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Abstract

An instance of a combinatorial optimization problem is usually described by an
objective function that is to be optimized over a set of feasible solutions. The
decisions that people, companies, and other economic entities face every day are
more complex for various reasons: In many situations, there is more than one
objective and one is rather interested in finding the most appropriate trade-off than
in optimizing a single criterion. Further complications arise when decisions are
made by selfish agents instead of being centrally coordinated, and even decisions
that can be modeled as combinatorial optimization problems are often intractable
under standard complexity-theoretic assumptions. These difficulties gave rise to a
variety of solution concepts, including Pareto-optimal solutions, Nash equilibria,
and local optima, which are the topic of this thesis.

When it comes to the allocation of scarce resources, decisions are often made
by selfish agents. The predominant solution concept in such situations is that of a
Nash equilibrium, which is a state in which no agent can benefit from unilaterally
changing her strategy. We consider congestion games and two-sided markets, two
extensively studied models for resource allocation among selfish agents. In both
of these models, a set of players competes for a set of resources, the difference
being that in two-sided markets each resource can be allocated by at most one
player, whereas in congestion games a resource can be allocated by several players
simultaneously at the cost of a decreased payoff. Two-sided markets have been
introduced to model markets on which different kinds of agents are matched to one
another, for example, students and colleges or interns and hospitals, and they have
found applications in many different areas. Congestion games can, for instance,
be used to model routing in large networks like the Internet.

For congestion games, we analyze the complexity of computing a pure Nash
equilibrium. This problem can be phrased as a local search problem that belongs
to the complexity class PLS. We present a new approach that enables us to prove
PLS-hardness results for different classes of congestion games like market sharing
games and overlay network games. Our approach also yields a short proof for
the PLS-completeness of network congestion games for directed and undirected
networks. In two-sided markets, pure Nash equilibria can be computed efficiently,
but many real-life markets lack a central authority to match agents. This motivates
the study of the processes that take place when players consecutively improve
their strategies. We demonstrate that coordination is necessary by constructing
examples on which uncoordinated agents need in expectation exponentially many
steps to reach an equilibrium if they improve their strategies in a random order.
On the positive side, we identify a special class of two-sided markets with real-life
applications for which we prove that uncoordinated agents reach an equilibrium in



expected polynomial time. We conclude the part about resource allocation among
selfish agents by introducing a natural class of resource sharing games that both
extends congestion games and two-sided markets. We prove several results for this
model that unify the theory of these two special cases.

In the second part of this dissertation, we consider optimization problems with
two criteria. Since, in general, it is not possible to optimize both criteria simul-
taneously, one has to find an appropriate trade-off. Solutions that are optimal
in the sense that no criterion can be improved without deteriorating the other
one are called Pareto-optimal, and the set of Pareto-optimal solutions is an im-
portant solution concept for bicriteria optimization problems as it helps to filter
out unreasonable trade-offs. Even though in practice for most bicriteria problems
the number of Pareto-optimal solutions is typically small, for almost all bicriteria
problems, instances exist with an exponentially large Pareto set. The discrepancy
between theory and practice arises because worst-case results are overly pessimistic
as inputs occurring in practice are often very different from worst-case instances.
We study the number of Pareto-optimal solutions in the framework of smoothed
analysis, which is a hybrid of worst-case and average-case analysis, in which an
adversary specifies an instance that is subsequently slightly perturbed at random.

We prove an almost tight polynomial bound on the expected number of Pareto-
optimal solutions for general bicriteria integer optimization problems. Our results
directly imply a tight polynomial bound on the expected running time of a heuristic
for the binary knapsack problem and they significantly improve the known results
for heuristics for the bounded knapsack problem and for the bicriteria shortest path
problem. Our results also enable us to improve and simplify the previously known
analysis of the smoothed complexity of integer programming. For certain problems
such as the bicriteria spanning tree problem, there are no algorithms known for
enumerating the set of Pareto-optimal solutions efficiently in its size. We present
a method that allows us to enumerate the set of Pareto-optimal solutions for semi-
random inputs in expected polynomial time with a small failure probability for all
problems for which this set can be enumerated in pseudopolynomial time.

Local search is not only important because computing pure Nash equilibria
can be phrased as a local search problem, but it also plays a crucial role in the
design of heuristics for various NP-hard optimization problems. In particular, for
the famous traveling salesperson problem, local search heuristics like 2-Opt achieve
amazingly good results on real-world instances both with respect to running time
and approximation ratio. There are numerous experimental studies on the per-
formance of 2-Opt, but the theoretical knowledge about this heuristic is still very
limited. Not even its worst-case running time on Euclidean instances was known
so far. We clarify this issue by presenting, for every p, a family of two-dimensional
L, instances on which 2-Opt can take an exponential number of steps. In order
to explain the discrepancy between this worst-case result and the observations
in practice, we analyze 2-Opt in the framework of smoothed analysis. We show
that the expected number of local improvements on semi-random Manhattan and
Euclidean instances is polynomial, improving previous average-case results signif-
icantly. In addition, we prove an upper bound on the expected approximation
factor with respect to all L, metrics that depends polynomially on the magnitude
of the random perturbation.



Zusammenfassung

Eine Instanz eines kombinatorischen Optimierungsproblems kann durch eine Men-
ge giiltiger Losungen und eine Zielfunktion beschrieben werden, und das Ziel ist es,
eine giiltige Losung auszuwéihlen, die die Zielfunktion optimiert. Viele alltégliche
Entscheidungen, mit denen sich Personen, Unternehmen und andere Wirtschafts-
einheiten konfrontiert sehen, kénnen nicht als kombinatorische Optimierungspro-
bleme im klassischen Sinne modelliert werden, weil es beispielsweise mehrere gleich-
wertige Zielfunktionen gibt, die nicht zugleich optimiert werden kénnen. Weitere
Komplikationen entstehen in Situationen, in denen viele eigenniitzig handelnde
Agenten involviert sind und es nicht moglich ist, eine zentral koordinierte Entschei-
dung zu treffen. Auflerdem erweisen sich selbst Entscheidungen, die als kombina-
torisches Optimierungsproblem formuliert werden konnen, unter Standardannah-
men der Komplexitétstheorie oftmals als praktisch unlésbar. Diese Schwierigkeiten
haben zur Entwicklung einer Vielzahl unterschiedlicher Losungskonzepte beigetra-
gen. In dieser Arbeit beschiiftigen wir uns insbesondere mit Nash-Gleichgewichten,
Pareto-optimalen Losungen und lokalen Optima.

Situationen, in denen Entscheidung von eigenniitzig handelnden Agenten ge-
troffen werden, treten hiufig im Zusammenhang mit der Allokation knapper Res-
sourcen auf und Nash-Gleichgewichte sind das vorherrschende Lésungskonzept in
solchen Situationen. Bei diesen Gleichgewichten handelt es sich um Zustinde, die
in der Hinsicht stabil sind, dass kein Agent davon profitieren kann, seine mo-
mentane Entscheidung zu dndern. Wir beschéftigen uns mit den beiden in der
Okonomik ausfiihrlich untersuchten Modellen der Congestion-Spiele und zweisei-
tigen Mérkte. In beiden Modellen konkurrieren Agenten um eine Menge von Res-
sourcen mit dem Unterschied, dass in einem zweiseitigen Markt jede Ressource
nur von einem Agenten belegt werden kann, wohingegen sich in einem Congestion-
Spiel mehrere Agenten eine Ressource auf Kosten einer geringeren Auszahlung
teilen konnen. Zweiseitige Markte dienen als Modell fiir Méarkte, auf denen ver-
schiedene Arten von Agenten z.B. Studenten und Universitéiten einander zuge-
ordnet werden. Congestion-Spiele werden beispielsweise benutzt, um Routing in
groflen Netzwerken wie dem Internet zu modellieren.

Das Problem, ein Nash-Gleichgewicht in einem Congestion-Spiel zu berech-
nen, kann als lokales Suchproblem aus der Komplexitétsklasse PLS formuliert wer-
den. Wir prisentieren einen neuen Ansatz, der die PLS-Vollsténdigkeit fiir diverse
Klassen von Congestion-Spielen zeigt und zu einer signifikanten Vereinfachung be-
reits bekannter Reduktionen fiir Netzwerk-Congestion-Spiele fiithrt. In zweiseitigen
Markten kénnen Nash-Gleichgewichte effizient berechnet werden, es gibt jedoch in
vielen Situationen, in denen dieses Modell Anwendung findet, keine zentrale Stel-
le, die Agenten einander zuordnet. Wir konstruieren Instanzen, die zeigen, dass



Koordination notwendig ist, weil unkoordinierte Agenten im Erwartungswert ex-
ponentiell viele Schritte benttigen, um ein Gleichgewicht zu erreichen, wenn sie
ihre Strategien in einer zufilligen Reihenfolge verbessern. Wir identifizieren je-
doch eine interessante eingeschrénkte Klasse von zweiseitigen Mérkten, in denen
unkoordinierte Agenten schnell ein Gleichgewicht finden. Wir schlieffen das Kapi-
tel mit der Einfiihrung eines neuen Modells, das sowohl Congestion-Spiele als auch
zweiseitige Mérkte verallgemeinert. Wir beweisen einige Resultate fiir dieses neue
Modell, die die Theorie der beiden Spezialfille vereinheitlichen.

Der zweite Teil dieser Dissertation beschéftigt sich mit bikriteriellen Optimie-
rungsproblemen. Da es im Allgemeinen nicht moglich ist, beide Zielfunktionen
gleichzeitig zu optimieren, besteht die Schwierigkeit in solchen Situationen darin,
einen guten Kompromiss zu finden. Ein Kompromiss, in dem kein Kriterium ver-
bessert werden kann, ohne das andere zu verschlechtern, heiffit Pareto-optimal, und
die Menge der Pareto-optimalen Losungen ist ein wichtiges Losungskonzept fiir bi-
kriterielle Probleme. Obwohl man in Anwendungen oft nur wenige Pareto-optimale
Losungen beobachtet, existieren fiir fast alle bikriteriellen Probleme Instanzen mit
exponentiell vielen Pareto-optimalen Losungen. Der Grund fiir diese Diskrepanz
ist, dass theoretische Ergebnisse auf worst-case Instanzen beruhen, die sich stark
von typischen Instanzen, die in der Praxis auftreten, unterscheiden. Diesem Pro-
blem entgegnen wir, indem wir unseren Analysen das semi-zufillige Eingabemodell
der geglétteten Analyse zu Grunde legen, in dem ein Gegner eine Eingabe vorgeben
kann, die anschlieBend einer leichten zufélligen Perturbation unterworfen wird.

Wir zeigen eine nahezu scharfe polynomielle Schranke fiir die erwartete Anzahl
Pareto-optimaler Losungen fiir bikriterielle Optimierungsprobleme. Dieses Ergeb-
nis liefert scharfe polynomielle Schranken fiir die erwartete Laufzeit einer Heuristik
fiir das Rucksackproblem und signifikant verbesserte Schranken fiir Heuristiken fiir
das beschrinkte Rucksackproblem und das bikriterielle kiirzeste Wege Problem.
Das Ergebnis erlaubt uns ebenfalls, die bereits bekannte Analyse der gegldtteten
Komplexitéit ganzzahliger Optimierungsprobleme zu vereinfachen und zu verbes-
sern. Als weiteres Ergebnis zeigen wir, wie man auf semi-zufélligen Eingaben die
Menge der Pareto-optimalen Losungen effizient erzeugen kann fiir Probleme, fiir
die diese Menge im Worst-Case in pseudopolynomieller Zeit erzeugt werden kann.

Lokale Suche ist nicht nur interessant wegen des Zusammenhangs mit Nash-
Gleichgewichten, sondern spielt auch bei zahlreichen Heuristiken fiir NP-harte Op-
timierungsprobleme wie z.B. das Problem des Handlungsreisenden (TSP) eine
wichtige Rolle. 2-Opt ist eine sehr einfache lokale Suchheuristik fiir das TSP, die
bemerkenswert gute Ergebnisse in Bezug auf Laufzeit und Approximationsgiite
erzielt. Es gibt zahlreiche experimentelle Studien von 2-Opt, das theoretische Wis-
sen ist jedoch sehr begrenzt, so war bisher nicht einmal die worst-case Laufzeit auf
euklidischen Eingaben bekannt. Wir beantworten diese Frage, indem wir fiir jede
L,-Metrik eine Familie von zweidimensionalen Instanzen konstruieren, auf denen
2-Opt exponentiell viele Schritte machen kann, bevor es ein lokales Optimum er-
reicht. Um dieses Resultat mit den Beobachtungen in der Praxis in Einklang zu
bringen, untersuchen wir auch 2-Opt in einem semi-zufillige Eingabemodell. Wir
verbessern bekannte average-case Resultate deutlich und zeigen, dass die erwartete
Anzahl lokaler Verbesserungen auf semi-zufilligen Eingaben polynomiell ist. Des
Weiteren zeigen wir, dass die erwartete Approximationsgiite auf semi-zufalligen
Instanzen polynomiell von der Stérke der Perturbation abhéingt.
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CHAPTER 1

Introduction

Economic entities face decisions every day. These decisions are usually quite com-
plex and involve the optimization of multiple objectives. Often there is either
a single decision-maker interested in simultaneously optimizing several, possibly
conflicting, criteria or there are several selfish agents, each of which interested in
optimizing one of the objectives. This led to an increased interest in different
solution concepts that extend the classical theory of combinatorial optimization.
Rather than finding a solution that optimizes a single objective function, one has to
trade off different criteria against each other and find an appropriate compromise.
Often, one also has to cope with limits of tractability imposed by the computa-
tional complexity of the involved problems. These issues gave rise to a variety of
solution concepts, including, in particular, Pareto-optimal solutions, Nash equilib-
ria, and local optima, whose computational complexity is the main topic of this
dissertation.

