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Abstract. Ant colony optimization (ACO) has been widely used for different
combinatorial optimization problems. In this paper, we investigate ACO algo-
rithms with respect to their runtime behavior for the traveling salesperson (TSP)
problem. We present a new construction graph and show that it has a stronger
local property than the given input graph which is often used for constructing so-
lutions. Later on, we investigate ACO algorithms for both construction graphs on
random instances and show that they achieve a good approximation in expected
polynomial time.

1 Introduction

Stochastic search algorithms such as evolutionary algorithms (EAs) [4] and ant colony
optimization (ACO) [3] are robust problem solvers that havefound a wide range of
applications in various problem domains. In contrast to many successful application
of this kind of algorithms, the theoretical understanding lags far behind their practical
success. Therefore, it is highly desirable to increase the theoretical understanding of
these algorithms.

The goal of this paper is to contribute to the theoretical understanding of stochastic
search algorithms by rigorous runtime analyses. Such studies have been successfully
applied for evolutionary algorithms and have highly increased the theoretical foundation
of this kind of algorithms. In the case of ACO algorithms the theoretical analyses of
their runtime behavior has been started only recently [12, 6, 7, 11, 10, 8]. We increase the
theoretical understanding of ACO algorithms by investigating their runtime behavior on
the well-known traveling salesperson (TSP) problem. For ACO the TSP problem is the
first problem where this kind of algorithms has been applied.Therefore, it seems to be
natural to study the behavior of ACO algorithms for the TSP problem from a theoretical
point of view in a rigorous manner.

ACO algorithms are inspired by the behavior of ants to searchfor a shortest path be-
tween their nest and a common source of food. It has been observed that ants find such a
path very quickly by using indirect communication via pheromones. This observed be-
havior is put into an algorithmic framework by considering artificial ants that construct
solutions for a given problem by carrying out random walks ona so-called construction
graph. The random walk (and the resulting solution) dependson pheromone values that
are values on the edges of the construction graph. The probability of traversing a certain
edge depends on its pheromone value.



One widely used construction procedure for tackling the TSPhas already been an-
alyzed in [14]. It constructs a tour in anorderedmanner, where the iteratively chosen
edges form a path at all times. In this paper, we give new runtime bounds for ACO
algorithms using this construction procedure. On the otherhand, we propose a new
construction procedure, where, in each iteration, anarbitrary edge not creating a cy-
cle or a vertex of degree 3 may be added to extend the partial tour. We analyze both
construction methods and point out their differences.

Our analysis of these two ACO variants goes as follows. We first examine the lo-
cality of changes made, i.e., how many edges of the current-best solution are also in
the newly sampled tour, and how many areexchangedfor other edges. We then use
these results as upper bounds on the time until certain desired local changes are made
to derive upper bounds on the optimization time.

In particular, we show the following results:

– The ordered edge insertion algorithm exchanges an expectednumber ofΩ(log(n))
many edges (Theorem 1) while the arbitrary edge insertion exchanges only an ex-
pected constant number of edges (Theorem 4).

– Arbitrary edge insertion has a probability ofΘ(1/n2) for any specific exchange of
two edges (Corollary 1), while ordered edge insertion has one ofΘ(1/n3) [14].

– The simple TSP-instance analyzed in [14] is optimized by arbitrary edge insertion
in an expected number ofO(n3 log(n)) steps (Theorem 5), while the best known
bound for ordered edge insertion isO(n6) ([14]).

– Both construction graphs lead in expected polynomial time to a good approxima-
tion on random instances.

In particular, arbitrary edge insertion allows for better runtime bounds thanks to
its locality. It remains open whether there are TSP instances where the non-locality
of ordered edge insertion provably gives better runtime bounds than the more local
arbitrary edge insertion.

The rest of the paper is organized as follows. In Section 2, weintroduce the problem
and the algorithms that are subject to investigations. We investigate the number of edge
exchanges for large pheromone updates in Section 3 and proveruntime bounds for cer-
tain classes of instances in Section 4. Finally, we finish with some concluding remarks
and topics for future work.

