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Abstract. Ant colony optimization (ACO) has been widely used for different
combinatorial optimization problems. In this paper, we investigate ACO algo-
rithms with respect to their runtime behavior for the traveling salespe@8R)(
problem. We present a new construction graph and show that it hasreyetr
local property than the given input graph which is often used for coctétig so-
lutions. Later on, we investigate ACO algorithms for both construction graph
random instances and show that they achieve a good approximationdatedp
polynomial time.

1 Introduction

Stochastic search algorithms such as evolutionary algost(EAS) [4] and ant colony
optimization (ACO) [3] are robust problem solvers that h&wend a wide range of
applications in various problem domains. In contrast to ynsuccessful application
of this kind of algorithms, the theoretical understandiagd far behind their practical
success. Therefore, it is highly desirable to increasehhberetical understanding of
these algorithms.

The goal of this paper is to contribute to the theoreticalenstanding of stochastic
search algorithms by rigorous runtime analyses. Suchesutve been successfully
applied for evolutionary algorithms and have highly inaethe theoretical foundation
of this kind of algorithms. In the case of ACO algorithms thedretical analyses of
their runtime behavior has been started only recently [12,81, 10, 8]. We increase the
theoretical understanding of ACO algorithms by investigatheir runtime behavior on
the well-known traveling salesperson (TSP) problem. FoOAle TSP problem is the
first problem where this kind of algorithms has been appligterefore, it seems to be
natural to study the behavior of ACO algorithms for the TSébpem from a theoretical
point of view in a rigorous manner.

ACO algorithms are inspired by the behavior of ants to sefimch shortest path be-
tween their nest and a common source of food. It has beenwustivat ants find such a
path very quickly by using indirect communication via phreanes. This observed be-
havior is put into an algorithmic framework by considerintifecial ants that construct
solutions for a given problem by carrying out random walks@o-called construction
graph. The random walk (and the resulting solution) depengsheromone values that
are values on the edges of the construction graph. The piitpabtraversing a certain
edge depends on its pheromone value.



One widely used construction procedure for tackling the T&®already been an-
alyzed in [14]. It constructs a tour in arderedmanner, where the iteratively chosen
edges form a path at all times. In this paper, we give new matounds for ACO
algorithms using this construction procedure. On the ottzerd, we propose a new
construction procedure, where, in each iterationasbitrary edge not creating a cy-
cle or a vertex of degree 3 may be added to extend the partial\\ée analyze both
construction methods and point out their differences.

Our analysis of these two ACO variants goes as follows. Wedixamine the lo-
cality of changes made, i.e., how many edges of the currestt-golution are also in
the newly sampled tour, and how many a&ehangedor other edges. We then use
these results as upper bounds on the time until certainadkkical changes are made
to derive upper bounds on the optimization time.

In particular, we show the following results:

— The ordered edge insertion algorithm exchanges an expeatater off2(log(n))
many edges (Theorem 1) while the arbitrary edge insertichaxges only an ex-
pected constant number of edges (Theorem 4).

— Avrbitrary edge insertion has a probability {1/n?) for any specific exchange of
two edges (Corollary 1), while ordered edge insertion hasafi® (1/n3) [14].

— The simple TSP-instance analyzed in [14] is optimized byteaty edge insertion
in an expected number @f(n>log(n)) steps (Theorem 5), while the best known
bound for ordered edge insertion@$n®) ([14]).

— Both construction graphs lead in expected polynomial tima good approxima-
tion on random instances.

In particular, arbitrary edge insertion allows for bettantime bounds thanks to
its locality. It remains open whether there are TSP instaneeere the non-locality
of ordered edge insertion provably gives better runtimenbisuthan the more local
arbitrary edge insertion.

The rest of the paper is organized as follows. In Section 2nweduce the problem
and the algorithms that are subject to investigations. Wesitigate the number of edge
exchanges for large pheromone updates in Section 3 and pnotine bounds for cer-
tain classes of instances in Section 4. Finally, we finisinw@me concluding remarks
and topics for future work.

