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1 College of Computing, Georgia Institute of Technology
ninamf@cc.gatech.edu

2 Department of Quantitative Economics, Maastricht University
heiko@roeglin.org

3 Computer Science Department, University of Southern California
shanghua.teng@gmail.com

Abstract. Motivated by the principle of agnostic learning, we present
an extension of the model introduced by Balcan, Blum, and Gupta [3]
on computing low-error clusterings. The extended model uses a weaker
assumption on the target clustering, which captures data clustering in
presence of outliers or ill-behaved data points. Unlike the original tar-
get clustering property, with our new property it may no longer be the
case that all plausible target clusterings are close to each other. Instead,
we present algorithms that produce a small list of clusterings with the
guarantee that all clusterings satisfying the assumption are close to some
clustering in the list, proving both upper and lower bounds on the length
of the list needed.

1 Introduction

Problems of clustering data from pairwise distance or similarity information
are ubiquitous in science. Typical examples of such problems include clustering
proteins by function, images by subject, or documents by topic. In many of
these clustering applications there is an unknown target or desired clustering,
and while the distance information among data is merely heuristically defined,
the real goal in these applications is to minimize the clustering error with respect
to the target clustering.

A commonly used approach for data clustering is to first choose a particular
distance-based objective function Φ (e.g., k-median or k-means) and then design
a clustering algorithm that (approximately) optimizes this objective function [1,
2, 7]. The implicit hope is that approximately optimizing the objective function
will in fact produce a clustering of low clustering error, i.e. a clustering that is
pointwise close to the target clustering. Mathematically, the implicit assumption
is that the clustering error of any c-approximation to Φ on the data set is bounded
by some ε. We will refer to this assumed property as the (c, ε) property for Φ.
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Balcan, Blum, and Gupta [3] have shown that by making this implicit as-
sumption explicit, one can efficiently compute a low-error clustering even in cases
when the approximation problem of the objective function is NP-hard. In partic-
ular, they show that for any c = 1+α > 1, if data satisfies the (c, ε) property for
the k-median or the k-means objective, then one can produce a clustering that is
O(ε)-close to the target, even for values c for which obtaining a c-approximation
is NP-hard.

However, the (c, ε) property is a strong assumption. In real data there may
well be some data points for which the (heuristic) distance measure does not
reflect cluster membership well, causing the (c, ε) property to be violated. A
more realistic assumption is that the data satisfies the (c, ε) property only after
some number of outliers or ill-behaved data points, i.e., a ν fraction of the data
points, have been removed. We will refer to this property as the (ν, c, ε) property.

While the (c, ε) property leads to the situation that all plausible cluster-
ings (i.e., all the clusterings satisfying the (c, ε) property) are O(ε)-close to each
other, two different sets of outliers could result in two different clusterings satis-
fying the (ν, c, ε) property. We therefore analyze the clustering complexity of this
property [4], i.e, the size of the smallest ensemble of clusterings such that any
clustering satisfying the (ν, c, ε) property is close to a clustering in the ensemble;
we provide tight upper and lower bounds on this quantity for several interesting
cases, as well as efficient algorithms for outputting a list such that any clustering
satisfying the property is close to one of those in the list.

Perspective: The clustering framework we analyze in this paper is related in
spirit to the agnostic learning model in the supervised learning setting [6]. In the
Probably Approximately Correct (or PAC) learning model of Valiant [8], also
known as the realizable setting, the assumption is that the data distribution over
labeled examples is correctly classified by some fixed but unknown concept in
some concept class, e.g., by a linear separator. In the agnostic setting [6] how-
ever, the assumption is weakened to the hope that most of the data is correctly
classified by some fixed but unknown concept in some concept space, and the
goal is to compete with the best concept in the class by an efficient algorithm.
Similarly, one can view the (ν, c, ε) property as an agnostic version of the (c, ε)
property since we assume that the (ν, c, ε) property is satisfied if the (c, ε) prop-
erty is satisfied on most but not all of the points and moreover the points where
the property is not satisfied are adversarially chosen.

Our results: We present several algorithmic and information-theoretic results
in this new clustering model.

For most of this paper we focus on the k-median objective function. In the
case where the target clusters are large (have size Ω((ε/α + ν)n)) we show that
the algorithm in [3] can be used in order to output a single clustering that is
(ν + ε)-close to the target clustering. We then show that in the more general
case there can be multiple significantly different clusterings that can satisfy the
(ν, c, ε) property. This is true even in the case where most of the points come
from large clusters; in this case, however, we show that we can in polynomial
time output a small list of k-clusterings such that any clustering that satisfies



the property is close to one of the clusterings in the list. In the case where most
of the points come from small clusters, we provide information-theoretic bounds
on the clustering complexity of this property.

We also show how both the analysis in [3] for the (c, ε) property and our
analysis for the (ν, 1+α, ε) property can be adapted to the inductive case, where
we imagine our given data is only a small random sample of the entire data set.
Based on the sample, our algorithm outputs a clustering or a list of clusterings of
the full domain set that are evaluated with respect to the underlying distribution.

We conclude by discussing how our analysis extends to the k-means objective
function as well.