We begin our investigations with situations in which decisions are made by
selfish agents. This line of research is motivated by the Internet, which is built,
operated, and used by countless different economic entities with varying interests
and without a central authority. It is natural to model these entities as selfish
agents interested in maximizing their own benefit. In order to understand the
agents’ behavior and the consequences arising from the lack of coordination, it
is necessary to combine classical methods from computer science with techniques
from mathematical economics such as game theory and mechanism design. The
predominant solution concept in such situations is that of a Nash equilibrium,
which is a state in which no agent can benefit from unilaterally changing her
strategy. Nash equilibria are a natural solution concept because they are stable
states if agents are rational and non-cooperative. Since in economics and computer
science non-cooperative situations usually arise when it comes to the allocation of
scarce resources, we study different models for resource allocation among selfish
agents. Our results are about the complexity of computing Nash equilibria and
about the question whether uncoordinated agents reach an equilibrium without
central coordination.

In the second part of this dissertation, control is given to a decision maker who
is solely responsible for choosing a solution from a given set of options. We assume
that with each of these options two objective values are associated and that the
decision maker is interested in optimizing both of them. Since, in general, it is not
possible to optimize both criteria simultaneously, the decision maker has to find
an appropriate trade-off. This is a natural assumption because economic entities
often face decisions that involve the optimization of more than one criterion. For
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example, when making an investment one tries to optimize the expected return
as well as the risk, when buying products one has to make a compromise between
quality and price, and when compressing data one has to trade off information
loss against size. Those trade-offs in which no criterion can be improved with-
out deteriorating the other one are called efficient or Pareto-optimal. The set of
Pareto-optimal solutions, or Pareto set for short, is an important solution concept
for multi-criteria optimization problems as it helps the decision maker to filter out
unreasonable trade-offs. For algorithmic applications, the Pareto set is only useful
if the number of Pareto-optimal solutions is not too large. We analyze the number
of Pareto-optimal solutions for bicriteria integer optimization problems in a very
general framework and obtain an almost tight polynomial bound, showing that
the Pareto set for many bicriteria integer optimization problems can be computed
efficiently.

Our analysis of the number of Pareto-optimal solutions is not based on the usual
worst-case perspective of theoretical computer science, in which an optimization
problem is judged by its worst instance. The reason is that, even though in practice
for most bicriteria problems the number of Pareto-optimal solutions is typically
small, for almost all these problems, instances exist with an exponentially large
Pareto set. The discrepancy between theory and practice arises because worst-
case results are overly pessimistic as inputs occurring in practice are often very
different from artificial worst-case instances. We study the number of Pareto-
optimal solutions in the framework of smoothed analysis. Smoothed analysis is
a hybrid of worst-case and average-case analysis, in which an adversary specifies
an instance that is subsequently slightly perturbed at random. This semi-random
input model often yields more realistic results than a worst-case or average-case
analysis alone.

Motivated by the intractability of many combinatorial optimization problems,
the third part of this dissertation is devoted to the study of local search. If, for
example, a company has to solve a logistics problem that can be formulated as a
version of the traveling salesperson problem, then finding an optimal solution is
usually hard even if there is only a single decision maker and only one objective. In
such situations, it becomes necessary to relax the requirement of finding an optimal
solution and to apply a different solution concept. For many hard optimization
problems, good approrimations are obtained by local search algorithms, which
start with an arbitrary feasible solution and improve this solution consecutively
until a solution is reached that cannot be improved further by a local modification.
The definition of a local modification is problem-specific, but if it is defined in the
right way, then local search turns out to be a powerful tool for obtaining good
approximations quickly in practice. Another motivation for studying the solution
concept of local optima is that there is a close connection between Nash equilibria
and local optima as the problem of computing a Nash equilibrium for the resource
allocation games studied in the first part can be phrased as a local search problem.

Since local search is particularly successful for the famous and well-studied
traveling salesperson problem, we study the 2-Opt heuristic, the probably most
basic local search heuristic for the traveling salesperson problem. This heuristic
achieves amazingly good results on real-world Euclidean instances both with re-
spect to running time and approximation ratio. There are numerous experimental
studies on its performance, but the theoretical knowledge is still very limited. We
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show that this heuristics performs very poorly in the worst case, and in order to
explain its success in practice, we show that it performs well in the framework of
smoothed analysis both with respect to running time and approximation ratio.
In the remainder of this introduction, we describe the considered solution con-
cepts and our results in more detail and we discuss related work. The introduction
is supposed to give an overview of our results. Hence, in order to improve the read-
ability, some results are not stated in their most precise and most general form.
Readers who are interested in more details are referred to the following chapters.

1.1 Nash Equilibria

Due to its distributed and uncoordinated nature, the Internet created a new
paradigm in computer science. Since there is no central authority, the Internet
is built, operated, and used by various, often competing economic entities, and
hence, an in-depth understanding cannot be gained by classical methods from
computer science alone. It seems rather necessary to combine these methods with
economic techniques like game theory, which studies how economic entities interact
and make decisions. From this combination, the active research area of algorithmic
game theory has emerged.

A game is an abstract model for situations in which decisions are made by
non-cooperative agents. A finite game in normal form consists of a finite set
N ={1,...,n} of players, and each player i € N is equipped with a finite set ¥;
of pure strategies and a payoff function p;: [[;cpr i — N. Every player i € N
can choose one of her strategies from the set ¥;, and we assume that every player
is interested in choosing a strategy that maximizes her own payoff. A player
i € N receives a payoff of p;(S) if the choices of the players result in the strategy
combination S € X := ¥ X --- X %,. Instead of letting each player pick a pure
strategy, game theory also studies mized strategies, that is, each player i € N
can choose a probability distribution over her strategy space ;. If players play
mixed strategies instead of pure ones, we assume that every player is interested in
maximizing her expected payoff.

Given a game, the most intriguing question is how the players behave. In
particular, it is interesting whether the players end up in some kind of stable
state, and if so, how long it takes to reach this state and which properties it
has. To answer these questions, John Nash introduced in his Nobel Prize-winning
dissertation [Nas50] the solution concept of non-cooperative equilibrium, nowadays
known as Nash equilibrium. The definition of a Nash equilibrium is based on
the simple observation that if agents are rational and non-cooperative, a strategy
combination S = (S1,...,S,) cannot be stable if a player ¢ € N can increase her
payoff by defecting from her chosen strategy S;. Strategy combinations in which
no player can benefit from unilaterally defecting from her strategy are exactly
the non-cooperative equilibria defined by Nash. For special classes of games, this
solution concept has already been used by Cournot [Cou38] and by von Neumann
and Morgenstern [vNM47]. The latter consider non-cooperative equilibria for two-
player zero-sum games, in which the payoffs of the players add up to the same value
for every possible strategy combination S € 3. Nash’s ingenious contribution was
to show that every finite normal-form game possesses a Nash equilibrium when
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players are allowed to play mixed strategies. This appealing property made Nash
equilibria one of the most popular solution concept in game theory.

Let us mention that there are, of course, also other solution concepts in game
theory and further refinements of Nash equilibria that we do not discuss in detail
in this thesis. For example, Reinhard Selten, who shared the Nobel Prize in
economics in 1994 with John Harsanyi and John Nash, introduced the notion of
trembling-hand perfect equilibrium, which takes into account that players are not
perfect and make mistakes with a small probability. John Harsanyi suggested the
notion of Bayesian Nash equilibrium, which is an appropriate solution concept
if players have incomplete information about the other players’ payoffs and try
to predict their actions. Another example is the solution concept of correlated
equilibrium which considers the case that the probability distributions chosen by
the players can be correlated. For more details about these and other solution
concepts like subgame perfect equilibria and evolutionary stable equilibria, we refer
the reader to the books about game theory by Owen [Owe95] and by Fudenberg
and Tirole [ET91].

In this thesis, we study Nash equilibria because they are one of the most
appealing and best-studied solution concepts in game theory. One objection to
Nash equilibria is that the strategies in a Nash equilibrium can be quite complex,
that is, players might have to choose strategies with a large support and carefully
chosen probabilities to obtain an equilibrium. We believe that it is often more
realistic to assume that players choose pure strategies rather than the much more
complex randomized ones. The games that we study in this thesis have the very
appealing property that they always possess pure Nash equilibria, that is, in order
to obtain a Nash equilibrium players do not have to randomize over their strategy
set. Hence, we will only be concerned with pure equilibria in this thesis, and the
term Nash equilibrium always denotes a pure Nash equilibrium if not explicitly
mentioned otherwise.

Since non-cooperative situations arise often in the context of the allocation
of scarce resources, we investigate two extensively studied models for resource
allocation among selfish agents, namely congestion games and two-sided matching
markets. In both of these models, a set of players competes for a set of resources,
the difference being that in two-sided markets each resource can be allocated by at
most one player, whereas in congestion games a resource can be allocated by several
players simultaneously at the cost of a decreased payoff. Two-sided markets have
been introduced to model markets on which different kinds of agents are matched
to one another, for example, students and colleges or interns and hospitals, and
they have found applications in many different areas. Congestion games can,
for instance, be used to model load balancing among servers or routing in large
networks like the Internet.

A lot of research has focused on properties of Nash equilibria. Typical prop-
erties of interest are, for example, the price of anarchy, which is the ratio of the
social cost in the worst Nash equilibrium to the minimum social cost possible,
and the price of stability, which is the ratio of the social cost in the best Nash
equilibrium to the minimum social cost possible. Our research is not concerned
with properties of equilibria, but we are rather interested in the questions whether
selfish agents reach an equilibrium quickly without coordination and if equilib-
ria can be computed efficiently by a central authority. The former question is
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motivated by the observation that in many game-theoretic scenarios, there is no
central authority and agents have to make decisions without being centrally coor-
dinated in any way. In such scenarios, there are usually many different equilibria
and it is unrealistic to assume that the agents start out in one of them. Instead
they need to coordinate themselves somehow to reach an equilibrium. The second
question arises in scenarios in which a central authority is present. For example,
in most networking applications, agents interact based on an underlying protocol
that proposes a solution to all participants, who have to decide whether to follow
the proposed solution or to defect from it. If the proposed solution is an equilib-
rium, then all agents have an incentive to follow the protocol, and hence, it is an
important question for the protocol designer whether equilibria can be computed
efficiently.

In the following, we introduce congestion games and two-sided markets formally
and we state our results.

1.1.1 Congestion Games

A congestion game T is a tuple (N, R, (X:)ien, (dr)rer) where N = {1,... n}
denotes a set of players, R with m := |R| a set of resources, ¥; C 27 the strategy
space of player : € N, and d,: N — N a delay function associated with resource
r € R. We denote by S = (S1,...,S5,) the state of the game in which player
i plays strategy S; € X;. Furthermore, we denote by S @& S; the state S’ =
(S1,...,8i-1, 5., Sit1,...,5n), i.e,, the state S except that player i plays strategy
S! instead of S;. For a state S, we define the congestion n,(S) on resource r by
n.(S) = |{i | r € S;}|, that is, n,(S) is the number of players sharing resource r
in state S. We assume that every player i € A wants to minimize her delay §;(5),
which is defined as ) g dr(n,(S5)).

Given a state S, we call a strategy S € X; a best response of player i to
S if, for all S! € X;, 6;(S @ S) < 6;(S @ 5)), and we call it a better response
if 9;(S @& Sf) < 6;(S). In the following, we use the term best response sequence
to denote a sequence of consecutive strategy changes in which each step is a best
response that strictly decreases the delay of the corresponding player. Analogously,
a better response sequence is a sequence of consecutive better responses. A state S
is a Nash equilibrium if no player can decrease her delay by changing her strategy,
ie., for all i € N and for all S/ € %;, §;(S) < (S @& S!). We call a congestion
game symmetric if all players share the same set of strategies, otherwise we call it
asymmetric.

Congestion games can, for example, be used to model routing in large networks
like the Internet. In such network congestion games, the resources are the edges
of a graph G = (V, E) that represents the network and every player i € N has to
allocate a path from her source node s; € V to her target node t; € V. Figure[L.1.1]
shows a network congestion game with three players.

Related Work

Congestion games are a well-studied model for resource allocation among uncoor-
dinated selfish agents. They are widely used to model routing [FPT04], network
design |[ADK™'04|, and load balancing [EDKMO03, [GLMT04]. Rosenthal [Ros73]
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(a) Given the strategies shown in the figure, the delays of players 1, 2, and 3 are 8, 8, and
4, respectively. Both the first and the second player can decrease her delay by changing
her path.

(¢) A Nash equilibrium obtained by letting player 3 play a best response.

Figure 1.1.1: In this example, the delay functions d. are shown in the form a/b,
meaning that d.(1) = a and de(x) = b for x > 1. If b is missing, the delay func-
tion takes value a for all congestions, and edges without without delay functions are
assumed to have delay 0.

shows with a potential function argument that every congestion game possesses
a pure Nash equilibrium. This argument does not only prove the existence of
pure Nash equilibria, but it also shows that if players iteratively play better re-
sponses, they eventually reach an equilibrium after a finite number of steps, re-
gardless of the initial state in which they start out. Fabrikant, Papadimitriou,
and Talwar [FPT04] show, however, that there are congestion games with initial
states from which every better response sequence to an equilibrium has exponen-
tial length. In particular, they show that asymmetric network congestion games
with this property exist. On the positive side, Ieong et al. [IMNT05] show that in
singleton congestion games, in which all of the players’ strategies consist only of
single resources, every best response sequence has polynomial length.
Ackermann, Réglin, and Vécking [ARV06a] extend this result from singleton
to matroid congestion games, that is, if the set of strategies of each player con-
sists of the bases of a matroid over the set of resources, then the lengths of all
best response sequences are polynomially bounded in the number of players and
resources. This result holds regardless of the global structure of the game and for
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any kind of delay functions. They show that the result is tight in the following
sense: any condition on the players’ strategy spaces that yields a subexponential
bound on the lengths of all best response sequences implies that the strategy spaces
are essentially the bases of matroids. In other words, the matroid property is a
necessary and sufficient condition on the players’ strategy spaces for guaranteeing
polynomial time convergence to a Nash equilibrium.