2 Problem and Algorithms

In this paper, we consider the symmetric Traveling SalespeProblem (TSP). We are
given a complete undirected grapgh= (V, F) and a weight functiom : E — R that
assigns positive weights to the edges. The goal is to findraofaninimum weight that
visits every vertex exactly once and returns to the statexeafterwards. We analyze
an ACO algorithm called MMAS (Min-Max Ant System — see Algorithm 1), already
used in different theoretical studies [11, 14]. MMA®orks iteratively, creating one
new candidate solution in each iteration, and keeping track of the best-so-fartewiu
x*. A new candidate solution for a target graghs constructed by an artificial ant that
performs a random walk on an underlying graph, callecttivestruction graphstep by



step choosing components of a new candidate solution. $rptigber, we use edges of
the given input as the components that influence this randatk wn each step of its
random walk on the construction graph, we want the ant toehao edge in G with

a probability based opheromone value(e).! We use a procedureonstruct based
on the pheromones as given in Algorithm 2. In this paper, we consider two difetr
approaches of constructing new solutions by specifyinghiighborhood functiov

of Algorithm 2 in Sections 2.1 and 2.2.

Algorithm 1: The algorithm MMAS.

1 function MMAS onG = (V, E) is
2 T(e) — 1/|V],foralle € E;

3 x* «— construct(7);

4 update(T,z");
5
6
7
8

while true do
x < construct(7);

if f(z)> f(z")then

Lx*%x;

9 T « update(T, z”);

Algorithm 2: The algorithmconstruct.

1 function construct based orr is
2 fork=0ton—2do

3 R — ZyGN(el ,,,,, ek)T(y)’
4 Choose one neighbet.. 1 of er, where the probability of selection of any fixed

y € N(e1,...,ex) is%;
Lete,, be the (unique) edge completing the tour;
| return (e1y ... en);

For each edge € F, the pheromones are kept within upper and lower bounpds
and mmin, respectively. The pheromone values change after eacidterof MMAS*
according to a procedurpdate and anevaporation factop: For a tourz, let E(z) be
the set of edges usedin for each edge, the pheromone values are updated such that
the new pheromone value$ = update(r, ) are such that

7'/(@) - {mln{(l—p) 'T<€)+p77-max}7 if GE(.I);
max {(1 — p) - 7(e), Tmin} , otherwise.

! Note that, in this paper, we are not concerned with the usewofistic information



Here,p, 0 < p < 1, is the evaporation factor which determines the strengtarof
update. As in [14], we US@nin = 1/n? andmax = 1 — 1/n throughout this paper,
wheren is the number of nodes of the input graph; further, initidirea for pheromones
arel/n. If in an iteration of MMAS' the pheromone values are such that, for exactly
the edges of the best-so-far tour the pheromone values agg.and all others are at
Tmin,» We call the pheromonesaturatedat that iteration.

To measure the runtime of MMASIt is common to consider the number of con-
structed solutions. Often we investigate the expected reurmbconstructed solutions
until an optimal tour or a good approximation of an optimairts obtained.

2.1 The Input Graph as Construction Graph

To specify the construction graph, we need to introduce ¢ighorhood functionV in
Algorithm 2. The most common way of constructing a tour folPTgoblem is to use
the input graph as construction graph (see e. g. [2]). A ®g@phstructed by having an
ant start at some vertex, visit all vertices by moving to ghbor of the current vertex,
and finally coming back to the start vertex. We model this biElavith a neighbor set
as follows. For each sequene®f chosen edges, |&f(o) be the set of unvisited nodes
andi(o) the most recently visited node (ordfis empty, some distinguished node); let

Nor(0) = {{l(0),u} | u € U(o)}.

This set has the advantage of being easily computable andedlirsear in the number
of edges needed to complete the tour. We will discuss drakgbafcthis neighborhood
set later. We will refer to MMAS using this neighborhood as MMAS, (“Ord” is
mnemonic for the “ordered” way in which edges are insertéal tine new tour).

2.2 An Edge-Based Construction Graph

Alternatively, we can let the ant choose to add any edge ts¢hef edges chosen so
far, as long as no cycle and no vertex are created. This is lewbtig a neighbor set as
follows. For each sequeneeof chosen edges, 1&f (o) be the set of previously chosen
edges and

Nam(o) = (E\ V(o)) \
{e' € E| (V.{e},..., e}, €'}) contains a cycle or a vertex of degrees .

This set has a size quadratic in the number of edges requireahtplete the tour.
We will refer to MMAS* using this neighborhood as MMAS (“Arb” is mnemonic
for the “arbitrary” way in which edges are inserted into tlesvrtour).