2 The Model

The clustering problems we consider fall into the following general framework:
we are given a metric spaceM = (X, d) with point set X and a distance function
d :

(
X
2

) → R≥0 satisfying the triangle inequality — this is the ambient space.
We are also given the actual point set S ⊆ X we want to cluster; we use n to
denote the cardinality of S. A k-clustering C is a partition of S into k (possibly
empty) sets C1, C2, . . . , Ck. In this work, we always assume that there is a true
or target k-clustering CT for the point set S.

Commonly used clustering algorithms seek to minimize some objective func-
tion or “score”. For example, the k-median clustering objective assigns to each
cluster Ci a “median” ci ∈ Ci and seeks to minimize Φ1(C) =

∑k
i=1

∑
x∈Ci

d(x, ci).
Another example is the k-means clustering objective, which assigns to each clus-
ter Ci a “center” ci ∈ X and seeks to minimize Φ2(C) =

∑k
i=1

∑
x∈Ci

d(x, ci)2.
Given a function Φ and an instance (M, S), let OPTΦ = minC Φ(C), where the
minimum is over all k-clusterings of S.

The notion of distance between two k-clusterings C = {C1, C2, . . . , Ck} and
C′ = {C ′1, C ′2, . . . , C ′k} that we use throughout the paper, is the fraction of points
on which they disagree under the optimal matching of clusters in C to clusters
in C′; we denote that as dist(C, C′). Formally,

dist(C, C′) = min
σ∈Sk

1
n

k∑

i=1

|Ci − C ′σ(i)|,

where Sk is the set of bijections σ : {1, . . . , k} → {1, . . . , k}. We say that two
clusterings C and C′ are ε-close if dist(C, C′) ≤ ε and we say that a clustering
has error ε if it is ε-close to the target.

The (1+α, ε)-property: The following notion originally introduced in [3] and
later studied in [5] is central to our discussion:

Definition 1. Given an objective function Φ (such as k-median or k-means),
we say that instance (S, d) satisfies the (1 + α, ε)-property for Φ with respect to
the target clustering CT if all clusterings C with Φ(C) ≤ (1+α) ·OPTΦ are ε-close
to the target clustering CT for (S, d).



The (ν, 1 + α, ε)-property: In this paper, we study the following more robust
variation of Definition 1:

Definition 2. Given an objective function Φ (such as k-median or k-means),
we say that instance (S, d) satisfies the (ν, 1 + α, ε)-property for Φ with respect
to the target clustering CT if there exists a set of points S′ ⊆ S of size at least
(1 − ν)n such that (S′, d) satisfies the (1 + α, ε)-property for Φ with respect to
the clustering CT ∩ S′ induced by the target clustering on S′.

In other words our hope is that the (1 + α, ε)-property for objective Φ is
satisfied only after outliers or ill-behaved data points have been removed. Note
that unlike the case ν = 0, in general the (ν, 1+α, ε)-property could be satisfied
with respect to multiple significantly different clusterings, since we allow the
set of outliers or ill-behaved data points to be arbitrary. As a consequence we
will be interested in the size of the smallest list any algorithm could hope to
output that guarantees that at least one clustering in the list has small error.
Given the instance (S, d), we say that a given clustering C is consistent with the
(ν, 1 + α, ε)-property for Φ if (S, d) satisfies the (ν, 1 + α, ε)-property for Φ with
respect to C. The following notion originally introduced in [4] provides a formal
measure of the inherent usefulness of a given property.

Definition 3. Given an instance (S, d) and the (ν, 1 + α, ε)-property for Φ, we
define the (γ, k)-clustering complexity of the instance (S, d) with respect to the
(ν, 1 + α, ε)-property for Φ to be the length of the shortest list of clusterings
h1, . . . , ht such that any consistent k-clustering is γ-close to some clustering in
the list. The (γ, k) clustering complexity of the (ν, 1+α, ε)-property for Φ is the
maximum of this quantity over all instances (S, d).

Ideally, the (ν, 1 + α, ε) property should have (γ, k) clustering complexity
polynomial in k, 1/ε, 1/ν, 1/α, and 1/γ. Sometimes we analyze the clustering
complexity of our property restricted to some family of interesting clusterings.
We define this analogously:

Definition 4. Given an instance (S, d) and the (ν, 1 + α, ε)-property for Φ, we
define the (γ, k)-restricted clustering complexity of the instance (S, d) with re-
spect to the (ν, 1 + α, ε)-property for Φ and with respect to some family of clus-
terings F to be the length of the shortest list of clusterings h1, . . . , ht such that
any consistent k-clustering in the family F is γ-close to some clustering in the
list. The (γ, k) restricted clustering complexity of the (ν, 1+α, ε)-property for Φ
and F is the maximum of this quantity over all instances (S, d).

For example, we will analyze the (ν, 1+α, ε)-property restricted to clusterings
in which every cluster has size Ω((ε/α + ν)n) or to the case where the average
cluster size is at least Ω((ε/α + ν)n).

Throughout the paper we use the following notations: For n ∈ N, we denote
by [n] the set {1, . . . , n}. Furthermore, log denotes the logarithm to base 2. We
say that a list C1, C2, C3, . . . of clusterings is laminar if Ci+1 can be obtained
from Ci by merging some of the clusters of Ci.



3 k-Median based Clustering: the (1 + α, ε)-property

We start by summarizing in Section 3.1 consequences of the (1 + α, ε)-property
that are critical for the new results we present in this paper. We also describe the
algorithm presented in [3] for the case that all clusters in the target clustering
are large. Then in Section 3.2 we show how this algorithm can be extended to
and analyzed in the inductive case.