2 Problem and Algorithms

In this paper, we consider the symmetric Traveling Salesperson Problem (TSP). We are
given a complete undirected graphG = (V,E) and a weight functionw : E → R+ that
assigns positive weights to the edges. The goal is to find a tour of minimum weight that
visits every vertex exactly once and returns to the start vertex afterwards. We analyze
an ACO algorithm called MMAS∗ (Min-Max Ant System – see Algorithm 1), already
used in different theoretical studies [11, 14]. MMAS∗ works iteratively, creating one
new candidate solutionx in each iteration, and keeping track of the best-so-far solution
x∗. A new candidate solution for a target graphG is constructed by an artificial ant that
performs a random walk on an underlying graph, called theconstruction graph, step by



step choosing components of a new candidate solution. In this paper, we use edges of
the given input as the components that influence this random walk. In each step of its
random walk on the construction graph, we want the ant to choose an edgee in G with
a probability based onpheromone valueτ(e).1 We use a procedureconstruct based
on the pheromonesτ as given in Algorithm 2. In this paper, we consider two different
approaches of constructing new solutions by specifying theneighborhood functionN
of Algorithm 2 in Sections 2.1 and 2.2.

Algorithm 1 : The algorithm MMAS∗.

function MMAS∗ onG = (V, E) is1

τ(e)← 1/|V |, for all e ∈ E;2

x∗ ← construct(τ);3

update(τ, x∗);4

while truedo5

x← construct(τ);6

if f(x) > f(x∗) then7

x∗ ← x;8

τ ← update(τ, x∗);9

Algorithm 2 : The algorithmconstruct.

function construct based onτ is1

for k = 0 to n− 2 do2

R←
∑

y∈N(e1,...,ek) τ(y);3

Choose one neighborek+1 of ek where the probability of selection of any fixed4

y ∈ N(e1, . . . , ek) is τ(y)
R

;

Let en be the (unique) edge completing the tour;5

return (e1, . . . , en);6

For each edgee ∈ E, the pheromones are kept within upper and lower boundsτmax

andτmin, respectively. The pheromone values change after each iteration of MMAS∗

according to a procedureupdate and anevaporation factorρ: For a tourx, letE(x) be
the set of edges used inx; for each edgee, the pheromone values are updated such that
the new pheromone valuesτ ′ = update(τ, x) are such that

τ ′(e) =

{

min {(1 − ρ) · τ(e) + ρ, τmax} , if e ∈ E(x);

max {(1 − ρ) · τ(e), τmin} , otherwise.

1 Note that, in this paper, we are not concerned with the use ofheuristic information.



Here,ρ, 0 ≤ ρ ≤ 1, is the evaporation factor which determines the strength ofan
update. As in [14], we useτmin = 1/n2 andτmax = 1 − 1/n throughout this paper,
wheren is the number of nodes of the input graph; further, initial values for pheromones
are1/n. If in an iteration of MMAS∗ the pheromone values are such that, for exactly
the edges of the best-so-far tour the pheromone values are atτmax and all others are at
τmin, we call the pheromonessaturatedat that iteration.

To measure the runtime of MMAS∗, it is common to consider the number of con-
structed solutions. Often we investigate the expected number of constructed solutions
until an optimal tour or a good approximation of an optimal tour is obtained.

2.1 The Input Graph as Construction Graph

To specify the construction graph, we need to introduce the neighorhood functionN in
Algorithm 2. The most common way of constructing a tour for TSP problem is to use
the input graph as construction graph (see e. g. [2]). A tour is constructed by having an
ant start at some vertex, visit all vertices by moving to a neighbor of the current vertex,
and finally coming back to the start vertex. We model this behavior with a neighbor set
as follows. For each sequenceσ of chosen edges, letU(σ) be the set of unvisited nodes
andl(σ) the most recently visited node (or, ifσ is empty, some distinguished node); let

NOrd(σ) = {{l(σ), u} | u ∈ U(σ)}.

This set has the advantage of being easily computable and of size linear in the number
of edges needed to complete the tour. We will discuss drawbacks of this neighborhood
set later. We will refer to MMAS∗ using this neighborhood as MMAS∗Ord (“Ord” is
mnemonic for the “ordered” way in which edges are inserted into the new tour).

2.2 An Edge-Based Construction Graph

Alternatively, we can let the ant choose to add any edge to theset of edges chosen so
far, as long as no cycle and no vertex are created. This is modeled by a neighbor set as
follows. For each sequenceσ of chosen edges, letV (σ) be the set of previously chosen
edges and

NArb(σ) = (E \ V (σ)) \
{

e′ ∈ E
∣

∣ (V, {e′1, . . . , e′k, e′}) contains a cycle or a vertex of degree≥ 3
}

.

