2

≤ t′ +
∫ ∞
t′

800

(
4k+1nmφ

t

)2

dt

≤ t′ + 800(4k+1nmφ)2

t′

= O
(

4knm(k−1)/(k−2)φ
)
.

Setting k =
√

lnm yields

E [T ] = O
(

4
√

lnmm
1√

lnm−2nmφ
)

= O
(

42
√

lnmnmφ
)
,

where the last equation holds for sufficiently large m.

4 Upper Bound for the Second Moment

Our method does not yield strong concentration bounds for the expected length of the
longest path in the state graph. The reason is that the exponent of ε in Corollary 10 is
only 2. It is, however, possible to bound the second moment of T .

Theorem 14. For every φ-perturbed graph with n vertices and m edges

E
[
T 2
]

= O

((
16
√

lnmmφ
)2
· n3

)
.

Proof. The proof follows along the same lines as the proof of Theorem 1. Let n ≥ 8. For

t ≥ n4k−1, the tour is shortened by the sequence of 2-changes by at least t/4k+1 · ∆(k)
ws .

Hence, for t ≥ n4k−1,

Pr
[
T 2 ≥ t

]
= Pr

[
T ≥

√
t
]
≤ Pr

[ √
t

4k+1
·∆(k)

ws ≤ n
]

= Pr

[
∆(k)

ws ≤
n4k+1

√
t

]
.
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Combining this inequality with Corollary 10 yields for t ≥ t′ := (d4k+4nm(k−1)/(k−2)φe)2,

Pr
[
T ≥

√
t
]
≤ 800

(
4k+1nmφ√

t

)2

.

Note that the restriction t ≥ t′ is necessary to apply Corollary 10. Using that T 2 cannot
be larger than (n!)2, we can bound the expected value of T 2 as follows:

E
[
T 2
]

=

(n!)2∑
t=1

Pr
[
T 2 ≥ t

]
≤ t′ +

(n!)2∑
t=t′+1

800

(
4k+1nmφ√

t

)2

≤ t′ +
∫ (n!)2

t′
800

(
4k+1nmφ√

t

)2

dt

≤ t′ + 800(4k+1nmφ)2

∫ (n!)2

1

1

t
dt

≤ t′ + 800(4k+1nmφ)2 · ln((n!)2)

= O

((
4knm(k−1)/(k−2)φ

)2
n ln(n)

)
.

Setting k =
√

lnm yields

E
[
T 2
]

= O

((
4
√

lnmm
1√

lnm−2nmφ
)2

n ln(n)

)
= O

((
16
√

lnmnmφ
)2
n

)
,

where the last equation holds for sufficiently large m.

Let B = c ·16
√

lnmnmφ, where c is the constant from the Big O notation in Theorem 1.
Then Markov’s inequality implies for every a ≥ 1 that Pr [T ≥ aB] ≤ 1/a. Theorem 14
implies the following concentration bound, which is stronger for large a.

Corollary 15. If m is sufficiently large, there exists a constant κ such that Pr [T ≥ aB] ≤
nκ/a2 for any a ≥ 1.

Proof. Let κ be chosen such that E
[
T 2
]
≤ κB2n. Such a constant κ must exist due to

Theorem 14. Then

Pr [T ≥ aB] = Pr
[
T 2 ≥ a2B2

]
= Pr

[
T 2 ≥ a2

nκ
κB2n

]
≤ nκ

a2
.
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