3.1 Key properties of the (1 + α, ε)-property

Given an instance of k-median specified by a metric space M = (X, d) and a
set of points S ⊆ X, fix an optimal k-median clustering C∗ = {C∗1 , . . . , C∗k}, and
let c∗i be the center point for C∗i . For x ∈ S, let w(x) = mini d(x, c∗i ) be the
contribution of x to the k-median objective in C∗ (i.e., x’s “weight”), and let
w2(x) be x’s distance to the second-closest center point among {c∗1, c∗2, . . . , c∗k}.
Also, let w = 1

n

∑
x∈S w(x) = OPT

n be the average weight of the points. Finally,
let ε∗ = dist(CT , C∗); so, from the (1 + α, ε)-property we have ε∗ < ε.

Lemma 5 ( [3]). If the k-median instance (M, S) satisfies the (1+α, ε)-property
with respect to CT , then

(a) less than 6εn points x ∈ S have w2(x)− w(x) < αw
2ε ,

(b) if each cluster in CT has size at least 2εn, less than (ε − ε∗)n points x ∈ S
on which CT and C∗ agree have w2(x)− w(x) < αw

ε , and
(c) for every z ≥ 1, at most zεn/α points x ∈ S have w(x) ≥ αw

zε .

Algorithm 1 k-median, the case of large target clusters
Input: τ , b.

Step 1 Construct the graph Gτ = (S, Eτ ) by connecting all pairs {x, y} ∈ (
S
2

)
with

d(x, y) ≤ τ .
Step 2 Create a new graph Hτ,b where we connect two points by an edge if they share

more than bn neighbors in common in Gτ .
Step 3 Let C′ be any clustering obtained by taking the largest k components in Hτ,b,

adding the vertices of all other smaller components to any of these.
Step 4 For each point x ∈ S and each cluster C′j , compute the median distance

dmed(x, j) between x and all points in C′j .
Insert x into the cluster C′′i for i = argminjdmed(x, j).

Output: Clustering C′′

Theorem 6 ( [3]). Assume that the k-median instance satisfies the (1 + α, ε)-
property. If each cluster in CT has size at least (3 + 10/α)εn + 2, then given w
we can efficiently find a clustering that is ε-close to CT . If each cluster in CT has
size at least (4 + 15/α)εn + 2, then we can efficiently find a clustering that is
ε-close to CT even without being given w.



Since some of the elements of this construction are essential in our subsequent
proofs, we summarize in the following the main ideas of this proof.

Main Ideas of the Construction: Assume first that we are given w. We use
Algorithm 1 with τ = 2αw

5ε and b = (1 + 5/α)ε. For the analysis, let us define
dcrit = αw

5ε . We call point x good if both w(x) < dcrit and w2(x)−w(x) ≥ 5dcrit,
else x is called bad ; by Lemma 5 and the fact that ε∗ ≤ ε, if all clusters in
the target have size greater than 2εn, then at most a (1 + 5/α)ε-fraction of
points is bad. Let Xi be the good points in the optimal cluster C∗i , and let
B = S \ ∪Xi be the bad points. For instances satisfying the (1 + α, ε)-property,
the threshold graph Gτ defined in Algorithm 1 has the following properties:
(i) For all x, y in the same Xi, the edge {x, y} ∈ E(Gτ ). (ii) For x ∈ Xi and
y ∈ Xj 6=i, {x, y} 6∈ E(Gτ ). Moreover, such points x, y do not share any neighbors
in Gτ (by the triangle inequality). This implies that each Xi is contained in a
distinct component of the graph Hτ,b; the remaining components of Hτ,b contain
vertices from the “bad bucket” B. Since the Xi’s are larger than B, we get that
the clustering C ′ obtained in Step 3 by taking the largest k components in H
and adding the vertices of all other smaller components to one of them differs
from the optimal clustering C∗ only in the bad points which constitute an O(ε/α)
fraction of the total.

To argue that the clustering C′′ is ε-close to CT , we call a point x “red” if it
satisfies w2(x) − w(x) < 5dcrit, “yellow” if it is not red but w(x) ≥ dcrit, and
“green” otherwise. So, the green points are those in the sets Xi, and we have
partitioned the bad set B into red points and yellow points. The clustering C′
agrees with C∗ on the green points, so without loss of generality we may assume
Xi ⊆ C ′i. Since each cluster in C′i has a strict majority of green points all of
which are clustered as in C∗, this means that for a non-red point x, the median
distance to points in its correct cluster with respect to C∗ is less than the median
distance to points in any incorrect cluster. Thus, C′′ agrees with C∗ on all non-red
points. Since there are at most (ε − ε∗)n red points on which CT and C∗ agree
by Lemma 5 — and C′′ and CT might disagree on all these points — this implies
dist(C′′, CT ) ≤ (ε− ε∗) + ε∗ = ε, as desired.