Fabrikant, Papadimitriou, and Talwar [FPT04] observe that the problem of
computing a Nash equilibrium in a congestion game can be phrased as a local search
problem. An instance of a local search problem is given by a set of feasible solutions,
an objective function that assigns a value to each solution, and a neighborhood
for each solution. The goal is to find a local optimum, that is, a solution in whose
neighborhood there is no solution with a better objective value. Given a congestion
game, we consider the set X := 3; x - -+ x %, of strategy combinations as the set of
feasible solutions, and we define that the neighborhood of a strategy combination
S € ¥ consists of all strategy combinations S’ € ¥ that can be obtained from
S by letting one player play a better response. If we take Rosenthal’s [Ros73]
potential function as objective function, this yields a local search problem whose
local optima coincide with the Nash equilibria of the congestion game.

The local search problem obtained this way belongs to the complexity class
PLS (polynomial local search). This class, defined by Johnson, Papadimitriou,
and Yannakakis [JPYS8S]|, contains all local search problems with polynomial time-
searchable neighborhoods. To be more precise, a local search problem belongs to
PLS if it is possible to compute in polynomial time an initial feasible solution, if
the objective function can be evaluated in polynomial time, and if it is possible
to decide in polynomial time whether a given solution is locally optimal or not
and to find a better solution in its neighborhood in the latter case. Fabrikant,
Papadimitriou, and Talwar [FPT04] show that the problem of computing Nash
equilibria of asymmetric network congestion games is PLS-complete. That is, if it
was possible to compute Nash equilibria in polynomial time, then local optima for
all problems in PLS could be found efficiently as well, which is not known to be
the case.

In contrast to the PLS-completeness result, Fabrikant, Papadimitriou, and Tal-
war [FPT04] show that for symmetric network congestion games, Nash equilibria
can be computed in polynomial time by solving a min-cost flow problem. However,
this positive result leaves open the question whether the better or the best response
dynamics reaches an equilibrium quickly in symmetric network congestion games.

Our Results

Unfortunately, the reduction in [FPT04] that shows the PLS-completeness for net-
work congestion games is not very instructive. It is based on a PLS-completeness
result due to Schéffer and Yannakakis [SY91] for positive not-all-equal 3-SAT (Pos-
NAES3SAT), which is a local search version of the satisfiability problem for a re-
stricted class of formulas. The reduction by Schéffer and Yannakakis is, however,
quite involved and, according to Fabrikant, Papadimitriou, and Talwar, possi-
bly the most complex reduction in the literature if one excludes the PCP the-
orem. Their proof for network congestion games completely reworks the PLS-
completeness proof of PosNAE3SAT and even adds some further complications.
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We present an alternative approach for proving PLS-hardness of structured
congestion games that more directly reveals which kind of substructures cause the
trouble. Our approach is based on a very restricted class of congestion games,
which we call threshold congestion games. In a threshold congestion game, the set
of resources is partitioned into two classes, and every player has a unique resource
in the first class that only she can allocate and an arbitrarily fixed subset of
resources in the second class. Every player has only two possible strategies, namely
she can either allocate her private resource in the first class or she can interact
with the other players by allocating the fixed subset of resources in the second
class. Taking the PLS-completeness of PosNAE3SAT for granted, we present an
easy reduction showing that computing Nash equilibria in threshold congestion
games is PLS-complete.

Despite their simple structure, threshold games are a natural and interesting
class of games. Our main interest, however, stems from the fact that threshold
games are a good starting point for PLS-reductions because of their simple struc-
ture. We demonstrate the applicability of our approach by showing that threshold
games can easily be reduced to network congestion games with directed or undi-
rected edges and linear delay functions, to market sharing games, which were
introduced by Goemans et al. [GLMT04] to model non-cooperative content distri-
bution in wireless networks, and to overlay network games. In the last-mentioned
class of congestion games, players have to build a spanning tree on a given subset of
nodes that are (virtually) completely connected on the basis of fixed routing paths
in an underlying communication network. Formal definitions of market sharing
games and overlay network games can be found in Section [2.1.3

Theorem 1.1.1. Computing a pure Nash equilibrium in congestion games of the
following sorts is PLS-complete:

a) network congestion games with (un)directed edges and non-decreasing linear
delay functions

b) market sharing games with polynomially bounded costs
c¢) overlay network games with linear non-decreasing delay functions

Let us remark that all considered PLS-reductions are so-called tight PLS-
reductions, which implies that they do not only prove the PLS-hardness of the
considered classes of games but, in addition, they show that these classes contain
instances of games with initial states from which every better response sequence to
an equilibrium has exponential length. Furthermore, this kind of reduction implies
that it is PSPACE-hard to compute a reachable Nash equilibrium for a given initial
state.

Additionally, we show that, in contrast to the PLS-hardness results, the neg-
ative results for the convergence time of asymmetric network congestion games
directly carry over to the symmetric case.

Theorem 1.1.2. There exists a family of symmetric network congestion games
with initial states from which every better response sequence to a Nash equilibrium
has exponential length.

To the best of our knowledge, this is the first result that separates the class of
congestion games with polynomial convergence time from the class of congestion
games for which equilibria can be computed efficiently.
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1.1.2 Two-Sided Matching Markets

Two-sided matching markets are the second model for resource allocation among
selfish agents that we consider. One main function of many real-life markets is
to match agents of different kinds to one another, for example men and women,
students and colleges [GS62], interns and hospitals [Rot84, [Rot96], and firms and
workers. Gale and Shapley [GS62] introduced the abstract model of two-sided
markets to study these problems. A two-sided market consists of two disjoint
groups of agents X and ), and each agent has preferences about the agents of the
other side and can be matched to one of them. A matching is stable if it does not
contain any blocking pair, that is, a pair of agents from different sides who are
not matched to each other but prefer each other to their current matches. Many
real-life markets lack a central authority to match agents, and hence, we think of
a two-sided market (X,)) as a game G(X,)) among the agents in X'. Each of
these agents can propose to one agent from ), and every agent y € ) is matched
to the most preferred agent from X that proposes to him. Stable matchings in a
two-sided market (X,)) correspond to pure Nash equilibria of the corresponding
game G(X,)), and vice versa. Following the common terminology in two-sided
markets, we call agents from X and Y women and men, respectively. If it is more
appropriate, we also use the terms players and resources to denote agents from X
and Y, respectively. Intuitively, as in congestion games, players compete for the
resources, the main difference being that in two-sided markets every resource can
only be matched to a single player.

Given a matching M and a blocking pair (z,y) € X x ) in M, we say that
the matching M’ is obtained from M by resolving the blocking pair (z,y) if the
following holds: {z,y} € M’, any partners with whom z and y are matched in M
are unmatched in M’, and all other edges in M and M’ coincide. Consider two
agents x € X and y € ). If a blocking pair (z,y) is resolved, we say that x plays
a better response. If there does not exist a blocking pair (x,y’) such that x prefers
y' to y, then we say that x plays a best response when the blocking pair (z,y) is
resolved.

Related Work and Our Results

Besides their theoretical appeal, two-sided matching models have proven useful in
the empirical study of many labor markets such as the National Resident Matching
Program (NRMP) [Rot84]. Gale and Shapley |[GS62] show that regardless of the
preferences of the agents, a stable matching exists in every two-sided market.
Furthermore, they give an algorithm that computes such a matching in polynomial
time. Since the seminal work of Gale and Shapley, there has been a significant
amount of work studying two-sided markets, especially on various extensions of
the basic model like many-to-one markets, in which every player can be matched
to several resources. See for example, the book by Knuth [Knu76], the book by
Gusfield and Irving [GI89], or the book by Roth and Sotomayor [RS90].

In many real-life markets, there is no central authority to match agents, and
agents are self-interested entities. This motivates the study of uncoordinated two-
sided markets, first proposed by Knuth [Knu76]. As discussed above, a two-sided
market can be seen as a game among agents of one side, and the Nash equilibria in
this game correspond to stable matchings, and vice versa. In such uncoordinated
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markets, it is an interesting question whether players reach a stable matching.
In order to answer this question, Knuth [Knu76|] studies the better response dy-
namics, in which players consecutively play better responses. He shows that this
dynamics can cycle. Hence, in contrast to congestion games, two-sided markets
are not potential games and it might happen that players never reach a stable
matching if they play certain better responses in a certain order. Since there is no
central coordination that tells the players in which order they should change their
strategies, Knuth proposed to study the following random better response dynam-
ics: at each step, a blocking pair is picked uniformly at random from the set of
all blocking pairs and resolved. Answering a question posed by Knuth, Roth and
Vande Vate [RV90] prove that from every matching, there exists a better response
sequence to a stable matching. This implies that the random better response
dynamics eventually reaches a stable matching with probability 1.

Roth and Vande Vate, however, do not address the question of convergence
time. We demonstrate that coordination is necessary by constructing examples on
which the random better response dynamics needs with high probability exponen-
tially many steps to reach an equilibrium.

Theorem 1.1.3. There exists a family of two-sided markets with initial matchings
from which the random better response dynamics needs in expectation and with high
probability exponentially many steps to reach a stable matching.

Both Knuth’s cycle [Knu76] and Roth and Vande Vate’s proof [RV90] are only
valid for the better response dynamics but not for the best response dynamics. We
strengthen both results to best responses.

Theorem 1.1.4. There exists a two-sided market in which the best response dy-
namics can cycle, but for every two-sided market with n women and m men and
every matching M, there exists a sequence of at most 2nm best responses starting
i M and leading to a stable matching.

Theorem implies that the random best response dynamics, in which at
each point in time a player is picked uniformly at random and allowed to play a
best response if she can improve, converges to a stable matching with probability 1.
Again, we are interested in the convergence time and show that also for the best
response dynamics coordination is necessary.

Theorem 1.1.5. There exists a family of two-sided markets with initial matchings
from which the random best response dynamics needs in expectation and with high
probability exponentially many steps to reach a stable matching.

This lower bound raises the question whether one can find interesting classes
of two-sided markets for which the (expected) convergence time is polynomial. In
this regard, we consider the natural class of correlated two-sided markets, which are
inspired from real-life one-sided market games in which players have preferences
about a set of resources, and the preferences of resources are correlated with the
preferences of players. In a correlated two-sided market, there is a payoff associated
with every possible pair from X x ). Both players and resources are interested in
maximizing their payoff, that is, an agent i prefers an agent j to an agent j’ if the
payoff associated with pair (7, j) is larger than the payoff associated with pair (7, ).
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This special class of two-sided markets is also studied by Abraham et al. [ALMOQ7]
who consider complexity related questions for the roommates problem, in which
one looks for a stable matching in a graph that is not necessarily bipartite. We
obtain the following result for correlated two-sided markets.

Theorem 1.1.6. Correlated two-sided markets are potential games and the ran-
dom best response dynamics reaches in expected polynomial time a stable matching.

We extend this result to many-to-one two-sided markets in which every player
can be matched to a subset of resources [RS90]. These markets are extensively
studied in labor markets [KC82, [RS90, [F1le03l [EO06] in which an employer is in-
terested in hiring a set of employees. Each employer has some preferences about
subsets of employees, and each employee has preferences about the employers.
We consider matroid two-sided markets in which the feasible subsets of employees
for an employer are independent sets of a matroid and essentially extend Theo-
rem to that case. Two-sided matroid markets arise naturally if, for example,
every employer is interested in hiring a fixed number of workers or if the workers
can be partitioned into different classes and a certain number of workers from each
class is to be hired. Appendix [A] contains a brief introduction to matroids.

1.1.3 Congestion Games with Priorities

We conclude the part about resource allocation among selfish agents by introducing
a natural class of resource sharing games that extends both congestion games and
two-sided markets. We prove several results for this model that unify the theory
of these two special cases.

One drawback of the standard model of congestion games is that resources do
not have any preferences about the players. In typical load balancing applications,
however, different jobs have different priorities, and depending on the policy, jobs
with a low priority are stopped or slowed down when jobs with higher priorities
are present. We introduce congestion games with priorities to model the scenario
in which a job can prevent jobs with lower priorities from being processed. In
our model, each resource can partition the set of players into classes of different
priorities. Aslong as a resource is only allocated by players with the same priority,
these players incur a delay depending on the congestion, as in standard congestion
games. But if players with different priorities allocate a resource, only players with
the highest priority incur a delay depending on the number of players with this
priority, and players with lower priorities incur an infinite delay. Intuitively, they
are displaced by the players with the highest priority. This model is applicable if
every player controls a stream of jobs rather than only a single one. In the latter
case, it might be more reasonable to assume that jobs with lower priorities incur
a large but finite delay.

Formally, the games that we consider are congestion games as defined in Sec-
tion in which each resource r € R assigns a priority or rank rk,(i) to every
player i € N. For a state S, let rk,(S) = max;. g, rk,(¢) denote the rank of the
resource . We say that player ¢ allocates resource r if r € S;, and we say that
player i is assigned to resource r if r € S; and rk, (i) = rk,(5). We define n}(S)
to be the number of players that are assigned to resource r, that is, the number
of players i with r € S; and rk, (i) = rk,(S). The delay that an assigned player 4
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incurs on r is d,(n;(S)). Players who allocate a resource but are not assigned to
it incur an infinite delay. We say that the priorities are consistent if the priorities
assigned to the players coincide for all resources.

A well-studied extension of standard congestion games are player-specific con-
gestion games, in which different players can have different delay functions for
the same resource. To be precise, every player ¢ € N has her own delay function
d.: N — N for each resource r € R, and the delay that player i € A incurs in
state S is defined to be )°, .o dL(n,(S5)). In its most general form, our model also
covers player-specific congestion games with priorities.

Interestingly, our model of player-specific congestion games with priorities does
not only extend congestion games but also the model of two-sided matching mar-
kets. In the same way as it is in many situations not realistic to assume that in
congestion games the resources have no preferences about the players, it is in two-
sided markets often unrealistic to assume that the preference lists of the resources
are strict. Our model of player-specific congestion games with priorities can also
be seen as a model of two-sided markets with ties in which several players can be
assigned to one resource. If different players propose to a resource, only the most
preferred ones are assigned to it. If the most preferred player is not unique, several
players share the payoff of the resource. Such two-sided markets correspond to
our model of congestion games with priorities, except that players are now inter-
ested in maximizing their payoffs instead of minimizing their delays, which does
not affect our results.