This set has a size quadratic in the number of edges required to complete the tour.
We will refer to MMAS∗ using this neighborhood as MMAS∗Arb (“Arb” is mnemonic
for the “arbitrary” way in which edges are inserted into the new tour).

3 Number of Edge Exchanges

In this section, we consider the expected number of edges that a newly constructed
solutionx differs from the best-so-far solutionx∗ if the pheromone values are saturated.



In this case, the solutionx∗ can often be reproduced with constant probability and it is
desirable thatx∗ andx only differ by a small (constant) number of edges. In such a
situation, ACO algorithms are able to carry out improving steps by sampling solutions
in their local neighborhood. In particular, for a tourt, we are interested in tourst′ such
that t and t′ differ by exchanging2 or 3 edges, called a2-Opt or a 3-Opt neighbor,
respectively.

3.1 The Behavior of MMAS∗

Ord

In the following we examine MMAS∗Ord. We show that the expected number of edges
wherex∗ andx differ is Ω(log n). Thus, the MMAS∗Ord doesnot have the desired local
property.

The reason for this large number of exchange operations is that if an ant has left
the path corresponding the currently best solution then it will encounter paths of high
pheromone that do not cover the rest of the tour. The rest of the tour needs to be discov-
ered by joining different subpaths of high pheromone which implies the lower bound
on the expected number of edge exchanges.

In the proof of the claimed result, we consider the followingrandom process which
captures the situation after an ant has left the high pheromone path for the first time.
Let W be a walk on a sequence oft vertices.W starts at a random vertex, and will go
to the just previous or following vertex in the sequence withequal probability, if both
are available and unvisited. If only one is available and unvisited, W will go to this
one. If none are available and unvisited, the walk willjumpuniformly at random to an
unvisited vertex. The walk ends as soon as all vertices are visited.

Lemma 1. For eacht, let Xt be the random variable denotingnumber of jumpsmade
by the walkW on a path oft vertices. Then we have

∀t ≥ 3 : E(Xt) ≥
1

6
ln(t).

Proof. We start by giving a recursive definition ofXt. Clearly,X1 = 0 andX2 = 0.
Let t ≥ 3. The walk can start with uniform probability in any vertex, and will not
jump if the first or last vertex has been chosen. Otherwise, with equal probability, the
walk will start up or down. After visiting all nodes in the chosen direction, the walk will
jump once, and then perform a walk according toXi, wherei is the number of unvisited
nodes just before the jump. Thus, we get, for allt ≥ 3,

E(Xt) =
1

t

t−1
∑

i=2

(
1

2
(1 + E(Xi−1)) +

1

2
(1 + E(Xt−i)))

=
t − 2

t
+

1

t
(
1

2

t−1
∑

i=2

E(Xi−1) +
1

2

t−1
∑

i=2

E(Xt−1))

=
t − 2

t
+

1

t

t−2
∑

i=1

E(Xi) =
t − 2

t
+

1

t

t−2
∑

i=3

E(Xi)



The claim is true fort = 3. We show the remainder of the claim of the lemma by
induction ont. Let t ≥ 4 and for alli, 3 ≤ i < t, E(Xi) ≥ 1

6 ln(i). Usingt ≥ 3, we
have(t − 2)/t ≥ 1/3. Thus, also using the induction hypothesis,

E(Xt) ≥
1

3
+

1

t

t−2
∑

i=3

1

6
ln(i)

=
1

3
+

1

t

1

6
ln(

t−2
∏

i=3

i) =
1

3
+

1

t

1

6
ln((t − 2)!/2) ≥ 1

6
ln(t).

⊓⊔
Next we will give a lower bound on the expected number of edge exchanges which

MMAS∗
Ord will make when saturated.

Theorem 1. If in an iteration of MMAS∗Ord the pheromone values are saturated, then,
in the next iteration of MMAS∗Ord, the newly constructed tour will exchange an expected
number ofΩ(log(n)) of edges.