The “unknown w” Case: If we are not given the value w, and every target
cluster has size at least (4 + 15/α)εn + 2, we instead run Algorithm 1 (with
τ = 2αw

5ε and b = (1 + 5/α)ε repeatedly for different values of w, starting with
w = 0 (so the graph Gτ is empty) and at each step increasing w to the next
value such that Gτ contains at least one new edge. We say that a point is
missed if it does not belong to the k largest components of Hτ,b. The number
of missed points decreases with increasing w, and we stop with the smallest w,
for which we miss at most bn = (1 + 5/α)εn points and each of the k largest
components contains more than 2bn points. Clearly, for the correct value of
w, we miss at most bn points because we miss only bad points. Additionally,
every Xi contains more than 2bn points. This implies that our guess for w
can only be smaller than the correct w and the resulting graphs Gτ and Hτ,b

can only have fewer edges than the corresponding graphs for the correct w.
However, since we miss at most bn points and every set Xi contains more than



bn points, there must be good points from every good set Xi that are not missed.
Hence, each of the k largest components corresponds to a distinct cluster C∗i . We
might misclassify all bad points and at most bn good points (those not in the
k largest components), but this nonetheless guarantees that each C′i contains at
least |Xi|− bn ≥ bn+2 correctly clustered green points (with respect to C∗) and
at most bn misclassified points. Therefore, as shown above for the case of known
w, the resulting clustering C′′ will correctly cluster all non-red points as in C∗
and so is at distance at most ε from CT .

3.2 The Inductive Case

In this section we consider an inductive model in which the set S is merely a small
random subset of points of size n from a much larger abstract instance space X,
|X| = N , N À n, and the clustering we output is represented implicitly through
a hypothesis h : X → Y .

Algorithm 2 Inductive k-median
Input: (S, d), ε ≤ 1, α > 0, k, n.

Training Phase:
Step 1 Set w = min{d(x, y) | x, y ∈ S} and τ = 2αw

5ε
.

Step 2 Apply Steps 1, 2 and 3 in Algorithm 1 with parameters τ and b = 2(1+5/α)ε
to generate a clustering C′1 . . . C′k of the sample S.

Step 3 If the total number of points in C′1 . . . C′k is at least (1−b)n and each |Ci| ≥ 2bn,
then terminate the training phase. Else increase τ to the smallest τ ′ > τ for which
Gτ 6= Gτ ′ and go to Step 2.

Testing Phase:
When a new point z arrives, compute for every cluster C′i the median distance of z to
all sample points in C′i. Assign z to the cluster that minimizes this median distance.

Our main result in this section is the following:

Theorem 7. Assume that the k-median instance (X, d) satisfies the (1 + α, ε)-
property and that each cluster in CT has size at least (6+30/α)εN +2. If we draw
a sample S of size n = Θ

(
1
ε ln

(
k
δ

))
, then we can use Algorithm 2 to produce a

clustering that is ε-close to the target with probability at least 1− δ.

Proof. Let Xi be the good points in the optimal cluster C∗i , and let B = S \∪Xi

be the bad points defined as in Theorem 6 over the whole instance space X.
In particular, if w is the average weight of the points in the optimal k-median
solution over the whole instance space, we call point x good if both w(x) < dcrit

and w2(x) − w(x) ≥ 5dcrit, else x is called bad. Let Xi be the good points in
the optimal cluster C∗i , and let B = S \ ∪Xi be the bad points. Since each
cluster in CT has size at least (6 + 30/α)εN + 2 we can show using a similar
reasoning as in Theorem 6 that |Xi| > 5|B|. Also, since our sample is large



enough, n = Θ
(

1
ε ln

(
k
δ

))
, by Chernoff bounds, with probability at least 1 − δ

over the sample we have |B ∩ S| < 2(1 + 5/α)εn and |Xi ∩ S| ≥ 4(1 + 5/α)εn,
and so |Xi ∩S| > 2|B ∩S| for all i. This then ensures that if we apply Steps 1, 2
and 3 in Algorithm 1 with parameters τ = 2αw

5ε and b = 2(1+5/α)ε we generate
a clustering C ′1 . . . C ′k of the sample S that is O(b)-close to the target on the
sample. In particular, all good points in the sample that are in the same cluster
form cliques in the graph Hτ,b and good points from different clusters are in
different connected components of this graph. So, taking the largest connected
components of this graphs gives us a clustering that is O(b)-close to the target
clustering restricted to the sample S.

If we do not know w, then we use the same approach as in Theorem 6. That
is, we start by setting w = 0 and increase it until the k largest components in the
corresponding graph Hτ,b cover a large fraction of the points. The key point is
that the correctness of this approach followed from the fact that the number of
good points in every cluster is more than twice the total number of bad points.
As we have argued above, this is satisfied with probability at least 1− δ for the
sample S as well, and hence, using arguments similar to the ones in Theorem 6
implies that we cluster the whole space with error at most ε. ut

Note that one can speed up Algorithm 2 as follows. Instead of repeatedly
calling Algorithm 1 from scratch, we can store the graphs G and H and only
add new edges to them in every iteration of Algorithm 2. Note also that in the
test phase, when a new point z arrives, we compute for every cluster C ′i the
median distance of z to all sample points in C ′i (and not to all the points added
so C ′′i ), and assign z to the cluster that minimizes this median distance. Note
also that a natural approach which will not work (due to the bad points) is to
compute a centroid/median for each C ′i and then insert new points based on this
Voronoi diagram.