One application of our model are markets into which different companies can
invest. As long as the investing companies are of comparable size, they share the
payoff of the market, but large companies can utilize their market power to elim-
inate smaller companies completely from the market. Player-specific congestion
games and two-sided markets are the special cases of our model in which all players
are assigned the same priority or distinct priorities, respectively. In the following,
we use the terms two-sided market with ties and player-specific congestion game
with priorities interchangeably.

Previous Work and Our Results

Milchtaich [Mil96] introduces player-specific congestion games. He shows that,
like two-sided markets, player-specific singleton congestion games are not poten-
tial games but that they possess pure Nash equilibria that can be computed in
polynomial time. His proof is constructive in the sense that it also shows that
from every state there is a polynomially long sequence of better responses to a
Nash equilibrium. Ackermann, Roglin, and Vécking [ARVOGb|] extend these re-
sults to player-specific matroid congestion games, in which the strategy space of
each player consists of the bases of a matroid.

Two-sided markets with ties are extensively studied in the literature (see, for
example, the aforementioned books [Knu76l [GI89, [RS90] or [IMMM99]). In the
models studied in the literature, ties are usually somehow broken, that is, despite
ties in the preference lists, every resource can be assigned to at most one player.
Hence, these models differ significantly from our model.

Motivated by the application of congestion games to load balancing, we mainly
consider congestion games in which each player has to choose exactly one resource
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to allocate, namely one server on which her job is to be processed. We show
that singleton congestion games with priorities are potential games, implying that
uncoordinated players who iteratively play better responses eventually reach a
pure Nash equilibrium. If the priorities of the resources are consistent, then we
even obtain polynomial-time convergence to a Nash equilibrium.

Theorem 1.1.7. Singleton congestion games with priorities are potential games.
If the priorities are consistent, the random better response dynamics reaches a
Nash equilibrium in polynomial time in expectation.

For player-specific congestion games with priorities, we show that pure Nash
equilibria exist that can be computed in polynomial time. The proof of this result
unifies arguments for player-specific congestion games [ARV06Dh] and for two-sided
markets [GS62].

Theorem 1.1.8. FEvery player-specific singleton congestion game with priorities
possesses a pure Nash equilibrium that can be computed in polynomial time.

Additionally, we show that this result can also be extended to player-specific
matroid congestion games with priorities.

1.2 Pareto-Optimal Solutions

People, companies, and other economic entities face decisions every day. Many of
these decisions cannot be formulated as combinatorial optimization problems in
the usual sense because there are several conflicting objectives to be optimized and
one has to find an appropriate trade-off rather than a solution that optimizes a
single criterion. Of course, for most problems the notion of an “appropriate trade-
off” is hard to formalize and often there is no consensus on how different criteria
should be traded off against each other. However, there is little disagreement
that a trade-off can only be reasonable if no criterion can be improved without
deteriorating at least one of the other criteria. Trade-offs with this property are
called efficient or Pareto-optimal and they play a crucial role in multi-criteria
decision making as they help to filter out unreasonable solutions.

We focus on the study of integer optimization problems in which there are
two criteria, say cost and weight, that are to be minimized. An instance of such a
problem is described by a set S C D" of feasible solutions and by the two objective
functions cost ¢: § — R and weight w: § — R, where n denotes the number of
integer variables and D C Z denotes a finite set of integers. The assumption that
both criteria are to be minimized is without loss of generality as our results are not
affected by a change of the optimization direction of one of the objective functions.
In this setting, a solution is Pareto-optimal if there does not exist another solution
with at most the same cost and at most the same weight and with one of these
inequalities being strict. We call the set of Pareto-optimal solutions the Pareto set
and we assume that it is reduced, that is, if there are two Pareto-optimal solutions
with the same cost and the same weight, then the Pareto set contains only one of
them. Figure shows an example for a Pareto set.

This framework covers a very broad class of bicriteria optimization problems.
Already in the binary case (i.e., D = {0,1}), it covers naturally many standard
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Figure 1.2.1: The solutions from S are represented by dots. Pareto-optimal solu-
tions are black, and dominated solutions are gray.

problems like the bicriteria shortest path problem and the bicriteria spanning tree
problem by introducing a decision variable for each edge and by letting S encode
the set of all paths or spanning trees, respectively. Another important problem
that can be formulated in this framework is the knapsack problem, in which a
capacity t and set of n items with profits pi,...,p, and weights wy,...,w, are
given. Usually, the goal is to find the most profitable subset of the items whose
total weight is at most ¢, but if one ignores the capacity and tries to maximize
the profit and to minimize the weight, the knapsack problem becomes a bicriteria
problem. The general case, in which D is an arbitrary finite subset of Z, covers, for
example, the bicriteria network flow problem and the bounded knapsack problem,
in which there are several identical copies of each item.

A well-studied way to formalize the notion of “most appropriate trade-off” is
to specify a function that combines the objectives into a single criterion. For an
instance of a bicriteria integer optimization problem, we can, for example, specify
a function f: R? — R that assigns to each solution = € S a value f(c(z), w(z)),
which is without loss of generality to be minimized. Under the mild assumption
that the function f is non-decreasing in both components, the function f is min-
imized by (at least) one of the Pareto-optimal solutions. Hence, a possible and
indeed very common approach to find a solution that optimizes such a function
f is to generate the set of Pareto-optimal solutions and to select the one with
minimum value. For a bicriteria problem II and a function f, we call the resulting
single-criterion problem the f-II problem.

1.2.1 Smoothed Analysis

Even though generating the Pareto set is of great interest in many scenarios and
widely used in practice, this approach fails to yield reasonable results in the worst
case because even integer optimization problems with a simple combinatorial struc-
ture (including all aforementioned examples) can have exponentially many Pareto-
optimal solutions. In practice, however, generating the Pareto set is often feasi-
ble because typically the number of Pareto-optimal solutions does not attain its
worst-case bound. The discrepancy between practical experience and worst-case
results motivates the study of the number of Pareto-optimal solutions in a more
realistic input model. One possible approach is to study the average number of



1.2. Pareto-Optimal Solutions 15

Pareto-optimal solutions rather than the worst-case number. In order to analyze
the average, one has to define a probability distribution on the set of instances
with respect to which the average is taken. In most situations, however, it is not
clear how to choose a probability distribution that reflects typical inputs. In or-
der to bypass these problems, Spielman and Teng [ST04] introduced the notion of
smoothed analysis. They consider a semi-random input model in which an adver-
sary specifies an input that is subsequently slightly perturbed at random. Often
semi-random input models are more realistic than worst-case or average-case in-
put models because the adversary can specify an arbitrary input with a certain
structure and the subsequent perturbation generates an instance that is still close
to the adversarial one but additionally possesses a small amount of randomness.

Inspired by Spielman and Teng’s model of smoothed analysis, we consider a
semi-random input model for bicriteria integer optimization problems. In this
model, an adversary can choose an arbitrary set S C D™ of feasible solutions, an
arbitrary weight function w: & — R and an arbitrary linear cost function ¢: § — R
of the form c(z) = cix1 + -+ - + cpxy, With ¢q, ..., ¢, € [—1,1]. In the following, we
refer to the coefficients ¢1, . .., ¢, as costs. The restriction to linear cost functions is
not unrealistic as in most applications (including all aforementioned examples) at
least one objective function is linear. Furthermore, the restriction to the interval
[—1, 1] can simply be achieved by scaling the coefficients appropriately. The weight
function and the set of feasible solutions are not perturbed, which is important
as the set & might encode the combinatorial structure of the problem (e.g., S
can encode the set of spanning trees of some graph). Only the cost function is
randomly perturbed by adding an independent Gaussian random variable with
mean 0 and standard deviation o to each cost ¢;.

The standard deviation o can be seen as a parameter measuring how close the
analysis is to a worst-case analysis: the smaller o is chosen, the smaller is the
influence of the perturbation and hence, the closer is the analysis to a worst-case
analysis. Our probabilistic analysis is not restricted to Gaussian perturbations
but is much more general. In fact, it covers arbitrary probability distributions
with bounded density functions and finite absolute mean values. In particular, if
one is interested in obtaining a positive domain for the costs, one can restrict the
adversary to costs ¢; € [0,1] and perturb them by adding independent random
variables that are uniformly distributed over some interval [0, a]. For such uniform
distributions, the standard deviation ¢ is proportional to the interval length a,
and choosing a = v/12- ¢ yields a standard deviation of o. For the sake of a simple
presentation, we restrict ourselves to Gaussian and uniform random variables in
this introduction.

We analyze the expected number of Pareto-optimal solutions and algorithms
for enumerating the Pareto set in the semi-random input model described above.
One crucial parameter that appears in the bound on the number of Pareto-optimal
solutions and in the bounds on the running times of the algorithms is the standard
deviation . We have argued above that one can interpolate between worst-case
and average-case analysis by adjusting this parameter, and hence, it is not surpris-
ing that the expected number of Pareto-optimal solutions and the expected running
times of the algorithms increase when o becomes smaller. However, the bounds
we prove grow only polynomially in the input size and in ¢—'. This implies that
the instances with a large number of Pareto-optimal solutions are isolated peaks
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and very fragile to random influences. Hence, it is unlikely that such instances
occur in practice. Before we present our results in more detail, we discuss related
work in the field of multi-objective optimization and smoothed analysis.

1.2.2 Related Work

Multi-objective optimization is a very active and well-studied research area, and
hence, it is by far not possible to present a complete overview of the existing
literature. For this, we refer the reader to the book by Ehrgott [Ehr00] and the
survey collection by Ehrgott and Gandibleux [EG02]. In the following, we first give
an overview of the literature on multi-objective optimization that is most relevant
to our research, and then we discuss related work in the area of smoothed analysis.

Multi-Objective Optimization

There exists a vast body of literature that focuses on multi-objective optimiza-
tion. In particular, many algorithms for generating the Pareto set of various op-
timization problems such as the (bounded) knapsack problem [NUG9, KW0Q], the
bicriteria shortest path problem [CMB85, [Han80, [SA00], and the bicriteria network
flow problem [Ehr99, MG9§| have been proposed. Since for all these problems the
number of Pareto-optimal solutions can be exponential (see, e.g., [Ehr00]), none of
these algorithms runs in polynomial time in the worst case. In practice, however,
generating the Pareto set is tractable in many situations. For instance, Miiller-
Hannemann and Weihe [MHWOI] study experimentally the number of Pareto-
optimal solutions in multi-criteria shortest path problems. They consider exam-
ples that arise from computing the set of best train connections (in view of travel
time, fare, and number of train changes) and conclude that in this application
scenario generating the complete Pareto set is tractable even for large instances.
One way of coping with the bad worst-case behavior is to relax the require-
ment of finding the complete Pareto set. A solution x is e-dominated by another
solution o’ if ¢(a’)/c(x) < 14 and w(z')/w(z) < 1+ e. We say that P is an
e-approzimation of a Pareto set P if for any solution x € P, there is a solution
2’ € P, that e-dominates it. In his pioneering work, Hansen [Han80] presents an
approximation scheme for computing e-approximate Pareto sets of the bicriteria
shortest path problem. Papadimitriou and Yannakakis [PY00] show that for any
Pareto set P, there is an e-approximation of P with polynomially (in the input
size and 1/¢) many points. Furthermore, they define the gap version of a multi-
criteria optimization problem with d objectives as follows: given an instance and
a vector b € R?, either return a solution whose objective vector dominates b or
report (correctly) that there does not exist any solution whose objective vector
is better than b by more than a (1 + ¢) factor in all coordinates. They show
that an FPTAS for approximating the Pareto set of a multi-criteria optimization
problem exists if and only if the gap version of the problem can be solved in poly-
nomial time. In particular, this implies that if the exact single-criterion version of
a problem (i.e., the question “Is there a solution with weight exactly x?”) can be
solved in pseudopolynomial time, then its multi-criteria version admits an FPTAS
for approximating the Pareto set. There are pseudopolynomial time algorithms
for the exact versions of the spanning tree problem [BP87], the shortest path
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problem [PY82], and the perfect matching problem [MVV87], and hence, for the
multi-criteria versions of these problems FPTAS for approximating the Pareto set
exist. Vassilvitskii and Yannakakis [VY05] show how to compute e-approximate
Pareto sets whose size is at most three times as large as the smallest such set
for bicriteria problems whose gap versions can be solved in polynomial time. Di-
akonikolas and Yannakakis [DY07] improve this factor to two and show that this
is the best possible that can be achieved in polynomial time.

A lot of research has been conducted on f-II problems. For instance, it is well
known that if f is a concave function, an optimal solution of the f-II problem can
be found on the border of the convex hull of the solutions [HT90]. For some prob-
lems, there are algorithms generating this set of solutions. In particular, for the
spanning tree problem it is known that there are only polynomially many solutions
on the border of the convex hull [Dey97], and efficient algorithms for enumerating
them exist [AEGH98|. Thus, there is a polynomial-time algorithm for solving the
f-spanning tree problem for any concave function f. Katoh [Kat92] describes how
one can use f-spanning tree problems with concave objective functions to solve
many other problems in combinatorial optimization. For instance, a well-studied
application is the minimum cost reliability spanning tree problem, where one is
interested in finding a spanning tree minimizing the ratio of cost to reliability.
It is also known how to solve the f-shortest path problem for functions f being
both pseudoconcave and pseudoconvex in polynomial time [Hen86]. Tsaggouris
and Zaroliagis [TZ04] investigate the non-additive shortest path problem, which
is to find a path P minimizing f.(c(P)) + fw(w(P)) for some convex functions f.
and f,. This problem arises as core problem in different applications, e.g., in the
context of computing traffic equilibria. They develop exact algorithms with expo-
nential running time using a Lagrangian relaxation. Ackermann et al. [ANRV07]
show that the f-shortest path, the f-spanning tree, and the f-perfect matching
problem are NP-hard even for simple polynomial functions f. They show that an
FPTAS for approximating the Pareto set can be transformed into an FPTAS for
the f-II problem if f has at most polylogarithmic elasticity, which includes, for
instance, polynomials and functions of the form f(c, w) = cPoWos(e) 4 ypolylog(w)
Furthermore, they show that the restriction to polylogarithmic elasticity is neces-
sary.