3 Number of Edge Exchanges

In this section, we consider the expected number of edgésatnawly constructed
solutionz differs from the best-so-far solutiatt if the pheromone values are saturated.



In this case, the solution* can often be reproduced with constant probability and it is
desirable that-* andx only differ by a small (constant) number of edges. In such a
situation, ACO algorithms are able to carry out improvingpst by sampling solutions

in their local neighborhood. In particular, for a taimwe are interested in toutssuch
thatt andt’ differ by exchangin@ or 3 edges, called &-Opt or a 3-Opt neighboy
respectively.

3.1 The Behavior of MMAS}

In the following we examine MMAS,,. We show that the expected number of edges
wherez* andz differ is 2(log n). Thus, the MMAS,, doesnot have the desired local
property.

The reason for this large number of exchange operationsatsftian ant has left
the path corresponding the currently best solution therilitemcounter paths of high
pheromone that do not cover the rest of the tour. The resedbilr needs to be discov-
ered by joining different subpaths of high pheromone whiabplies the lower bound
on the expected number of edge exchanges.

In the proof of the claimed result, we consider the followiagdom process which
captures the situation after an ant has left the high phenenpath for the first time.
Let W be a walk on a sequence b¥ertices.IW starts at a random vertex, and will go
to the just previous or following vertex in the sequence weittual probability, if both
are available and unvisited. If only one is available andisited, W will go to this
one. If none are available and unvisited, the walk yuthp uniformly at random to an
unvisited vertex. The walk ends as soon as all vertices aiteul

Lemma 1. For eacht, let X, be the random variable denotimmmber of jumpsnade
by the walki¥ on a path oft vertices. Then we have

1

Proof. We start by giving a recursive definition &f;. Clearly, X; = 0 andX, = 0.
Lett > 3. The walk can start with uniform probability in any vertexdawill not
jump if the first or last vertex has been chosen. Otherwisth agual probability, the
walk will start up or down. After visiting all nodes in the cden direction, the walk will
jump once, and then perform a walk accordindstg where: is the number of unvisited
nodes just before the jump. Thus, we get, fortaH 3,

1301 1

B(X,) = > (5014 E(Xi)) + S+ B(Xi-))

; 2
=2



The claim is true fort = 3. We show the remainder of the claim of the lemma by
induction ont. Let¢ > 4 and for alli, 3 < i < t, E(X;) > & In(i). Usingt > 3, we
have(t — 2)/t > 1/3. Thus, also using the induction hypothesis,

In((t — 2)!/2) > > In(t).

| =

1
6
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Next we will give a lower bound on the expected number of edghanges which
MMAS§ 4 will make when saturated.

Theorem 1. If in an iteration of MMA$ , the pheromone values are saturated, then,
in the next iteration of MMAS,, the newly constructed tour will exchange an expected
number off2(log(n)) of edges.

Proof. It is easy to see that an ant leaves the path correspondinguthently best
solutionz* with probability 2(1) after having visited at most/2 vertices. After the
ant has left the path it performs on the remaining n/2 vertices as a walk similar to
W on a path of length. In fact, with constant probability, the ant will never leathe
path again unless necessary, so that we get the result byirgphemma 1. ad

However, constructing new solutions with few exchangedesds still somewhat
likely. In [14] it is shown that the probability for a partilew 2-Opt step isf2(1/n?).
Taking a closer look at the analysis presented in this papsatahing upper bound on
this probability can be extracted. In summary, we get thiefiohg result.

Theorem 2 ([14]).Let¢ be a tour found by MMAS,; and lett’ be a tour which is a
2-Opt neighbor of. Suppose that the pheromone values are saturated. Then FMAS
constructg’ in the next iteration of with probabilit@ (1/n3).

3.2 The Behavior of MMAS;

In this section we examine the expected number of edge egesasf MMAS; . In
Theorem 4 we show that the expected number of edges whieardz differ is ©(1).
Thus, the MMAS,,, doeshave the desired local property.

Theorem 3. Let k be fixed. If in an iteration of MMAS, the pheromone values are
such that, for exactly the edges of the best-so-far tour lieegmone values are afax

and all others are atiyin, then, in the next iteration of MMAS with probability ©(1),

the newly constructed tour will choogenew edges and otherwise rechoose edges of
the best-so-far tour as long as any are admissible.