4 k-Median based Clustering: the (ν, 1 + α, ε)-property

We now study k-median clustering under the (ν, 1 + α, ε)-property. If C is an
arbitrary clustering consistent with the property, and its set of outliers or ill-
behaved data points is S \ S′, we will refer to w = OPT

n as the value of C or the
value of S′, where OPT is the value of the optimal k-clustering of the set S′. We
start with the simple observation that if we are given a value w corresponding to
a consistent clustering CT on a subset S′, then we can efficiently find a clustering
that is (ν + ε)-close to CT if all clusters in CT are large.

Proposition 8. Assume that the target CT is consistent with the (ν, 1 + α, ε)-
property for k-median. Assume that each target cluster has size at least (3 +
10/α)εn + 2 + 2νn. Let S′ ⊆ S with |S′| ≥ (1 − ν)n be its corresponding set
of non-outliers. If we are given the value of S′, then we can efficiently find a
clustering that is (ν + ε)-close to CT .

Proof. We can use the same argument as in Theorem 6 with the modification
that we treat the outliers or ill-behaved data points S \S′ as additional red bad



points. To prove correctness, observe that the only property we used about red
bad points is that in the graph Gτ none of them connects to points from two
different sets Xi and Xj . Due to the triangle inequality, this is also satisfied for
the “outliers”. The proof then proceeds as in Theorem 6 above. ut

4.1 Large Target Clusters

We now show that the (ν+ε, k)-clustering complexity of the (ν, 1+α, ε)-property
is 1 in the “large clusters” case. Specifically:

Theorem 9. Let F be the family of clusterings with the property that every
cluster has size at least (4 + 15/α)εn + 2 + 3νn. Then the (ν + ε, k) restricted
clustering complexity of the (ν, 1 + α, ε)-property with respect to F is 1, and
we can efficiently find a clustering that is (ν + ε)-close to any clustering in F
that is consistent with the (ν, 1 + α, ε)-property; in particular this clustering is
(ν + ε)-close to the target CT .

Proof. Let C1 be an arbitrary clustering consistent with the (ν, 1+α, ε)-property
of minimal value of w. Let C2 be any other consistent clustering. By definition
we know that there exist sets of points S1 and S2 of size at least (1− ν)n such
that (Si, d) satisfies the (1+α, ε)-property with respect to the induced clustering
Ci ∩ Si on Si, for i = 1, 2. Let w and w′ denote the values of the clusterings C1

and C2 on the sets S1 and S2, respectively; and by assumption we have w ≤ w′.
Furthermore, let C∗1 and C∗2 denote the optimal k-clusterings on the sets S1 and
S2, respectively. We set τ = 2αw

5ε and τ ′ = 2αw′
5ε , and b = (1 + 5/α)ε + ν and

consider the graphs Hτ,b and Hτ ′,b. Let K1, . . . , Kk be the k largest connected
components in the graph Hτ,b, and let K ′

1, . . . , K
′
k be the k largest connected

components in the graph Hτ ′,b. For j ∈ [2], let Bj = (Sj \ ∪iX
j
i ) ∪ (S \ Sj)

denote the bad set of clustering C∗j . As in Theorem 6, we can show that |Bj | ≤
((1 + 5/α)ε + ν)n. For i ∈ [k], we denote by X1

i the intersection of Ki with the
good set of clustering C∗1 and we denote by X2

i the intersection of K ′
i with the

good set of clustering C∗2 . By the assumption that the size of the target clusters
is more than three times the size of the bad set, we have Xj

i ≥ 2|Bj | for all
i ∈ [k] and j ∈ [2].

As Hτ,b ⊆ Hτ ′,b, this implies that (up to reordering) Ki ⊆ K ′
i for every i.

This is because otherwise, if we end up merging two components Ki and Kj

before reaching w′, then one of the clusters K ′
l must be a subset of B1 and so

it must be strictly smaller than (4 + 15/α)εn + 2 + 3νn. This implies that the
clusterings C∗1 and C∗2 are O(ε/α+ν)-close to each other since they can only differ
on the bad set B1 ∪B2. By Proposition 8, this implies that also the clusterings
C1 and C2 are O(ε/α + ν)-close to each other.

Moreover, since Xj
i ≥ 2|Bj | for all i ∈ [k] and j ∈ [2], using an argument

similar to the one in Theorem 6 yields that the clusterings C′w and C′w′ obtained
by running Algorithm 1 with w and w′, respectively, are identical; moreover this
clustering is (ν + ε)-close to both C1 and C2. This follows as the outliers in the
sets S \ S1 and S \ S2 can be treated as additional red bad points as described



in Proposition 8 above. Since C1 is an arbitrary clustering consistent with the
(ν, 1 + α, ε)-property with a minimal value of w and C2 is any other consistent
clustering, we obtain that the (ν + ε, k)-clustering complexity is 1.

By the same arguments, we can also use the algorithm for unknown w, de-
scribed after Theorem 6, to get (ν + ε)-close to any consistent clustering when
we do not know the value of w beforehand. ut

4.2 Target Clusters that are Large on Average

We show here that if we allow some of the target clusters to be small, then the
(γ, k) clustering complexity of the (ν, 1 + α, ε)-property is larger than one — it
can be as large as k even for γ = 1/k. Specifically:

Theorem 10. For k ≤ νn and γ ≤ (1− ν)/k the (γ, k)-clustering complexity of
the (ν, 1 + α, ε)-property is Ω(k).