Smoothed Analysis

In a seminal paper, Spielman and Teng [ST04] introduce the notion of smoothed
analysis and analyze the running time of the simplex algorithm for solving linear
programs in this framework. For most deterministic pivot rules that have been
suggested, examples are known showing that in the worst case, the simplex algo-
rithm can take an exponential number of steps, but the simplex algorithm is still
one of the most competitive algorithms for solving linear programs in practice.
It is fast and reliable even for large-scale instances and for the pivot rules that
have been shown to require an exponential number of iterations in the worst case.
Examples on which the simplex algorithm needs many iterations occur only very
rarely in practice. In Spielman and Teng’s semi-random model, first an adversary
specifies an arbitrary linear program in which the coefficients in the constraint ma-
trix and the thresholds are chosen from the interval [—1,1]. In the second step of
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their input model, the coefficients in the constraint matrix and the thresholds are
perturbed by adding an independent Gaussian random variable with mean 0 and
standard deviation ¢ to each of them. Spielman and Teng show that the expected
running time of the simplex algorithm is polynomial in the input size and o~! for
the shadow-vertex pivot rule.

Since the invention of smoothed analysis in 2001, many different results on the
smoothed analysis of algorithms have been obtained, including improved analyses
of the simplex algorithm and results on different algorithms for solving linear
programs, local search algorithms, various discrete optimizations problems, and
the competitive ratio of online algorithms. An overview of these results can be
found on the smoothed analysis homepage [Spi].

Most relevant to our research are two results by Beier and Vocking. In the
first article [BV04], they analyze the expected number of Pareto-optimal solutions
for binary optimization problems. They consider the aforementioned semi-random
model with D = {0,1} and show that the expected number of Pareto-optimal
solutions is bounded from above by O(n*/c), no matter how S and w are chosen.
This result implies that the Nemhauser/Ullmann algorithm [NUG69], which solves
the knapsack problem by first enumerating the Pareto set and then selecting the
most profitable Pareto-optimal solution satisfying the capacity constraint, has a
polynomial expected running time of O(n°/c). Furthermore, they present a lower
bound of Q(n?) on the expected number of Pareto-optimal solutions for profits
that are chosen uniformly at random from the interval [0, 1].

In the second article [BV06], Beier and Vocking analyze the smoothed com-
plexity of binary optimization problems. They consider optimization problems
with one objective function ¢: § — R in which the set of feasible solutions is given
as SNB1N...N By, where S C {0,1}" denotes a fixed ground set and B; denotes
a halfspace induced by a linear constraint of the form w; 1z1 + -+ + w; nxn < ;.
Similar to the aforementioned model, it is assumed that the coefficients w; ; are
perturbed by adding independent random variables to them. This model cov-
ers, for example, the constrained shortest path problem, in which one looks for
the cheapest path whose weight lies below a given threshold. In this example, S
encodes the set of all paths, which is not affected by the perturbation, and B;
encodes all subsets of edges whose total weight lies below the threshold. Based
on the probabilistic analysis of certain structural properties, Beier and Vocking
show that a binary optimization problem in this form has polynomial smoothed
complezity if and only if there exists a pseudopolynomial time algorithm (w.r.t.
the coefficients w; ;) for solving the problem. This characterization is extended
to the case of integer optimization problems, where D C Z is a finite set of inte-
gers, by Roglin and Vocking [RV07]. The term polynomial smoothed complexity
is defined analogously to the way polynomial complexity is defined in average-case
complexity theory [Wan97], adding the requirement that the running time should

be polynomially bounded not only in the input size but also in o~ .

1.2.3 Owur Results

We present a new approach for bounding the expected number of Pareto-optimal
solutions for bicriteria integer optimization problems. This approach yields the
first bounds for integer optimization problems and improves the known bound
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for the binary case significantly. In the following, we assume that the perturbed
coefficients are chosen from the interval [—1,1] by the adversary and that they
are perturbed by adding independent Gaussian or uniform random variables with
constant expected absolute value and standard deviation at least o. For the sake
of simplicity, we do not present our results in their most general form in this
introduction. In fact, our analysis covers arbitrary probability distributions with
bounded density functions and finite expected absolute values and arbitrary finite
sets D C Z.

Theorem 1.2.1. Let D = {0,...,k — 1} and let S € D" and w: S — R be
chosen arbitrarily. If the costs are randomly perturbed, the expected number of
Pareto-optimal solutions is bounded from above by O(n*k?log(k)/o).

Additionally, we prove two lower bounds on the expected number of Pareto-
optimal solutions.

Theorem 1.2.2. For D ={0,...,k—1}, there exist instances of bicriteria integer
optimization problems in which the expected number of Pareto-optimal solutions is
Q(n%k?) if the costs are chosen uniformly at random from the interval [—1,1].

The proof of this lower bound uses crucially the fact that the adversary can
choose arbitrary weight functions w: & — R. If we restrict the adversary to linear
weight functions, the lower bound becomes weaker.

Theorem 1.2.3. For D = {0,...,k—1}, there exist instances of bicriteria integer
optimization problems with linear weight functions in which the expected number
of Pareto-optimal solutions is Q(n’klogk) if the costs are chosen uniformly at
random from the interval [—1,1].

For the binary case D = {0,1}, the upper bound in Theorem simplifies
to O(n?/0), which improves the previously known bound by a factor of ©(n?) and
matches the lower bound due to Beier and Vocking [BV04] in terms of n. Hence,
our method yields tight bounds in terms of n and almost tight bounds in terms of
k for the expected number of Pareto-optimal solutions, and thereby even simplifies
the proof.

Applications of the Results

Before we describe the algorithmic applications of our results, we have to specify
how the perturbed numbers in the input are encoded. Since the distributions are
continuous, these numbers are irrational with probability 1. In the following, we
assume that the bits after the binary point can be accessed by asking an oracle in
time O(1) per bit. The bits are revealed one by one from left to right. Instead
of considering this oracle model, one can also quantize the distributions because
our results are not significantly affected if every random number is rounded to the
next number that can be represented by a polynomial number of bits.

The Nemhauser/Ullmann algorithm solves the knapsack problem by enumer-
ating all Pareto-optimal solutions [NUG9]. Its running time on an instance with
n items is ©(>°" | ¢;), where ¢; denotes the number of Pareto-optimal solutions
of the knapsack instance that consists only of the first ¢ items. Using Beier and
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Vocking’s [BV04] upper bound on the expected number of Pareto-optimal solu-
tions yields a bound of O(n’/a) for the expected running time of this algorithm
on semi-random instances in which the profits or weights are randomly perturbed.
Based on our improved bound on the expected number of Pareto-optimal solutions,
we conclude the following corollary.

Corollary 1.2.4. For semi-random knapsack instances in which the profits or
weights are perturbed, the expected running time of the Nemhauser/Ullmann algo-
rithm is O(n3 /o).

For uniformly distributed profits, Beier and Vocking present a lower bound
on the expected running time of Q(n?). Hence, our upper bound on the expected
running time of the Nemhauser /Ullmann algorithm is tight in terms of the number
of items n.

In the bounded knapsack problem, a number k € N and a set of n items
with profits and weights are given. It is assumed that k instances of each of
the n items are given. An instance of the bounded knapsack problem with n
items can be transformed into an instance of the (binary) knapsack problem with
O(nlog (k + 1)) items [KPP04]. Using this transformation, the bounded knapsack
problem can be solved by the Nemhauser/Ullmann algorithm in running time

@(Z?:hig (k+1) qi), where ¢; denotes the number of Pareto-optimal solutions of the
binary knapsack instance that consists only of the first ¢ items. Based on our
results on the expected number of Pareto-optimal solutions, we obtain the following
corollary.

Corollary 1.2.5. The expected running time of the Nemhauser/Ullmann algo-
rithm on semi-random bounded knapsack instances in which the profits or weights
are perturbed is bounded from above by O(n3k?(log? (k + 1)) /o) and bounded from
below by Q(n’klog? (k + 1)).

Different algorithms have been proposed for enumerating the Pareto set in
bicriteria shortest path problems [CMS85| [SAO0]. Beier [Bei04] shows that the
expected running time of a modified version of the Bellman /Ford algorithm [CMS&5]
is O(nm?® /o) for graphs with n nodes and m edges. Based on our improved analysis
of the expected number of Pareto-optimal solutions, his proof yields the following
corollary.

Corollary 1.2.6. For semi-random bicriteria shortest path problems in which one
objective function is linear and its coefficients are perturbed, the expected running
time of the modified Bellman,/Ford algorithm is O(nm? /o)

Enumeration of the Pareto Set

For certain problems such as the bicriteria spanning tree problem, there are no
algorithms known for enumerating the Pareto set efficiently with respect to its
size. We present a method that allows us to enumerate the set of Pareto-optimal
solutions for semi-random inputs with a small failure probability for all problems
for which this set can be enumerated in pseudopolynomial time. Together with
the bound on the expected number of Pareto-optimal solutions, this result yields



1.2. Pareto-Optimal Solutions 21

heuristics with polynomial running time and small failure probability for enu-
merating the set of Pareto-optimal solutions for semi-random instances of these
problems. Our approach works if the domain is binary (i.e., D = {0, 1}), if both
the cost function and the weight function are linear with perturbed coefficients,
and if all weights are non-negative.

Theorem 1.2.7. Let II be a bicriteria binary optimization problem and assume
that both the weight and the cost function are linear. If there exists a pseudopoly-
nomial time (with respect to weights and costs) algorithm for generating the re-
duced Pareto set of 11, then there exists an algorithm for generating the Pareto set
of II on semi-random inputs with failure probability at most p and running time
poly(N,o=1, p~1), where N denotes the input size.

It can easily be seen that for any bicriteria problem II, a pseudopolynomial
algorithm for the exact and single objective version of II can be turned into an
algorithm with pseudopolynomial worst-case complexity for generating the Pareto
set. Therefore, in the smoothed model, there exists a polynomial-time algorithm
for enumerating the Pareto set of II with small failure probability if there exists
a pseudopolynomial algorithm for the exact and single objective version of II.
Furthermore, given the exact Pareto set for a problem II, one can solve the f-II
problem for any non-decreasing function f exactly. Thus, in our semi-random
model, we can, for example, find spanning trees that minimize functions that are
hard to approximate within any factor in the worst case.

Smoothed Complexity of Integer Programming

In [RVOT7] we show that an integer optimization problem has polynomial smoothed
complexity if and only if there exists a pseudopolynomial time algorithm for solving
the problem. To be more precise, we consider integer optimization problems in
which an objective function ¢: & — R is to be minimized over a feasible region
that is defined as the intersection of a fixed ground set S C D" with halfspaces
Bi,...,B, that are induced by m linear constraints of the form w; 1 + --- +
Wi nTn < t;, where the w; ; are independently perturbed by adding Gaussian or
uniformly distributed random variables with standard deviation o to them. It
is shown that an algorithm whose worst-case running time is pseudopolynomial
with respect to the absolute values |w; ;| of the coefficients can be turned into
an algorithm with polynomial smoothed complexity. This analysis is based on
the probabilistic analysis of certain structural properties of semi-random integer
optimization problems. Based on the upper bound on the expected number of
Pareto-optimal solutions, this analysis can be significantly improved and simplified.

The term polynomial smoothed complexity is defined such that it is robust
under different machine models analogously to the way polynomial average-case
complexity is defined [BV06, [Wan97]. One disadvantage of this definition is that
polynomial smoothed and average-case complexity do not imply expected poly-
nomial running time. For the binary case, it is shown [BV06] that problems
that admit a pseudolinear algorithm, that is, an algorithm whose running time is
bounded by O(poly(N) - W), where N denotes the input size and W the largest
coefficient |w; ;| in the input, can be solved in expected polynomial time in the
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smoothed model. Based on the improved analysis of the aforementioned structural
properties, we generalize this result to the integer case.

Theorem 1.2.8. FEvery integer optimization problem that can be solved in time
O(poly(N) - W), where N denotes the input size and W = max; ; |w; ;|, admits
an algorithm with expected polynomial (in N and o~') running time for perturbed
instances, in which an independent Gaussian or uniformly distributed random vari-
able with standard deviation o is added to each coefficient w; ;.

1.3 Local Optima

In the last part of this thesis, we turn our attention back to classical combinatorial
optimization problems in which decisions are made by a single decision maker
and in which there is only one objective function to be optimized. Even without
the complications of selfish agents and multiple objectives, many combinatorial
optimization problems that are relevant for practical applications cannot be solved
efficiently on large-scale instances, unless P = NP. The notion of NP-hardness is
a worst-case measure, and hence, it sometimes yields overly pessimistic results, as
already discussed in Section for the number of Pareto-optimal solution. Many
NP-hard combinatorial optimization problems are, however, not only hard in the
worst case but also on typical instances. For example, for the important and
well-studied traveling salesperson problem (TSP), no algorithms are known that
are efficient on large-scale instances that occur in practical applications. For such
problems, one has to relax the requirement of finding an optimal solution and one
has to apply different solution concepts.

A very common way to deal with NP-hard optimization problems is to compute
solutions that are only approximately optimal. An algorithm is said to guaran-
tee an approximation ratio of « if it computes on any instance a solution whose
value differs from the optimal value by a factor of at most o. Approximation algo-
rithms have been studied extensively in the theory of combinatorial optimization
(see, e.g., [Vaz04]) and many breakthroughs have been achieved. However, for
various problems like the TSP it turned out that the approximation algorithms
that yield the best performance in theory are clearly outperformed in practice by
algorithms with worse approximation and running time guarantees. The reason
for this discrepancy is that also the theory of approximation algorithms is based
on a worst-case notion, which is too pessimistic for many algorithms.