Proof. It is easy to see that an ant leaves the path corresponding thecurrently best
solutionx∗ with probabilityΩ(1) after having visited at mostn/2 vertices. After the
ant has left the path it performs on the remainingr ≥ n/2 vertices as a walk similar to
W on a path of lengthr. In fact, with constant probability, the ant will never leave the
path again unless necessary, so that we get the result by applying Lemma 1. ⊓⊔

However, constructing new solutions with few exchanged edges is still somewhat
likely. In [14] it is shown that the probability for a particular 2-Opt step isΩ(1/n3).
Taking a closer look at the analysis presented in this paper amatching upper bound on
this probability can be extracted. In summary, we get the following result.

Theorem 2 ([14]).Let t be a tour found by MMAS∗Ord and lett′ be a tour which is a
2-Opt neighbor oft. Suppose that the pheromone values are saturated. Then MMAS∗

Ord
constructst′ in the next iteration of with probabilityΘ(1/n3).

3.2 The Behavior of MMAS∗

Arb

In this section we examine the expected number of edge exchanges of MMAS∗Arb. In
Theorem 4 we show that the expected number of edges wherex∗ andx differ is Θ(1).
Thus, the MMAS∗Arb doeshave the desired local property.

Theorem 3. Let k be fixed. If in an iteration of MMAS∗Arb the pheromone values are
such that, for exactly the edges of the best-so-far tour the pheromone values are atτmax

and all others are atτmin, then, in the next iteration of MMAS∗Arb with probabilityΘ(1),
the newly constructed tour will choosek new edges and otherwise rechoose edges of
the best-so-far tour as long as any are admissible.

Proof. We call an edge with pheromone levelτmax a “high” edge, the others are “low”
edges. LetP be the set of all high edges (the edges of the best-so-far tour). We consider
an iteration of MMAS∗Arb. We analyze the situation where, out of then edges to be



chosen to create a new tour, there are stilli edges left to be chosen. In this situation,
the edges chosen so far partition the graph into exactlyi components. For each two
components, there are between1 and4 edges to connect them (each component is a
path with at most 2 endpoints, only the endpoints can be chosen for connecting with
another component); thus, there are between

(

i
2

)

andmin
(

4
(

i
2

)

,
(

n
2

))

edges left to be
chosen. Further, when there arei edges left to be chosen for the tour, at mostk of which
are low edges, there are betweeni andi + k high edges and between

(

i
2

)

− (i + k) and
min(4

(

i
2

)

,
(

n
2

)

) low edges left to choose from.
For a fixedk-element subsetM of {1, . . . , n}, and any choice of edges at positions

M , we use the union bound to analyze the probability to rechoose as many other high
edges as possible in all the other postions. This probability is lower bounded by

1 −
n
∑

i=1

min

(

4

(

i

2

)

,

(

n

2

))

τmin ·
1

iτmax

= 1 − τmin

τmax





n/2
∑

i=1

4

(

i

2

)

· 1

i
+

n
∑

i=n/2+1

(

n

2

)

· 1

i



 ≥ 1

4
> 0.

For eachk-element subsetM of {1, . . . , n}, the probability of choosing a low edge
on all positions ofM , and choosing a high edge on all other positions is lower bounded
by

1

4

∏

i∈M

((

i

2

)

− (i + k)

)

τmin/((i + k)τmax + n2τmin)

≥ τk
min

4

∏

i∈M

(

i2 − i

2
− (i + k)

)

/(i + k + 1) ≥ τk
min

4

∏

i∈M

(

i

2k + 4
− 2

)

.

Let ci,k = i/(2k+4)−2. Note that, for any setM with |M | ≤ k, we have
∑n

i=1,i 6∈M ci,k =

Θ(n2). Now we have that the probability of choosing low edges onanyk positions is
lower bounded by

τk
min

4

∑

M⊆{1,...,n}

|M |=k

∏

i∈M

ci,k

=
1

4k!n2k

n
∑

i1=1





n
∑

i2=1,i2 6∈{i1}



. . .





n
∑

ik=1,ik 6∈{i1,...,ik−1}

k
∏

j=1

cij ,k













=
1

4k!n2k

(

n
∑

i1=1

ci1,k

)





n
∑

i2=1,i2 6∈{i1}

ci2,k



 . . .





n
∑

ik=1,ik 6∈{i1,...,ik−1}

cik,k





= Θ(1).

⊓⊔
As a corollary to the proof just above, we get the following.