Proof Sketch. Let A1, . . . , Ak be sets of size n(1− ν)/k and let x1, . . . , xk be
additional points not belonging to any of the sets A1, . . . , Ak such that the opti-
mal k-median solution on the set A1∪ . . .∪Ak is the clustering C = {A1, . . . , Ak}
and the instance (A1 ∪ . . . ∪ Ak, d) satisfies the (1 + α, ε)-property. We assume
that S ⊆ N and that every set Ai consists of n(1 − ν)/k points at exactly the
same position ai ∈ N. In our construction, we will have a1 < . . . < ak.

By placing the point x1 very far away from all the sets Ai and by placing
A1 and A2 much closer together than any other pair of sets, we can achieve that
the optimal k-median solution on the set A1 ∪ . . . ∪ Ak ∪ {x1} is the clustering
{A1 ∪ A2, A3, . . . , Ak, {x1}} and that the instance (A1 ∪ Ak ∪ {x1}, d) satisfies
the (1 + α, ε)-property. We can continue analogously and place x2 very far away
from all the sets Ai and from x1. Then the optimal k-median clustering on the
set A1, . . . ,∪ . . . ∪ Ak ∪ {x1, x2} will be {A1 ∪ A2 ∪ A3, A4, . . . , Ak, {x1, x2}} if
A2 and A3 are much closer together than Ai and Ai+1 for i ≥ 3. The instance
also satisfies the (1+α, ε)-property. This way, each of the clusterings {A1∪ . . .∪
Ai, Ai+1 . . . Ak, {x1}, {x2}, . . . , {xi−1}} is a consistent target clustering, and the
distance between any of them is at least γ. ut

Note that in the example in Theorem 10 all the clusterings that satisfy the
(ν, 1+α, ε)-property have the feature that the total number of points that come
from large clusters (of size at least n(1−ν)/k) is at least (1−ν)n. We show that
in such cases we also have an upper bound of k on the clustering complexity.

Theorem 11. Let b = (6 + 10/α)ε + ν. Let F be the family of clusterings with
the property that the total number of points that come from clusters of size at
least 2bn is at least (1−β)n. Then the (2b+β, k) restricted clustering complexity
of the (ν, 1 + α, ε)-property with respect to F is at most k and we can efficiently
construct a list of length at most k such that any clustering in F that is consistent
with the (ν, 1 + α, ε)-property is (2b + β)-close to one of the clusterings in the
list.



Proof. The main idea of the proof is to use the structure of the graphs H to show
that the clusterings that are consistent with the (ν, 1+α, ε)-property are almost
laminar with respect to each other. Note that for all w < w′ we have Gw ⊆ Gw′

and Hw ⊆ Hw′ . Here we used Gw and Hw as abbreviations for Gτ and Hτ with
τ = 2αw

5ε . In the following, we say that a cluster is large if it contains at least 2bn
elements. To find a list of clusterings that “covers” all the relevant clusterings, we
use the following algorithm. We keep increasing the value of w until we reach a
value w1 such that the following is satisfied: Let K1, . . . , Kk denote the k largest
connected components of the graph Hw1 and assume |K1| ≥ |K2| ≥ . . . ≥ |Kk|.
We set k1 = max{i ∈ [k] | |Ki| ≥ bn} and stop for the smallest w1 for which the
clusters K1, . . . , Kk1 cover together a significant fraction of the space, namely a
1− (b + β) fraction. Let S̃ = K1 ∪ . . . ∪Kk1 . The first clustering we add to the
list contains a cluster for each of the components K1, . . . , Kk1 and it assigns the
points in S \ S̃ arbitrarily to those. Now we increase the value of w and each
time we add an edge in Hw between two points in different components Ki and
Kj , we merge the corresponding clusters to obtain a new clustering with at least
one cluster less. We add this clustering to our list and we continue until only
one cluster is left. As in every step, the number of clusters decreases by at least
one, the list of clusterings produced this way has length at most k1 ≤ k. Let
w1, w2, . . . denote the values of w for which the clusterings are added to the list.
To complete the proof, we show that any clustering C satisfying the property is
(2b + β)-close to one of the clusterings in the list we constructed. Let wC denote
the value corresponding to C. First we notice that wC ≥ w1. This follows easily
from the structure of the graph HwC : it has one connected component for every
large cluster in C and each of these components must contain at least bn points as
every large cluster contains at least 2bn points and the bad set contains at most
bn points. Also by definition and the fact that the size of the bad set is bounded
by bn, it follows that these components together cover at least a 1 − (b + β)
fraction of the points. This proves that wC ≥ w1 by the definition of w1. Now let
i be maximal such that wi ≤ wC . We show that the clustering we output at wi is
(2b+β)-close to the clustering C. Let K ′

1, . . . , K
′
k′ denote the components in Hwi

that evolved from the Ki and let K ′′
1 , . . . ,K ′′

k′′ denote the evolved components
in HwC . As wC < wi+1, k′ = k′′ we can assume (up to reordering) that K ′

i = K ′′
i

on the set S̃. As all points in S̃ that are not in the bad set for wi are clustered
in C according to the components K ′′

1 , . . . , K ′′
k′′ , the clusterings corresponding

to wi and wC can only differ on S \ S̃ and the bad set for wi. Using the fact
|S \ S̃| ≤ (b + β)n and that the size of the bad set is bounded by bn, we get that
the clustering we output at wi is (2b+β)-close to the clustering C, as desired. ut

Moreover, if every large cluster is at least as large as (12+20/α)εn+2νn+2β,
then, as for w1 the size of the missed set is at most (6 + 10/α)εn + νn + β, the
intersection of the good set with every large cluster is larger than the missed set
for wi for any i. This then implies that if we apply the median argument from
Step 4 of Algorithm 1, the clustering we get for wi is (ν + ε + β)-close to the
clustering C if i is chosen as in the previous proof. Together with Theorem 11
this implies the following corollary.