In practice, local search is a very important technique for designing approxi-
mation algorithms. Local search was introduced in the late 1950s for the TSP and
is based on a very simple idea: start with an arbitrary solution and improve this
solution consecutively until a solution is reached that cannot be improved further
by a local modification. To be more precise, given an instance I of a combinatorial
optimization problem II, we associate with every feasible solution = € S(I) a set
N(I,z) C S(I) of solutions that can be reached from z by a local modification.
By this, we turn II into a local search problem as defined in Section and the
solutions that cannot be improved further by local modifications are exactly the lo-
cal optima. Of course, the definition of local modification is problem-specific, and
even for a single problem, there are usually several reasonable ways to define local
modifications. Many experimental studies for different problems show that local
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Figure 1.3.1: An improving 2-change: the edges {u1,u2} and {vy,vs} are replaced
by the edges {u1,v1} and {ug,va}.

search is a robust and powerful tool for obtaining good approximations quickly if
the notion of local modification is defined in the right way. For these problems,
local optima are a solution concept that forms a good compromise between quality
and efficiency.

We study 2-Opt, a local search algorithm for the traveling salesperson problem,
because the TSP is one of the best-studied combinatorial optimization problems
and local search is particularly successful for this problem. In an instance of the
TSP, we are given a set of vertices and for each pair of distinct vertices a distance.
The goal is to find a tour of minimum length that visits every vertex exactly once
and returns to the initial vertex at the end. The 2-Opt algorithm is probably the
most basic local search heuristic for the TSP. It starts with an arbitrary initial
tour and incrementally improves this tour by making successive improvements that
exchange two of the edges in the tour with two other edges. More precisely, in
each improving step the 2-Opt algorithm selects two edges {u1,u2} and {v1,va}
from the tour such that wj,us,v1,ve are distinct and appear in this order in the
tour, and it replaces these edges by the edges {ui,v1} and {ug, v2}, provided that
this change decreases the length of the tour (see Figure for an illustration).
The algorithm terminates in a local optimum in which no further improving step
is possible. We use the term 2-change to denote a local improvement made by
2-Opt.

1.3.1 Related Work

The idea of using local search for the TSP dates back to the late 1950s. In 1958
Croes [Cro58] and Bock [Boch8] suggested variants of 2-Opt and 3-Opt, respec-
tively. After that, a lot of research has been conducted in this area and different
local search algorithms for the TSP have been suggested and experimentally evalu-
ated. For more details, we refer the reader to a survey article by Johnson and Mc-
Geoch [JM97]. Nowadays, local search is applied to a wide range of problems like,
e.g., scheduling [AGP97], graph partitioning [KL.70], and pattern matching [RLO1].

Despite many theoretical analyses and experimental evaluations of the TSP,
there is still a considerable gap between the theoretical results and the experimen-
tal observations. One important special case is the Fuclidean TSP in which the
vertices are points in R? for some d € N and the distances are measured according
to the Euclidean metric. This special case is known to be NP-hard in the strong
sense [Pap77], but it admits a polynomial time approximation scheme (PTAS),
shown independently in 1996 by Arora [Aro98] and Mitchell [Mit99]. These ap-
proximation schemes are based on dynamic programming. The most successful
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algorithms on practical instances, however, rely on the principle of local search.
The 2-Opt heuristic performs amazingly well on real-world Euclidean instances
like, e.g., the ones in the well-known TSPLIB [Rei91]. Usually the 2-Opt heuristic
needs a clearly subquadratic number of improving steps until it reaches a local op-
timum and the computed solution is within a few percentage points of the global
optimum [JM97].

There are numerous experimental studies on the performance of 2-Opt. How-
ever, the theoretical knowledge about this heuristic is still very limited. Let us
first discuss the number of local improvement steps made by 2-Opt before it finds
a locally optimal solution. When talking about the number of local improvements,
it is convenient to consider the transition graph. The vertices in this graph corre-
spond to the possible tours and an arc from a vertex v to a vertex u is contained
if w is obtained from v by performing an improving 2-Opt step. On the positive
side, van Leeuwen and Schoone consider a 2-Opt variant for the Euclidean plane
in which only steps are allowed that remove a crossing from the tour. Such steps
can introduce new crossings, but van Leeuwen and Schoone [vLS81] show that
after O(n?) steps, 2-Opt has found a tour without any crossing. On the negative
side, Lueker [Lue75| constructs TSP instances whose transition graphs contain
exponentially long paths. Hence, 2-Opt can take an exponential number of steps
before it finds a locally optimal solution. This result is generalized to k-Opt, for
arbitrary k > 2, by Chandra, Karloff, and Tovey [CKT99].

In order to explain the success of 2-Opt in practice, Kern [Ker89] initiated the
study of 2-Opt on random instances. For Euclidean instances in which n points
are placed uniformly at random in the unit square, he shows that the length of
the longest path in the transition graph is bounded by O(n'6) with probability
1 — ¢/n for some constant ¢. Chandra, Karloff, and Tovey [CKT99] improve this
result by bounding the expected length of the longest path in the transition graph
by O(n'logn). That is, independent of the initial tour and the choice of the local
improvements, the expected number of 2-changes is bounded by O(n'?logn). For
instances in which n points are placed uniformly at random in the unit square and
the distances are measured according to the Manhattan metric, Chandra, Karloff,
and Tovey show that the expected length of the longest path in the transition
graph is bounded by O(n%logn).

Similar to the running time, the good approximation ratios obtained by 2-
Opt on practical instances cannot be explained by a worst-case analysis. In fact,
there are quite negative results on the worst-case behavior of 2-Opt. For example,
Chandra, Karloff, and Tovey [CKT99] show that there are Euclidean instances in

logn
loglogn

than the optimal costs. However, the same authors also show that the expected
approximation ratio of the worst local optimum for instances with n points drawn
uniformly at random from the unit square is bounded from above by a constant.

the plane for which 2-Opt has local optima whose costs are (2 ( ) times larger

We are aware of one article about the smoothed complexity of local search
algorithms. Arthur and Vassilvitskii [AVO6b] consider the Iterative Closest Point
(ICP) and the k-means algorithm, two well-known algorithms for pattern match-
ing and clustering, respectively. The input to the ICP algorithm consists of two
point sets and, roughly speaking, the objective is to compute a translation of the
first point set such that its distance to the second point set becomes minimal.
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This problem is known to be NP-hard and the ICP algorithm, which is widely
used in computational geometry and known for its simplicity and its efficiency in
practice, computes a locally optimal solution. Arthur and Vassilvitskii show that
the number of iterations of this algorithm can be Q(n/d)?*! for d-dimensional
point sets of cardinality n. To reconcile this bound with the observations made in
practice, they analyze the ICP algorithm in a semi-random input model in which
an adversary can specify positions for the points that are subsequently perturbed
by adding a d-dimensional Gaussian random vector with standard deviation o to
each point. They show that the expected running time is bounded from above by
a polynomial (in n and o~ !) whose degree is independent of the dimension d. The
k-means algorithm partitions a given point set into k clusters with the objective to
minimize the total distance of the points to their respective cluster center. Since
finding optimal clusters is NP-hard, the k-means algorithm computes only clusters
that are locally optimal. Using similar techniques as for the ICP algorithm, Arthur
and Vassilvitskii show that the expected running time of the k-means algorithm is
polynomially bounded in n* and ¢! for semi-random sets with n points, which is
significantly better than the known worst-case bound of 2V [AV(Gal].

1.3.2 Ouwur Results

The negative results on the worst-case number of local improvements due to Lueker
and Chandra, Karloff, and Tovey use arbitrary graphs whose edge lengths do not
satisfy the triangle inequality. Hence, they leave open the question about the
worst-case complexity of 2-Opt on metric TSP instances. In particular, Chan-
dra, Karloff, and Tovey ask whether it is possible to construct Euclidean TSP
instances on which 2-Opt can take an exponential number of steps [CKT99]. We
resolve this question by constructing such instances in the Euclidean plane. In chip
design applications, often TSP instances arise in which the distances are measured
according to the Manhattan metric. Also for this metric and for every other L,
metric (see Section [4.1]for a formal definition of L, metric), we construct instances
with exponentially long paths in the 2-Opt transition graph.

Theorem 1.3.1. For every p € NU {oo} and n € N, there is a two-dimensional
TSP instance with 16n vertices in which the distances are measured according to
the L, metric and whose transition graph contains a path of length ontd _ 99,

Additionally, we consider a more general probabilistic input model than Kern
and Chandra, Karloff, and Tovey and improve the previously known bounds. This
probabilistic model is inspired by the model of smoothed analysis and is simi-
lar to our semi-random input model for bicriteria optimization problems. The
considered model allows that different vertices are placed according to different
continuous probability distributions in the unit hypercube [0,1]¢ for some con-
stant dimension d > 2. The distribution of a vertex v; is defined by a density
function f;: [0,1]¢ — [0, ¢] for some given ¢ > 1. (Readers who are unfamiliar
with continuous random variables are referred to Appendix for a brief intro-
duction.) Our upper bounds depend on the number n of vertices and the upper
bound ¢ on the density. We denote instances created by this input model as ¢-
perturbed Fuclidean or Manhattan instances, depending on the underlying metric.
Similar to the reciprocal of the standard deviation o~ in Section the maximal
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density ¢ can be seen as a parameter specifying how close the analysis is to a worst
case analysis since the larger ¢ is, the more concentrated the probability mass can
be and hence, the better worst case instances can be approximated by the distri-
butions. For ¢ = 1 and d = 2, every point has a uniform distribution over the
unit square, and hence the input model equals the uniform model analyzed before.
Our results narrow the gap between the subquadratic number of improving steps
observed in experiments and the upper bounds from the probabilistic analysis.
With slight modifications, this model also covers a smoothed analysis, in which
first an adversary specifies the positions of the points and after that each position
is slightly perturbed by adding a Gaussian random vector with small standard
deviation o. In this case, the maximal density ¢ is proportional to o~¢.

We also consider a model in which an arbitrary graph G = (V, E) is given
and for each edge e € F, a probability distribution according to which the edge
length d(e) is chosen independently of the other edge lengths. Again, we restrict
the choice of distributions to distributions that can be represented by density
functions f.: [0,1] — [0, ¢] with maximal density at most ¢ for a given ¢ > 1. We
denote inputs created by this input model as ¢-perturbed graphs. Observe that in
this input model only the distances are perturbed whereas the graph structure is
not changed by the randomization. This can be useful if one wants to explicitely
prohibit certain edges. However, if the graph G is not complete, one has to initialize
2-Opt with a Hamiltonian cycle to start with.

We prove the following theorem about the expected length of the longest path
in the 2-Opt transition graph for the three probabilistic input models discussed
above. It is assumed that the dimension d > 2 is an arbitrary constant.

Theorem 1.3.2. The expected length of the longest path in the 2-Opt transition
graph

a) is O(n* - @) for ¢-perturbed Manhattan instances with n points.
b) is O(n*T1/3 log(ng)-¢%/3) for ¢p-perturbed Buclidean instances with n points.

¢) is O(m -n'+°W) . @) for ¢p-perturbed graphs with n vertices and m edges.

Usually, 2-Opt is initialized with a tour computed by some tour construction
heuristic. One particular class are insertion heuristics, which insert the vertices
one after another into the tour. We show that also from a theoretical point of
view, using such an insertion heuristic yields a significant improvement for metric
TSP instances because the initial tour 2-Opt starts with is much shorter than the
longest possible tour. In the following theorem, we summarize our results on the
expected number of local improvements.

Theorem 1.3.3. The expected number of steps performed by 2-Opt
a) is O(n*~1/4.logn-¢) on ¢-perturbed Manhattan instances with n points when

2-Opt is initialized with o tour obtained by an arbitrary insertion heuristic.

b) is O(n*+1/3=1/d log?(ng) - ¢%/3) on ¢-perturbed Buclidean instances with n
points when 2-Opt is initialized with a tour obtained by an arbitrary insertion
heuristic.

In fact, our analysis shows not only that the expected number of local im-
provements is polynomially bounded but it also shows that the second moment
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and hence the variance is bounded polynomially for ¢-perturbed Manhattan and
graph instances. For the Euclidean metric, we cannot bound the variance but the
3/2-th moment polynomially.

Finally, we consider the expected approximation ratio of 2-Opt. We generalize
the result due to Chandra, Karloff, and Tovey to our input model in which differ-
ent points can have different distributions with bounded density ¢ and to all L,
metrics.

Theorem 1.3.4. Let p € NU {oo}. For ¢-perturbed L, instances, the expected
approzimation ratio of the worst tour that is locally optimal for 2-Opt is bounded

by O(/).
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CHAPTER 2

Pure Nash Equilibria

In this chapter, we consider different models for resource allocation among selfish
agents. The first two models, congestion games and two-sided matching markets,
are well-known in economics. We study the complexity of computing a pure Nash
equilibrium and whether uncoordinated agents reach an equilibrium quickly. We
conclude the chapter by introducing a new model for resource allocation that
combines features of congestion games and two-sided markets and contains both
these models as special cases.

2.1 Complexity of Equilibria in Congestion Games

In this section, we analyze the complexity of pure Nash equilibria in various kinds
of structured congestion games. Since the problem of computing a pure Nash equi-
librium in a congestion game can be phrased as a local search problem, we start
this section by introducing the complexity class PLS (polynomial local search).
We summarize some known facts about this class and illustrate the connection to
congestion games. After that, we introduce a very restricted class of congestion
games, which we call threshold congestion games, and we show that even for this re-
stricted class, the problem of computing a pure Nash equilibrium is PLS-complete.
We believe that, due to their simple structure, threshold congestion games are a
good starting point for PLS-reductions. To demonstrate this, we present several
reductions from threshold congestion games to other classes of congestion games.
Some of these reductions simplify previously known proofs significantly and im-
prove known results.