Theorem 4. If in an iteration of MMAS∗Arb the pheromone values are such that, for
exactly the edges of the best-so-far tour the pheromone values are atτmax and all others
are at τmin, then, in the next iteration of MMAS∗Arb, the newly constructed tour will
exchange an expected number ofO(1) of edges.

As a further corollary to Theorem 3, we get the following.

Corollary 1. Let t be a tour found by MMAS∗Arb and lett′ be a tour which is a2-Opt
neighbor oft. Suppose that the pheromone values are such that for exactlythe edges of
t the pheromone values are atτmax and all others are atτmin. Then MMAS∗Arb constructs
t′ in the next iteration with probabilityΘ(1/n2).

Proof. The tourt hasΘ(n2) many2-Opt neighbors. By Theorem 3, MMAS∗Arb will
construct, with constant probability, a tour that exchanges one edge and otherwise re-
chooses edges oft as long as possible. This new tour is a2-Opt neighbor oft. As all
2-Opt neighbors oft are constructed equiprobably (thanks to the symmetry of thecon-
struction procedure), we obtain the desired result. ⊓⊔

4 Runtime Bounds

4.1 A Simple Instance

An initial runtime analysis of ACO algorithms for the TSP problem has been carried out
by Zhou in [14]. In that paper, the author investigates how ACO algorithms can obtain
optimal solutions for some simple instances. The basic ideas behind these analyses is
that ACO algorithms are able to imitate2-Opt and3-Opt operations.

A simple instance calledG1 in [14] consists of a single optimum, namely a Hamil-
tonian cycle where all edges have cost1 (called light edges), while all remaining edges
get a large weight ofn (called heavy edges). The author shows that MMAS∗

Ord for arbi-
traryρ > 0 obtains an optimal solution forG1 in expected timeO(n6 + (1/ρ)n log n).
The proof idea is as follows: As long as an optimal solution has not been obtained, there
is always a2-Opt or3-Opt operation that leads to a better tour. Having derived a bound
of Ω(1/n5) for the probability of performing an improving2- or 3-Opt step, the re-
sult follows since at mostn improvements are possible andO(log n/ρ) is the so-called
freezing time, i. e., the time to bring all pheromone values to upper or lower bounds.

In this section, we prove a bound ofO(n3 log n + (n log n)/ρ) on the expected
optimization time of MMAS∗Arb for the instanceG1. This bound is considerably better
than theO(n6) proved before in [14] for MMAS∗Ord. At the same time, the analysis is
much simpler and saves unnecessary case distinctions.

The following lemma concentrates on a single improvement. Following the notation
in [14], let Ak, k ≤ n, denote the set of all tours of total weightn − k + kn, i. e., the
set of all tours consisting of exactlyn − k light andk heavy edges.

Lemma 2. Letα = 1 andβ = 0, τmin = 1/n2 andτmax = 1 − 1/n. Denote byXt the
best-so-far tour sequence produced by MMAS∗

Arb on TSP instanceG1 until iterationt >
0 and assume thatXt is saturated. Then the probability of an improvement, given1 ≤
k ≤ n heavy edges inXt, satisfiessk = P (Xt+1 ∈ Ak−1 ∪ . . . ∪ A0 | Xt ∈ Ak) =
Ω(k/n3).



Proof. Consider an arbitrary light edgee = {u, v} /∈ T outside the best-so-far tour.
Each vertex ofG1 is incident to2 light edges, so bothu andv are incident to exactly
one light edge different frome. Sincee /∈ T , this implies the existence of two different
heavy edgese0, e1 ∈ T on the tour such thate0 is incident onu ande1 incident onv.
Let e′0, e

′
1 ∈ T with e′0 6= e0 ande′1 6= e1 be the other two edges on the tour that

are incident tou andv, respectively. The aim is to form a new tour containinge and
still e′0 ande′1 but no longere0 ande1. Note that the set of edges(T ∪ {e}) \ {e0, e1}
has cardinalityn − 1 but might contain a cycle. If that is the case, there must be a
heavy edgee2 ∈ T from the old tour on that cycle (since there is a unique cycle of light
edges inG1). Then we additionally demand that the new tour does not containe2. Since
the undesired edgese0, e1 and possiblye2 are heavy ande is a light edge outside the
previous tour, any tour being a superset of(T ∪ {e}) \ {e0, e1, e2} is an improvement
compared toT .