Corollary 12. Let b = (6 + 10/α)ε + ν. Let F be the family of clusterings with
the property that the average cluster size n/k is at least 2bn/(1 − β). Then the
(ν + ε + β, k) restricted clustering complexity of the (ν, 1 + α, ε)-property with
respect to F is at most k and we can efficiently construct a list of length at most
k such that any clustering in F that is consistent with the (ν, 1 + α, ε)-property
is (ν + ε + β)-close to one of the clusterings in the list.

The Inductive Case We show here how the algorithm in Theorem 11 can be
extended to the inductive setting.

Theorem 13. Let b = (6 + 10/α)ε + ν. Let F be the family of clusterings with
the property that the total number of points that come from clusters of size at
least 2bn is at least (1 − β)n. If we draw a sample S of size n = O

(
1
ε ln

(
k
δ

))
,

then we can efficiently produce a list of length at most k such that any clustering
in the family F that is consistent with the (ν, 1+α, ε)-property is 3(2b+β)-close
to one of the clusterings in the list with probability at least 1− δ.

Proof Sketch. In the training phase, we will run the algorithm in Theorem 11
over the sample to get a list of clusterings L. Then we run an independent
“test phase” for each clustering in this list. Let C be one such clustering in the
list L with clusters C1, . . . , Ck, and let S̃ be the set of relevant points defined
Theorem 11. In the test phase, when a new point x comes in, then we compute
for each cluster C′i the medium distance of x to C′i ∩ S̃, and insert it into the
cluster C′i to which it has the smallest median distance.

To prove correctness we use the fact that, as shown in Theorem 11, the
(2b + β, k)-clustering complexity of the (ν, 1 + α, ε)-property is at most k, when
restricted to clusterings in which the total number of points coming from clusters
of size at least 2bn is at least (1− β)n. Let L be a list of k1 ≤ k clusterings such
that any consistent clustering is (2b + β)-close to one of them.

Now the argument is similar to the one in Theorem 7. In the proof of that
theorem, we used a Chernoff bound to argue that with probability at least 1− δ
the good set of any cluster that is contained in the sample is more than twice
as large as the total bad set in the sample. Now we additionally apply a union
bound over the at most k clusterings in the list L to ensure this property for
each of the clusterings. From that point on the arguments are analogous to the
arguments in Theorem 7. ut

4.3 Small Target Clusters

We now consider the general case, where the target clusters can be arbitrarily
small. We start with a proposition showing that if we are willing relax the notion
of closeness significantly then the clustering complexity is still upper bounded
by k even in this general case. With a more careful analysis, we then show a
better upper bound on the clustering complexity in this general case.

Proposition 14. Let b = (6 + 10/α)ε + ν. Then the ((k + 4)b, k)-clustering
complexity of the (ν, 1 + α, ε)-property is at most k.



Proof. Let us consider a clustering C = (C1, . . . , Ck) and a set S′ ⊆ S with
|S′| ≥ (1− ν)n such that (S′, d) satisfies the (1 + α, ε)-property with respect to
the induced target clustering C ∩ S′. Let us first have a look at the graph Gw.
There exists a bad set B of size at most bn, and for every cluster i, the points
in Xi = Ci \ B form cliques in Gw. There are no edges between Xi and Xj for
i 6= j and there is no point x ∈ B that is simultaneously connected to Xi and
Xj for i 6= j.

If there are two different consistent clusterings C1 and C2 that have the same
value w, then, by the properties of Gw, all points in S \ (B1∪B2) are identically
clustered. Hence, dist(C1, C2) ≤ (|B1|+|B2|)/n ≤ 2b. This implies that we do not
lose too much by choosing for every value w with multiple consistent clusterings
one of them as representative. To be precise, let w′1 < w′2 < · · · < w′s′ be a list of
all values for which a correct clustering exists and for every w′i, let C′i denote a
correct clustering with value w′i. We construct a sparsified list L of clusterings as
follows: insert C′1 into L; if the last clustering added to L is C′i, add C′j for the
smallest j > i for which dist(C′i, C′j) ≥ (k+2)b. This way, the list L will contain
clusterings C1, . . . , Cs with values w1, . . . , ws such that every correct clustering
is (k + 4)b-close to at least one of the clusterings in L.

It remains to bound the length s of the list L. Let us assume for contradiction
that s ≥ k+1. According to the properties of the graphs Gwi , the clusterings that
are induced by the clusterings C1, . . . , Ck+1 on the set S \ (B1 ∪ . . . ∪Bk+1) are
laminar. Furthermore, as the bad set B1 ∪ . . .∪Bk+1 has size at most (k +1)bn,
two consecutive clusterings in the list must differ on the set S \(B1∪ . . .∪Bk+1),
which means together with the laminarity implies that two clusters must have
merged. This can happen at most k−1 times, contradicting the assumption that
s ≥ k + 1. ut

We will improve the result in the above proposition by imposing that con-
secutive clusterings in the list L in the above proof are significantly different in
the laminar part. In particular we will make use of the following lemma which
shows that if we have a laminar list of clusterings then the sum of the pairwise
distances between consecutive clusterings cannot be too big; this implies that if
the pairwise distances between consecutive clusterings are all large, then the list
must be short.