2.1.1 Local Search and the Complexity Class PLS

As already discussed in the introduction, an instance I € Zy of a local search
problem 11 consists of a finite set of feasible solutions S(/), an objective function
cr: S(I) — N, and for every feasible solution z € S(I), a neighborhood N (I, z) C
S(I). Given such an instance I, the goal is to find a locally optimal solution z*,
that is, a solution that does not have a strictly better neighbor. A neighbor z’ of a
solution x is strictly better if the objective value ¢(x’) is larger or smaller than ¢(x)
in the case of a maximization or minimization problem, respectively. The class
PLS has been defined by Johnson, Papadimitriou, and Yannakakis [JPY88] and it
contains all local search problems with polynomial time searchable neighborhoods.
Formally it is defined as follows.
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Definition 2.1.1. A local search problem II belongs to PLS if there exist three
polynomial-time algorithms A, Br, and C with the following properties:

1. Given an instance I of 1I, algorithm Am computes some feasible solution

xo € S(I)

2. Given an instance I of Il and a feasible solution v € S(I), algorithm Br
computes the objective value cy(x).

3. Given an instance I of 11 and a feasible solution x € S(I), algorithm Cp
determines whether x is locally optimal or not and finds a better solution in
the neighborhood of x in the latter case.

Johnson, Papadimitriou, and Yannakakis [JPYS8§] present a reduction concept
for PLS and identify problems that are complete with respect to this reduction
concept. In the following definitions, we denote by II; and Il problems in PLS.

Definition 2.1.2. A problem II; is PLS-reducible to a problem Ils if there exist
polynomial-time computable functions f and g with the following properties:

1. The function f maps instances of 111 to instances of 1ls.

2. The function g maps pairs (I,y), where I denotes an instance of Iy and y
denotes a solution of f(I), to solutions of I.

3. For all instances I of Il and all locally optimal solutions y of f(I), the
solution g(I,y) is a local optimum of instance I.

A local search problem 11 in PLS is PLS-complete if every problem in PLS is
PLS-reducible to 1I.

Given an instance I of a local search problem II, we denote by TG(I) the
transition graph that contains a node v(z) for every feasible solution z € S(I) and
a directed edge from a node v(x;) to a node v(x2) if z2 is in the neighborhood of
x1 and if the objective value c(x2) is strictly better than the objective value ¢(z1).
Schéffer and Yannakakis [SY91] introduce the notion of a tight PLS-reduction,
which preserves several properties of the transition graph.

Definition 2.1.3. A PLS-reduction (f,g) from a problem I1; to a problem Il is
tight if for any instance I € Iy, , one can choose a subset Qr C S(f(I)) of feasible
solutions for the image instance f(I) € I, such that the following properties are
satisfied:

1. The set Qr contains all local optima of the instance f(I).

2. There exists a polynomial-time algorithm that, given an instance I € Iy,
and a feasible solution x € S(I), constructs a feasible solution y € Qr of
f(I) such that g(I,y) = x.

3. Suppose that the transition graph TG(f(I)) of f(I) contains a directed path
from y1 € Qp to yo € Q1 such that all internal path vertices are outside Qj,
and let x1 = g(I,y1) and x2 = g(I,y2) be the corresponding feasible solutions
of I. Then either x1 = xo or TG(I) contains an edge from x1 to x5.
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An important property of tight PLS-reductions is that they do not shorten
paths in the transition graph. That is, if the graph T'G(I) of an instance I of
II; contains a node whose shortest distance to a local optimum is ¢ € N, then
TG(f(I)) contains a node whose shortest distance to a local optimum is at least a.
Moreover, consider the following problem: given an instance I of II; and a solution
x of I, find a local optimum that is reachable from z in the transition graph. If
this problem is PSPACE-complete for 11y and there exists a tight PLS-reduction
from II; to Ilg, then the problem is also PSPACE-complete for Iz [SY9I1]. In the
following definition, we introduce a special case of tight PLS-reductions, which we
call embedding PLS-reduction. These reductions are less general than tight PLS-
reductions, but for a given reduction, their properties can usually be verified more
easily.

Definition 2.1.4. We call a PLS-reduction (f,g) from a problem I1; to a problem
[Ty an embedding PLS-reduction if it satisfies the following two properties:

1. For every instance I of 1y, the transition graph TG(I) is isomorphic to a
subgraph TG*(f(I)) of TG(f(I)) that contains all local optima of the in-

stance f(I) and has no outgoing edges.

2. When restricted to this subgraph, the function g(I,-) must be an isomor-
phism between TG*(f(I)) and TG(I) and its inverse must be computable in
polynomial time.

We call (f,g) an isomorphic PLS-reduction if it is an embedding PLS-reduction
and if for every instance I of Iy the transition graphs TG(I) and TG(f(I)) are
isomorphic.

It is easy to verify that embedding PLS-reductions are tight PLS-reductions.
In order to see this, observe that the set of feasible solutions that corresponds to
the nodes of TG*(f(I)) defines a set Q; with the properties in Definition [2.1.3]
The first and the second condition are directly satisfied by the definition of an
embedding PLS-reduction. The third condition is satisfied because TG*(f(I)) has
no outgoing edges and therefore paths with the properties as in condition 3 cannot
have internal path vertices and must therefore be single edges with both endpoints
from TG*(f(I)). Since TG*(f(I)) is isomorphic to T'G(I), the third condition
must be satisfied for these edges.

Relationship between Congestion Games and the Complexity Class PLS

As described in Section the four components of a congestion game are the
set of players N, the set of resources R, the strategy spaces 3; for ¢ € AN, and
the delay functions d,: N — N for » € R. Rosenthal [Ros73| shows that every
congestion game possesses a pure Nash equilibrium by considering the potential
function ®: X1 x --- x ¥,, — N with

ny(S)

2(8) =33 d(j) -

reR j=1

This potential function associates with every state a value, and if a state S’ is
obtained from a state S by letting one player play a better response that decreases
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her delay by some value a, then also the potential decreases by exactly a. Games
that admit such a potential function are called (ezact) potential games. Since the
potential is bounded from below by 0 and from above by some finite value, this
shows not only that every congestion game possesses a pure Nash equilibrium, but
it also shows that players reach such an equilibrium after a finite number of better
responses.

A congestion game I' = (N, R, (X)ienr, (dr)rer) can be transformed into an
instance I of a local search problem as follows: The set S(I) of feasible solutions
corresponds to the set of states of ', that is, S(I) = ¥ = X1 X --- x X, and a state
S’ is in the neighborhood of a state S if S’ can be obtained from S by letting one
player change her strategy. Furthermore, we use Rosenthal’s potential function ®
as cost function ¢: S(I) — N. This way, we obtain a local search problem and it
is easy to see that the aforementioned properties of the function ® ensure that the
local optima in this local search problem coincide with the pure Nash equilibria
in the congestion game. If the strategy spaces are explicitly given, then, given a
state, better and best responses of the players can be computed in polynomial time
and it can be checked in polynomial time whether a given state is locally optimal.
This yields the following observation.

Observation 2.1.5. The problem of computing a pure Nash equilibrium in con-
gestion games belongs to the complexity class PLS.

For succinctly represented classes of congestion games, in which the strategy
spaces are only given implicitly, the problem of computing a pure Nash equilibrium
might not belong to PLS because it might not be possible to compute better
responses in polynomial time. In network congestion games we can, however, find
better responses and check whether a given state is a pure Nash equilibrium by
solving shortest path problems, and hence, network congestion games belong to
PLS.

The relationship between congestion games and PLS has first been observed by
Fabrikant, Papadimitriou, and Talwar [FPT04]. They considered different classes
of congestion games and obtained the following PLS-completeness results.

Theorem 2.1.6. ([FPT0/)]) It is PLS-complete to find a pure Nash equilibrium in
congestion games of the following sorts:

a) general congestion games
b) symmetric congestion games

c) asymmetric network congestion games with directed edges

The PLS-completeness for general and symmetric congestion games is ob-
tained by short reductions from the problem positive not-all-equal 3-SAT (Pos-
NAES3SAT), which is a local search version of the satisfiability problem for a
restricted class of formulas. An instance of PosNAE3SAT is given by a set of
weighted clauses each of which consisting of three positive literals. An assignment
of truth values to the variables is said to satisfy a clause if not all its three lit-
erals are assigned the same value. An assignment is locally optimal if the total
weight of the satisfied clauses cannot be increased by flipping the value of one
of the variables. Schéffer and Yannakakis [SY91] prove that computing such a
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local optimum is PLS-complete. Their reduction is, however, quite involved and,
according to Fabrikant, Papadimitriou, and Talwar [FPT04], possibly the most
complex reduction in the literature if one excludes the PCP theorem. The proof
for the PLS-completeness of network congestion games is not very instructive as
it completely reworks the PLS-completeness proof of PosNAE3SAT and even adds
some further complications. In the following, we present an alternative approach
for proving hardness of structured congestion games that more directly reveals
which kind of substructures cause the trouble and that also shows the hardness
of asymmetric network congestion games with undirected edges and linear delay
functions.

Additionally, Fabrikant, Papadimitriou, and Talwar [FPT04] show how the
problem of computing a pure Nash equilibrium in a symmetric network congestion
game, in which all players have the same source and the same target node, can be
reduced to solving a min-cost flow problem. This reduction implies that pure Nash
equilibria can be computed efficiently in symmetric network congestion games.

2.1.2 Threshold Congestion Games

We define threshold congestion games to be a class of congestion games in which
the set of resources R is divided into two disjoint subsets R, and R;,. The set
Roue contains a resource r; for every player ¢ € N. This resource has a fixed
delay Tj;, called the threshold of player i. Each player ¢ has only two strategies,
namely the strategy S2** = {r;} and a strategy SI" C R,,, where S can be an
arbitrary subset of R;,. The preferences of player i can be described in a simple
and intuitive way: player ¢ prefers strategy SI" to strategy S if the delay of
Si* is smaller than the threshold Tj. Quadratic threshold congestion games are
a subclass of threshold games in which the set R;, contains one resource r;; for
every unordered pair {i,j} C N of players and in which for every player i € N,
the strategy Si" is defined as {ri; | j € N, j # i}.

We show that computing Nash equilibria in quadratic threshold congestion
games is PLS-complete despite the simple structure of these games. Our proof is
by a reduction from a local search version of Max-Cut, which can be described
as follows: an instance of Max-Cut consists of a graph G = (V, E,w) with edge
weights w: E — N, and the goal is to find a partition of the vertices V' into two
classes, say left and right, such that the total weight of the edges that cross the
cut becomes maximal. In the local search version, we are looking for a partition
that is locally optimal in the sense that the total weight of the edges that cross
the cut cannot be increased by flipping one vertex from the left to the right side,
or vice versa. This local search problem can also be described as a game, the
so-called party affiliation game, in which players correspond to nodes that can
choose whether they want to belong to the left or the right side. Edges reflect
some kind of symmetric antipathy, that is, a player wants to choose a side such
that the total weight of her edges to the other side is maximized. Schaffer and
Yannakakis [SY91] show that computing a locally optimal cut is PLS-complete
and that there are instances of Max-Cut with states whose distance to sinks in
the transition graph is exponential. Based on this result, we prove the following
theorem.
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Theorem 2.1.7. Computing a pure Nash equilibrium in quadratic threshold con-
gestion games with non-decreasing delay functions is PLS-complete. Furthermore,
there exist quadratic threshold congestion games with states from which every se-
quence of better responses to a pure Nash equilibrium has exponential length.

Proof. Assume that a party affiliation game G = (V, E,w) is given. For a player
1 € V, let W; denote the sum of the weights of all of her incident edges. If a
state, that is, a partition of the players into two classes A and B, is given, we
denote by Wi(B) the sum of the weights of the edges that connect player i with
nodes in class B. The preferences of a player ¢ in the party affiliation game can
be described in the following way: player ¢ prefers strategy A to strategy B if
Wi(B) > %Wi, she prefers strategy B to strategy A if Wi(B) < %Wi, and she is
indifferent if Wi(B) = %Wl

We show how to represent the party affiliation game in form of a quadratic
threshold congestion game. We set N' = V, that is, for each player in the party
affiliation game, we introduce a player in the threshold congestion game. We
introduce a resource r;; for every unordered pair {7, j} C N of players. If the edge
{i,7} does not exist in G, then the delay of 7;; is 0. Otherwise, the delay of r;; is
0 if the resource is used by only one player and its delay is w({i,j}) if it is used
by two players. We set the threshold 7; of player i to %WZ

Now let us describe the function g, which maps states of the congestion game
to states of the party affiliation game. We identify the strategy S:* of player i
in the congestion game with the strategy B in the party affiliation game, and we
identify the strategy S with strategy A. Due to the choice of the threshold
T;, this implies that the preferences of the players in the congestion game coincide
with the preferences in the party affiliation game. Hence, there is a one-to-one cor-
respondence between the transition graphs of both games so that our construction
yields an isomorphic PLS-reduction. Since isomorphic PLS-reductions are tight
PLS-reduction, they preserve distances in the transition graph, which implies the
second part of the theorem. O

In the following, we use quadratic threshold games as the starting point for
further PLS-reductions. For some of these reductions, it is helpful to make some
additional assumptions on the delay functions.

Remark 2.1.8. Without loss of generality, each resource r € R in a quadratic
threshold congestion game with non-decreasing delay functions has a linear delay
function of the form d,(x) = a,x with a, > 0. Furthermore, all thresholds can be
assumed to be positive.

In the proof of Theorem the delay function of a resource r;; € Rin has
the form d,,;(k) = w;jk — w;;. The preferences of the players are not affected
by adding w;; to each delay function d,,;, which then becomes d, (k) = w;k,
if one simultaneously increases each threshold T; by Zj £ Wij = W;. After this
transformation, every resource r has a delay function of the form d,(k) = a, k.

2.1.3 Reductions from Threshold Congestion Games

In this section, we use quadratic threshold congestion games as starting point for
proving the PLS-completeness of several classes of congestion games.
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(b)

Figure 2.1.1: Illustration of the proof of Theorem m

Network Congestion Games

In a network congestion game, the resources are the edges of a graph and every
player has a designated source and a designated target node. Every player has
to choose a path between her source and target node and wants to minimize
the delay of the chosen path. As summarized in Theorem [2.1.6] computing pure
Nash equilibria of network congestion games is PLS-complete. In the following, we
present a much simpler proof for this fact. In contrast to the previous proof, our
proof also works for linear delay functions and it can be extended to undirected
networks.