For 1 ≤ j ≤ n/4, we consider the following intersection of events, denotedby
Me(j) and prove thatProb(Me(j)) = Ω(1/n4); later, a union over differentj ande is
taken to get an improved bound.

1. the firstj − 1 steps of the construction procedure choose edges fromT ∗ := T \
{e0, e1, e2} and thej-th step choosese,

2. e′0 is chosen beforee0 ande′1 beforee1,
3. all steps except the first one choose fromT ∗ as long as this set contains applicable

edges.

Note thate0 ande1 are no longer applicable once{e, e′0, e′1} is a subset of the new tour.
For the first subevent, assume that the firsti < j steps have already chosen exclu-

sively fromT ∗. Then theren−i edges fromT andn−i−3 edges fromT ∗ left. Finally,
there are at mostn2/2 edges outsideT . Using thatXt is saturated, the probability of
choosing another edge fromT ∗ is then at least

(n − i − 3)τmax

(n − i)τmax + n2τmin/2
≥ n − i − 3

n − i + 1

(assumingn ≥ 2). Altogether, the probability of only choosing fromT ∗ in the first
j − 1 steps is at least

j−2
∏

i=0

n − i − 3

n − i + 1
≥
(

3n/4 − 1

3n/4 + 3

)n/4−1

= Ω(1)

sincej ≤ n/4. The probability of choosinge in thej-th step is at least at leastτmin/n =
1/n3 since the total amount of pheromone in the system is at mostn. Altogether, the
first subevent has probabilityΩ(1/n4).

The second subevent has probability at least(1/2)2 = 1/4 since all applicable
edges inT are chosen with the same probability (using thatXt is saturated).

For the third subevent, we study a step of the construction procedure where there are
i applicable edges fromT left and all edges chosen so far are fromT∪{e}. Now we need
a more precise bound on the number of applicable outsideT . Taking outk ≥ 1 edges
from T breaks the tour intok connected components, each of which has at most two



vertices of degree less than2. Sincee /∈ T has been chosen, at most two edges fromT
are excluded from our consideration. Altogether, the number of connected components
in the considered step of the construction procedure is at most i + 2, which means
that there are at most

(

2(i+2)
2

)

≤ 2(i + 2)2 ≤ 18i2 edges outsideT applicable. The
probability of neither choosinge2 nor an edge outsideT in this situation is at least

iτmax

(i + 1)τmax + 18i2τmin
.

Hence, given the second subevent, the probability of the third subevent is at least

n−1
∏

i=1

i · τmax

(i + 1)τmax + 18i2τmin
=

n−1
∏

i=1

(

i

i + 1
· (i + 1) · τmax

(i + 1)τmax + 18i2τmin

)

≥ 1

n

n−1
∏

i=1

i + 1

(i + 1) + 18(i + 1)2/(τmax · n2)
≥ 1

n

(

n
∏

i=1

1 + 18i/(τmax · n2)

)−1

≥ 1

n

(

1 +
18

n − 1

)−n

= Ω(1/n),

altogether, the intersectionMe(j) of the three subevents happens with probabilityΩ(1/n4).
Finally, consider the unionMe :=

⋃

j≤n/4 Me(j), which refers to includinge
in any of the firstn/4 steps. Since theMe(j) are disjoint for differentj, we obtain
Prob(Me) = (n/4) · Ω(1/n4) = Ω(1/n3). Similarly, for all light edgese /∈ T (of
which there arek), the eventsMe are disjoint (as a different new edge is picked in the
first step). Thus, the probability of an improvement isΩ(k/n3) as desired. ⊓⊔

Theorem 5. Letα = 1 andβ = 0, τmin = 1/n2 andτmax = 1−1/n. Then the expected
optimization time of MMAS∗Arb onG1 is O(n3 log n + n(log n)/ρ).