Lemma 15. Let C1, . . . , Cs be a laminar list of clusterings, let k ≥ 2 denote
the number of clusters in C1, and let β ∈ (0, 1). If dist(Ci, Ci+1) ≥ β for every
i ∈ [s− 1], then s ≤ min{9 log(k/β)

β , k}.

Proof. When going from Ci to Ci+1, clusters contained in the clustering Ci merge
into bigger clusters contained in Ci+1. Merging the clusters K1, . . . , K` ∈ Ci with
|K1| ≥ |K2| ≥ · · · ≥ |K`| into cluster K ∈ Ci+1 contributes (|K2|+ · · ·+ |Kl|)/n
to the distance between Ci and Ci+1. When going from Ci to Ci+1, multiple such
merges can occur and we know that their total contribution to the distance must
be at least β. We consider a single merge in which the pieces K1, . . . ,K` ∈ Ci

merge into K ∈ Ci+1 virtually as `− 1 merges and associate with each of them



a type. We say that the merge corresponding to Ki, i = 2, . . . , `, has type j ∈ N
if |Ki| ∈ [n/2j+1, n/2j). If Ki has type j, we say that the data points contained
in Ki participate in a merge of type j.

For the step from Ci to Ci+1, let xij denote the total number of virtual merges
of type j that occur. The number of merges of type j that can occur during the
whole sequence from C1 to Cs is bounded from above by 2j+1 as each of the
n data points can participate at most once in a merge of type j. This follows
because once a data point participated in a merge of type j, it is contained in a
piece of size at least n/2j .

We are only interested in types j ≤ L = blog(k/β)c + 1. As there can be at
most k−1 merges from Ci to Ci+1, the total contribution to the distance between
Ci and Ci+1 coming from larger types can be at most k/2L+1 ≤ β/2. Hence for
every i ∈ [s− 1], the total contribution of types j ≤ L must be at least β/2.

In terms of the xij , these conditions can be expressed as

∀j ∈ [L] :
s−1∑

i=1

xij

2j+1
≤ 1 and ∀i ∈ [s− 1] :

L∑

j=1

xij

2j
≥ β

2
.

This yields
(s− 1)β

4
≤

s−1∑

i=1

L∑

j=1

xij

2j+1
≤ L ,

and hence, s ≤ 4L/β + 1 ≤ 4blog(k/β)c+4
β + 1 ≤ 9 log(k/β)

β . As in every step at
least two clusters must merge, s ≤ k and the lemma follows. ut

We can now show the following upper bound on the clustering complexity.

Theorem 16. Let b = (6 + 10/α)ε + ν. Then the (9
√

b log(k/b), k)-clustering
complexity of the (ν, 1 + α, ε)-property is at most 4

√
log(k/b)/b.

Proof. We use the same arguments as in Proposition 14. We construct L in the
same way, but with 7

√
b log(k/b) instead of (k +2)b as bound on the distance of

consecutive clusterings. We assume for contradiction that s ≥ t := 4
√

log(k/b)/b

and apply Lemma 15 with β = 7
√

b log(k/b)−s′b ≥ 3
√

b log(k/b) to the induced
clusterings on S \ (B1∪ . . .∪Bt). This yields s < t, contradicting the assumption
that s ≥ t. ut

5 Discussion and Open Questions

In this work we extend the results of Balcan, Blum, and Gupta [3] on finding low
error clusterings to the agnostic setting where we make the weaker assumption
that the data satisfies the (c, ε) property only after some outliers have been
removed.

While we have focused in this paper on the (ν, c, ε) property for k-median,
most of our results extend directly to the k-means objective as well. In particular,



for the k-means objective one can prove an analog of Lemma 5 with different
constants which then can be propagated through the main results of this paper.

It is worth noting that we have assumed implicitly throughout the paper
that the fraction of outliers or a good upper bound on it ν is known to the
algorithm. In the most general case, where no good upper bound on ν is known,
i.e., in the purely agnostic setting, we can run our algorithms 1/ε times once for
each integral multiplicative of ε, thus incurring only a 1/ε multiplicative factor
increase in the clustering complexity and in the running time.
Open Questions: The main concrete technical questions left open are whether
one can show a better upper bound on the clustering complexity in the case of
small target clusters and whether in this case there is an efficient algorithm for
constructing a short list of clusterings such that every consistent clustering is
close to one of the clusterings in the list.

More generally, it would also be interesting to analyze other natural variations
of the (c, ε) property. For example, a natural direction would be to consider
variations that express beliefs that only the c-approximate clusterings that might
be returned by natural approximation algorithms are close to the target. In
particular, many approximation algorithms for clustering return Voronoi-based
clusterings [7]. In this context, a natural relaxation of the (c, ε)-property is to
assume that only the Voronoi-based clusterings that are c-approximations to
the optimal solution are ε-close to the target. It would be interesting to analyze
whether this is sufficient for efficiently finding low-error clusterings, both in the
realizable and in the agnostic setting.
Acknowledgements: We thank Avrim Blum and Mark Braverman for a num-
ber of helpful discussions.
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