Proof. We call an edge with pheromone levgl.x a “high” edge, the others are “low”
edges. Lef” be the set of all high edges (the edges of the best-so-far. iderconsider
an iteration of MMAS,,,. We analyze the situation where, out of theedges to be



chosen to create a new tour, there are stdtiges left to be chosen. In this situation,
the edges chosen so far partition the graph into exaatiymponents. For each two
components, there are betweemand4 edges to connect them (each component is a
path with at most 2 endpoints, only the endpoints can be chfiseconnecting with
another component); thus, there are betwggrandmin (4(3), (3)) edges left to be
chosen. Further, when there amredges left to be chosen for the tour, at mosf which
are low edges, there are betweeandi + & high edges and betwe@) — (i+k)and
min(4(2), (%)) low edges left to choose from.

For a fixedk-element subse¥/ of {1, ...,n}, and any choice of edges at positions
M, we use the union bound to analyze the probability to reah@ssmany other high
edges as possible in all the other postions. This probgaisliower bounded by

= 1 n 1
" ;mm (4 (2)’ (2)> min i Tmax

n/2

Tmin 1 1 - n 1 1
=1— 4 R =1 >-=>0.
Tmax ; (2> ? i_§+l <2> ¢ 4
For eachk-element subse¥ of {1, ..., n}, the probability of choosing a low edge

on all positions of\/, and choosing a high edge on all other positions is lower dedn
by

% I1 <<;) — (i + k)> Timin/ (¢ + &) Timax + 1 Tmin)

ieM
> T T (220 Gm)) fGr ks T T (2 o
- 4 2 - 4 2k + 4 '
ieM ieM

Letc;, = i/(2k+4)—2. Note that, for any set/ with [ M| < k, we haved " oy cir =
©(n?). Now we have that the probability of choosing low edgesaogk positions is
lower bounded by

Tr]fﬂn Z H ik
4 1,K

MC{1,...n} €M

|M|=Fk
1 n n n k
“mE | 2 | > e
i1=1 \ip=1,i2¢{i1} ip=1,ip&{i1,..ig—1} J=1
1 n n n
= AkIn2k E Cix k E Cigk | - E Cig ke
) i1=1 ia=1,ia¢{i1} =1,k &{i1,sik—1}

= o(1).

As a corollary to the proof just above, we get the following.



Theorem 4. If in an iteration of MMAS,, the pheromone values are such that, for
exactly the edges of the best-so-far tour the pheromonesate at,,x and all others
are at 7min, then, in the next iteration of MMAS, the newly constructed tour will
exchange an expected numberfl) of edges.

As a further corollary to Theorem 3, we get the following.

Corollary 1. Lett be a tour found by MMAS, and lett’ be a tour which is &-Opt
neighbor oft. Suppose that the pheromone values are such that for exbhetbdges of
t the pheromone values are &t and all others are atyin. Then MMA§,, constructs
t' in the next iteration with probability (1/n?).

Proof. The tourt has©(n?) many2-Opt neighbors. By Theorem 3, MMAS, will
construct, with constant probability, a tour that exchangee edge and otherwise re-
chooses edges ofas long as possible. This new tour i2-®pt neighbor oft. As all
2-Opt neighbors of are constructed equiprobably (thanks to the symmetry ofdme
struction procedure), we obtain the desired result. O

4 Runtime Bounds

4.1 A Simple Instance

An initial runtime analysis of ACO algorithms for the TSP ptem has been carried out
by Zhou in [14]. In that paper, the author investigates howDAglgorithms can obtain
optimal solutions for some simple instances. The basicsidhehind these analyses is
that ACO algorithms are able to imita2eOpt and3-Opt operations.

A simple instance called; in [14] consists of a single optimum, namely a Hamil-
tonian cycle where all edges have cbgtalled light edges), while all remaining edges
get a large weight of (called heavy edges). The author shows that MIA$or arbi-
trary p > 0 obtains an optimal solution fa#; in expected time (n° + (1/p)nlogn).
The proofidea is as follows: As long as an optimal solutios et been obtained, there
is always &2-Opt or3-Opt operation that leads to a better tour. Having deriveduat
of £2(1/n%) for the probability of performing an improving- or 3-Opt step, the re-
sult follows since at most improvements are possible atdlogn/p) is the so-called
freezing time, i. e., the time to bring all pheromone valuwespper or lower bounds.