Proof. Using Lemma 2 and the boundO(log n/ρ) on the freezing time, the wait-
ing time until a best-so-far solution withk heavy edges is improved is bounded by
O((log n)/ρ) + sk = O((log n)/ρ + n3/k). Summing up, we obtain a total expected
optimization time ofO(n(log n)/ρ) +

∑n
k=1(1/sk) = O(n3 log n + n(log n)/ρ). ⊓⊔

4.2 Random Instances

The2-Opt heuristic, which starts with an arbitrary tour and performs2-Opt steps until
a local optimum is reached, is known to perform well in practice in terms of running
time and approximation ratio [9]. In contrast to this, it hasbeen shown to have expo-
nential running time in the worst case [5] and it has been shown that there are instances
with local optima whose approximation ratio isΩ(log n/log log n) [1]. To explain this
discrepancy between theory and practice,2-Opt has been analyzed in a more realis-
tic model of random instances reminiscent of smoothed analyis [13]. In this model,
n points are placed independently at random in thed-dimensional Euclidean space,
where each pointvi (i = 1, 2, . . . , n) is chosen according to its own probability density
fi : [0, 1]d → [0, φ], for some parameterφ ≥ 1. It is assumed that these densities are



chosen by an adversary, and hence, by adjusting the parameter φ, one can interpolate
between worst and average case: Ifφ = 1, there is only one valid choice for the densi-
ties and every point is chosen uniformly at random from the unit hypercube. The larger
φ is, the more concentrated can the probability mass be and thecloser is the analysis to
a worst-case analysis. We analyze the expected running timeand approximation ratio
of MMAS∗

Arb and MMAS∗Ord on random instances. For this, we have to take a closer
look into the results from [5] which bound the expected number of 2-Opt steps until a
good approximation has been achieved. We show the followingtheorem.

Theorem 6. For ρ = 1, MMAS∗Arb finds in timeO(n6+2/3 ·φ3) with probability1−o(1)
a solution with approximation ratioO( d

√
φ).

Proof. As we have argued in Corollary 1, if all edges are saturated and there is an
improving 2-Opt step possible, then this step is performed with probability at least
Ω(1/n2). From [5] we know that from any state, the expected number of2-Opt steps
until a tour is reached that is locally optimal for2-Opt is at mostO(n4+1/3 · log(nφ) ·
φ8/3) even if in between other changes are made to the tour that do not increase its
length. Hence, using Markov’s inequality we can conclude that MMAS∗

Arb has reached
a local optimum afterO(n6+2/3 · φ3) steps with probability1 − o(1).

From [5], we also know that every locally optimal tour has an expected approxi-
mation ratio ofO( d

√
φ). Implicitly, the proof of this result also contains a tail bound

showing that with probability1− o(1) every local optimum achieves an approximation
ratio ofO( d

√
φ). The theorem follows by combining the previous observations and tak-

ing into account that for our choice ofρ all edges are saturated after the first iteration of
MMAS∗

Arb. ⊓⊔
Taking into account that a specific2-Opt operation in MMAS∗Ord happens with prob-

ability of Ω(1/n3) in the next step, we get the following results.

Theorem 7. For ρ = 1, MMAS∗Ord finds in timeO(n7+2/3 ·φ3) with probability1−o(1)
a solution with approximation ratioO( d

√
φ).

5 Conclusions

Our theoretical results show that the usual construction procedure leads to solutions that
are in expectation far away from the currently best one in terms of edge exchanges even
if the pheromone values have touched their corresponding bounds. Due to this, we have
examined a new construction graph with a stronger locality.On the other hand, this
construction procedure has a high probability of carrying out a specific 2-opt operation
which is important for successful stochastic search algorithms for the TSP problem.
Afterwards, we have shown that both algorithms perform wellon random instances if
the pheromone update is high.
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3. M. Dorigo and T. Sẗutzle. Ant Colony Optimization. MIT Press, Cambrigde, MA, 2004.
4. A. Eiben and J. Smith.Introduction to Evolutionary Computing. Springer, Berlin, Germany,

2nd edition, 2007.
5. M. Englert, H. R̈oglin, and B. V̈ocking. Worst case and probabilistic analysis of the 2-opt

algorithm for the tsp: extended abstract. In N. Bansal, K. Pruhs, and C.Stein, editors,SODA,
pages 1295–1304. SIAM, 2007.

6. W. J. Gutjahr. Mathematical runtime analysis of ACO algorithms: Surveyon an emerging
issue.Swarm Intelligence, 1:59–79, 2007.

7. W. J. Gutjahr and G. Sebastiani. Runtime analysis of ant colony optimization with best-so-far
reinforcement.Methodology and Computing in Applied Probability, 10:409–433, 2008.

8. C. Horoba and D. Sudholt. Running time analysis of ACO systems for shortest path prob-
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