In this section, we prove a bound 6f(n®logn + (nlogn)/p) on the expected
optimization time of MMAS,, for the instance>,. This bound is considerably better
than theO(n®) proved before in [14] for MMAS,,. At the same time, the analysis is
much simpler and saves unnecessary case distinctions.

The following lemma concentrates on a single improvemasitowing the notation
in [14], let A, k < n, denote the set of all tours of total weight-— k + kn, i. e., the
set of all tours consisting of exactly— k light andk heavy edges.

Lemma?2. Leta =1 andB = 0, Tmin = 1/n? andrmax = 1 — 1/n. Denote byX* the
best-so-far tour sequence produced by MJABN TSP instancé’; until iterationt >
0 and assume thaX} is saturated. Then the probability of an improvement, given
k < n heavy edges iX,, satisfiess;, = P(X!T! € A,_1U...UAy | X! € A}) =



Proof. Consider an arbitrary light edge= {u,v} ¢ T outside the best-so-far tour.
Each vertex of; is incident to2 light edges, so both andv are incident to exactly
one light edge different from. Sincee ¢ T, this implies the existence of two different
heavy edgesg, e; € T on the tour such that, is incident onu ande; incident onv.
Let ej, e} € T with e, # ey ande] # e; be the other two edges on the tour that
are incident tou andw, respectively. The aim is to form a new tour containingnd
still e, ande] but no longerey ande; . Note that the set of edgé® U {e}) \ {eo,e1}
has cardinality. — 1 but might contain a cycle. If that is the case, there must be a
heavy edges € T from the old tour on that cycle (since there is a unique cytleght
edges in&1). Then we additionally demand that the new tour does notdons. Since
the undesired edges, e; and possiblys, are heavy and is a light edge outside the
previous tour, any tour being a superse{dfU {e}) \ {eo, €1, e2} is an improvement
compared td".

For1l < j < n/4, we consider the following intersection of events, dendigd
M, () and prove thaProb(M.(5)) = £2(1/n*); later, a union over differentande is
taken to get an improved bound.

1. the firstj — 1 steps of the construction procedure choose edges Tfom= T'\
{eo, €1, e2} and thej-th step chooses

2. ¢{, is chosen beforey ande beforee;,

3. all steps except the first one choose frdias long as this set contains applicable
edges.

Note thatey ande; are no longer applicable onge, e, ¢/ } is a subset of the new tour.

For the first subevent, assume that the first j steps have already chosen exclu-
sively fromT™*. Then therex — i edges fron¥” andn —i — 3 edges front™ left. Finally,
there are at most?/2 edges outsidd’. Using thatX, is saturated, the probability of
choosing another edge frofft is then at least

(n — 14— 3)Tmax n—1—3

(assumingn > 2). Altogether, the probability of only choosing froffi* in the first
j — 1 steps is at least

Jj—2 . n/4—1
Hn—z.—?) > (371/4—1) _ o)
Ton—itl 3n/4+3
sincej < n/4. The probability of choosingin the j-th step is at least at leastin/n =
1/n? since the total amount of pheromone in the system is at mo&ttogether, the
first subevent has probability (1 /n%).

The second subevent has probability at lgag®)? = 1/4 since all applicable
edges inl" are chosen with the same probability (using thatis saturated).

For the third subevent, we study a step of the constructioogature where there are
i applicable edges froffi left and all edges chosen so far are frdiw{e}. Now we need
a more precise bound on the number of applicable outBidEaking outk > 1 edges
from T breaks the tour int& connected components, each of which has at most two



vertices of degree less thanSincee ¢ T has been chosen, at most two edges fiom
are excluded from our consideration. Altogether, the nurobeonnected components
in the considered step of the construction procedure is &t ing 2, which means
that there are at mogt‘?) < 2(i + 2)? < 18i? edges outsidd” applicable. The
probability of neither choosing, nor an edge outsidg in this situation is at least

iTmaX

(2 + 1)Tmax + 1872 Tmin

Hence, given the second subevent, the probability of thid thibevent is at least

ﬁ i~Tmax nr_[l( 7 . (i+1).7-max )
i=1 ('L + 1)Tmax+ 18i27'min i1 1+ 1 (2 + l)Tmax+ 18i27—min

1 n—1 i1 ) N | .
2 2 eyasar v 2 0 (H 1 187/ (T n2>)

Z(l-l-nw)_n = 2(1/n), -

altogether, the intersectiav,. (;) of the three subevents happens with probability /n?).
Finally, consider the uniod/, := Ujgn/4 M.(7), which refers to including:

in any of the firstn/4 steps. Since thé/.(j) are disjoint for differentj, we obtain

Prob(M.) = (n/4) - 2(1/n*) = 2(1/n3). Similarly, for all light edges: ¢ T (of

which there arg), the eventsV/, are disjoint (as a different new edge is picked in the

first step). Thus, the probability of an improvementiék /n?) as desired. O

>

S|

Theorem 5. Leta = 1andB = 0, Tmin = 1/n? andmmax = 1 —1/n. Then the expected
optimization time of MMAS, on G is O(n?logn + n(logn)/p).

Proof. Using Lemma 2 and the boun@(logn/p) on the freezing time, the wait-
ing time until a best-so-far solution with heavy edges is improved is bounded by
O((logn)/p) + s = O((logn)/p + n3/k). Summing up, we obtain a total expected
optimization time ofO(n(logn)/p) + >, (1/sk) = O(n®logn + n(logn)/p). O

4.2 Random Instances

The 2-Opt heuristic, which starts with an arbitrary tour and paris2-Opt steps until

a local optimum is reached, is known to perform well in praetin terms of running
time and approximation ratio [9]. In contrast to this, it He®en shown to have expo-
nential running time in the worst case [5] and it has been shttrat there are instances
with local optima whose approximation ratiofiflog n/log log n) [1]. To explain this
discrepancy between theory and practizé)pt has been analyzed in a more realis-
tic model of random instances reminiscent of smoothed @&§lB]. In this model,

n points are placed independently at random in dhdimensional Euclidean space,
where each point; (i = 1,2, ..., n) is chosen according to its own probability density
fi:[0,1] — [0, ¢], for some parametes > 1. It is assumed that these densities are



chosen by an adversary, and hence, by adjusting the parameiae can interpolate
between worst and average cases K= 1, there is only one valid choice for the densi-
ties and every point is chosen uniformly at random from thehypercube. The larger

¢ is, the more concentrated can the probability mass be araldber is the analysis to

a worst-case analysis. We analyze the expected runningatimie@pproximation ratio

of MMAS3,, and MMAS;,4 on random instances. For this, we have to take a closer
look into the results from [5] which bound the expected nundfe-Opt steps until a
good approximation has been achieved. We show the follottiegrem.

Theorem 6. For p = 1, MMAS;,, finds in timeO (n%+2/3. ¢3) with probability 1 —o(1)
a solution with approximation rati®( {/¢).

Proof. As we have argued in Corollary 1, if all edges are saturatetithere is an
improving 2-Opt step possible, then this step is performed with prditalzt least
2(1/n?). From [5] we know that from any state, the expected numbe-0pt steps
until a tour is reached that is locally optimal fOpt is at mosO (n**+1/3 - log(n) -
#%/3) even if in between other changes are made to the tour that dimcrease its
length. Hence, using Markov’s inequality we can concludg MMAS; , has reached
a local optimum afte© (n5+2/3 . $3) steps with probability — o(1).

From [5], we also know that every locally optimal tour has apexted approxi-
mation ratio ofO(+/¢). Implicitly, the proof of this result also contains a taillal
showing that with probability — o(1) every local optimum achieves an approximation
ratio of O({/¢). The theorem follows by combining the previous observatiand tak-
ing into account that for our choice pfall edges are saturated after the first iteration of
MMASZ,,. O

Taking into account that a specifleOpt operation in MMAS, , happens with prob-
ability of £2(1/n3) in the next step, we get the following results.

Theorem 7. For p = 1, MMAS; 4 finds in timeO (n"+2/3. $3) with probability 1 —o(1)
a solution with approximation rati® (/).

5 Conclusions

Our theoretical results show that the usual constructionguure leads to solutions that
are in expectation far away from the currently best one imssof edge exchanges even
if the pheromone values have touched their correspondingdm Due to this, we have
examined a new construction graph with a stronger locality.the other hand, this
construction procedure has a high probability of carryingaspecific 2-opt operation
which is important for successful stochastic search algms for the TSP problem.
Afterwards, we have shown that both algorithms perform welrandom instances if
the pheromone update is high.
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