Theorem 2.1.9. Computing a pure Nash equilibrium in network congestion games
with non-decreasing linear delay functions is PLS-complete.

Proof. Let I' be a quadratic threshold congestion game. We map I' to a network
congestion game as follows. The network consists of the lower-left triangle of an
n x n grid (including the vertices on the diagonal) in which the vertical edges are
directed downwards and the horizontal edges are directed from left to right. For
every player ¢ in I', we introduce a player ¢ in the network congestion game whose
source node s; is the i-th node (from top to bottom) in the first column and whose
target node t; is the i-th node (from left to right) in the last row. For every player
1 € N, we add an edge from s; to t;, called threshold edge. Note that, due to the
directions of the grid edges, the threshold edge of player i can only be used by
player i. Figure (a) illustrates our construction in the case of 4 players.

Our first goal is to define delay functions in such a way that there are only
two relevant strategies for player i: the threshold edge (s;,t;) and the row-column
path from s; to t;, i.e., the path from s; along the edges of row ¢ until column
7 and then along the edges of column i to ¢;. All other paths shall have such
high delays that they are dominated by these two paths, regardless of the other
players’ choices. We achieve this goal by assigning the constant delay function 0
to all vertical edges and the constant delay function D - ¢ to all horizontal edges
in row ¢, where D denotes a large integer. Furthermore, for the time being, we
assume that the threshold edge (s;,%;) has the constant delay D -4 - (i — 1). This
way, each player ¢ has only two undominated strategies: its threshold edge and its
row-column path. The delays of these two alternative routes are so far identical.
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Now we define additional delay functions for the nodes, that is, we view also
the nodes as resources. (Figure (b) shows how the nodes can be replaced by
gadgets such that all resources are edges.) For 1 < i < j < n, the node v;; in col-
umn ¢ and row j is identified with the resource r;; € R, in the quadratic threshold
game. In particular, we assume that the node has the same delay function as the
corresponding resource in the threshold game. This way, the row-column path
of player ¢ corresponds to the strategy S;" of the threshold game. Furthermore,
we increase the delay on the threshold edge of player i from D -4 - (i — 1) to
D-i-(i—1)+T;, where T; is the delay of resource r; € R, in the threshold game.
This way, the threshold edge of player ¢ corresponds to the strategy S of the
threshold game.

If we choose D larger than the sum of all delays in the threshold game, then
for every player all strategies except for her row-column path and her threshold
edge are dominated and hence, they can be ignored. The remaining strategy
spaces of the players and the corresponding delay functions are isomorphic to the
strategies and delay functions of the threshold game. In particular, also the Nash
equilibria of the two games coincide. Thus, our construction is a PLS-reduction.
Moreover, the transition graph of the threshold game and the subgraph of the
transition graph of the network congestion game in which players are restricted to
either the threshold edge or the row-column path are isomorphic. It is easy to see
that all properties in Definition [2.1.4] are satisfied, and hence, the reduction is an
embedding PLS-reduction. O

It is not difficult to modify the reduction above so that the linear delay func-
tions have offset 0. In fact, one only needs to replace the constant delay functions
of the form d.(x) = a by linear delay functions d(z) = a-z. Thus, even congestion
games in networks with link speeds are PLS-complete. Next we consider network
congestion games with undirected edges and linear delay functions and prove that
computing a pure Nash equilibrium remains PLS-complete for these games.

Theorem 2.1.10. Computing a pure Nash equilibrium in network congestion
games with undirected edges and mnon-decreasing linear delay functions is PLS-
complete.

Proof. We give a PLS-reduction from quadratic threshold games to network con-
gestion games with undirected edges and linear delay functions. The reduction is
similar to the one in Theorem [2.1.9] except that we slightly change the structure
of the network and that we adapt the delay functions of the edges accordingly.

Let T" be a quadratic threshold congestion game. The undirected graph that
we construct has the same structure as in the case of networks with directed
edges, except that we remove the directions of the edges. Moreover we split every
threshold edge {s;,¢;} into two edges by introducing a node s, i.e., we introduce
the edges ef = {s;,s;} and e} = {s},t;} and we remove the edge {s;,;}. Again,
for every player i in I', we introduce a player in the network congestion game. In
this reduction the source node of player i is s, and her target node is ;.

In the previous reduction we could force a player to decide between the thresh-
old edge and the row-column path by considering directed edges and carefully
designed delay functions. Now we have to achieve the same effect with the delay
functions only. We do not change the delay functions of the nodes v;; and of
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the horizontal edges. Thus, a horizontal edge in the i-th row has constant delay
i - D, and the delay function of node v;; coincides with the delay function of the
resource 1;; € R;,. We change the delay function of every vertical edge from 0 to
n3D. Additionally, we set the delay of the edge ef = {s;, s}} to 3n'D.

We claim that for every player ¢, if one excludes the direct edge between s/
and ¢;, the only path connecting s, and ¢; which can be a best response is the
row-column path. Let D;"®* denote the maximal delay that can occur on this
path without taking into account the edge {s;, s/} but including the delay caused
by the nodes on the path. We can bound this delay by

DM < (j—1)iD+ (n—i)n*D + D .

If player i chooses any other path connecting s, and t;, then she either passes a
node 3;- with j # 4, or she allocates more than n — i vertical edges, or she allocates
a horizontal edge in a row j > i.

In the first case, the delay caused by the edge {s;, s;} is 3n*D. This delay is
larger than D;"®* and hence choosing such a path cannot be a best response. In
the second case, the delay is at least (n—i+1)n3D which is also larger than DIax,
Finally, consider the third case and assume that player ¢ allocates n — i vertical

edges but at least one edge from a row j > i. Then her delay is at least
(n—i)n*D + (i —2)iD +jD > (n —i)yn*D + (i —1)iD+ D ,

which is also larger than D;"®*.
Finally, we choose the delay of the edge e! to be

T; +3n*D + (n —i)n*D + (i — 1)iD

where T; denotes the threshold of player ¢ in the given quadratic threshold game.

Now assume that every player plays a best response and hence, either uses
the direct edge between s and t; or the row-column path. Observe that under
this assumption, the delay of edge e! equals the threshold of player i plus the
delay caused by the grid edges of the aforementioned path and the edge {s;, s;}.
Hence by the same arguments as in Theorem [2.1.9] a Nash equilibrium of the
constructed network congestion game corresponds to a Nash equilibrium of the
given quadratic threshold game. Moreover, analogously to Theorem this
reduction is an embedding PLS-reduction. O

In symmetric network congestion games, a Nash equilibrium can be computed
in polynomial time [FPT04]. Nonetheless, selfish players do not necessarily find
an equilibrium in polynomial time.

Theorem 2.1.11. There exists a family of symmetric network congestion games
(with directed or undirected edges) with linear delay functions and corresponding
initial states from which every better response sequence to a pure Nash equilibrium
is exponentially long.

Proof. We prove the theorem by simulating asymmetric network congestion games
by symmetric ones. In the case of asymmetric network congestion games, the
existence of instances with the claimed properties follows from the fact that such
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instances exist for Max-Cut as shown by Schéffer and Yannakakis [SY91] and the
fact that the reductions presented in the proofs of Theorems [2.1.9 and [2.1.10] are
tight. Let I' be an asymmetric network congestion game on a graph G and let
S = (P1,...,P,) be a state of I'. Let S(G) be the set of source and T(G) the
set of target nodes of the network G and assume without loss of generality that
no two players have the same source or the same target node. In order to obtain
a symmetric network congestion game I, we introduce a common source s and
a common target ¢ such that s is connected to every source s; € S(G) and such
that every target t; € T'(G) is connected to t. For every new edge e = (s,-) and
e = (+,t), we define the delay function d. by de(z) = - D with D being a number
larger than the maximum total delay of every path in G.

Assume that player ¢ initially chooses path P; with the additional edges (s, ;)
and (t;,t) and denote this state by S’. Obviously, the players behave in the same
way as they do in the asymmetric game since no player has an incentive to share
an edge (s,-) or (-,t) with another player. Thus, if in I' every better response
sequence starting in S is exponentially long, then every better response sequence
in IV starting in S’ is exponentially long as well. O

The simulation of asymmetric networks by symmetric ones also implies the
following theorem.

Theorem 2.1.12. In network congestion games (with directed or undirected edges)
with a common source and possibly different targets (or vice versa), and with non-
decreasing delay functions, a pure Nash equilibrium can be found in polynomial
time.

Proof. We use the same simulation as in the proof of Theorem Assume
that a network with a common source node is given and assume without loss of
generality that no two players have the same target node. We make the network
symmetric by introducing a new common target node and connecting this new
target to each original target node by an edge with delay function d. such that
de(1) = 0 and d.(x) = D for x > 1. Again, D is assumed to be larger than
the sum of all delays in the original game. Due to Fabrikant, Papadimitriou,
and Talwar [FPT04], a Nash equilibrium in this symmetric network congestion
game can be computed in polynomial time. Observe that each of the new edges
connecting one of the original target nodes with the new target node is used by
exactly one player in every Nash equilibrium. Hence, every equilibrium of the
symmetric game can be transformed into a Nash equilibrium of the original game
in polynomial time. O

Market Sharing Games

Market Sharing games have been introduced by Goemans et al. [GLMT04] to
model non-cooperative content distribution in wireless networks. An instance of
a market sharing game consists of a set N' = {1,...,n} of players, a set M of
[ := | M| markets, and a bipartite graph G = (N UM, E). An edge between player
¢ and market m indicates that player ¢ is interested in market m. Furthermore,
for each market m, a cost ¢, and a so-called query rate g,, € N are given, and, for
each player i, a budget B; is specified. The query rate ¢, determines the payoff
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of market m, which is equally distributed among the players who allocate that
market, i.e., the payoff function of market m is given by p,,(z) = ¢mn/z. In terms
of congestion games, the markets are the resources and the costs and budgets
implicitly define the sets of feasible strategies. To be more precise, ¥; consists of
all sets M’ C M such that for all m € M’, (i,m) € E and ) \vcm < B;.
Observe that the set of strategies has a knapsack-like structure. The players are
interested in allocating a set M’ of markets with maximum payoff. Thus, we define
the delay of a market to be equal to its negative payoff.

If the costs of all markets are equal to 1, a market sharing game is called
uniform. Goemans et al. [GLMTO04] give an algorithm for computing a Nash equi-
librium of a uniform market sharing game in polynomial time. Ackermann, Roglin,
and Vocking [ARV06al show that in every uniform market sharing game, players
reach a Nash equilibrium after at most a polynomial number of best responses.

If we allow arbitrary costs, then it becomes NP-hard to determine a best re-
sponse since computing a best response corresponds to solving an instance of the
knapsack problem. As a consequence, the problem of finding a Nash equilibrium
is not contained in PLS, unless P = NP. However, if the costs are polynomially
bounded, then the problem of finding a Nash equilibrium is in PLS because it is
well-known that the knapsack problem can be solved in pseudopolynomial time.
In this case, we can easily enforce that a player i € N decides between either

(1)

allocating one market m; or a set of markets {m;
of market m; to k, the cost of each market ml(-] ) to 1, and the budget of player
1 to k. This way, the only possible best responses of player i are the strategies

e ml(k)} by setting the cost

{m;} and {mgl), . ,mgk)}, regardless of the strategies of the other players. This
is the main observation needed for reducing threshold congestion games to market
sharing games with polynomially bounded costs.

Theorem 2.1.13. Computing a pure Nash equilibrium in market sharing games
with polynomially bounded costs is PLS-complete.

Proof. We give a PLS-reduction from quadratic threshold congestion games. Let
I' be a quadratic threshold game. Due to Remark we can assume w.l.o.g.
that each resource r € R, has a linear delay function of the form d,(x) = a,z
with a, > 0.

We construct a market sharing game I'y; as follows. For every resource r;; €
R, with ar; > 0, we introduce a market m;; with cost 1 and query rate Imy; =
2ar,;. Furthermore, for every resource r; € R,.;, we introduce a market m; with
cost |Si"| and query rate 3P; — T; where P; denotes the sum of the coefficients ar,;
of the resources r;; € Si*. Observe that we can assume w.l.o.g. that 3P, — T; > 0
since otherwise S;* is always the only best response for player ¢ in I' and hence,
player ¢ can be removed from the game. For every player i of I', there is also a
player ¢ in the market sharing game. This player has the budget B; = |[S"| and is
interested in all markets that correspond to the resources in SP™ U Si*. Observe
that this construction yields a market sharing game with polynomially bounded
costs.

Let S be an arbitrary state of I'y;. From S we construct a state S of the
quadratic threshold game as follows. If player ¢ participates in market m;, then
we set the corresponding threshold game player i to its strategy S, otherwise
to strategy S:".
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Fix a player i in T, let R} denote the resources in S* that she allocates alone
in state S @ S, and let R? denote the resources in S} that she shares with
another player in that state. Then her delay in state S @ Si* can be written as
ZreR% ar + 2ZT€R§ a, = P; + Zrenf a,. The strategy S* is a best response
in state S if and only if P; + ZreRf ar < T;. The payoff player ¢ receives in
state S when choosing all markets m;; she is interested in can be written as
2) eri@r + Y cr2ar = P+ > cpiar. This is a best response if and only
if P, + ereng a, > Z3PZ~ — T; which is 1equivalent to P; + ZreR? a, < T;. Thus,
S is a Nash equilibrium if and only if S is a Nash equilibrium. Moreover, the
reduction is an embedding reduction and the transition graph of the threshold
game is isomorphic to the transition graph of the market sharing game if we
disregard states in which there is a player ¢ who allocates a proper subset of
S O

Overlay Network Games

An overlay network is a network built on top of another network with fixed routing
paths between all pairs of nodes. For example, Stoica et al. [SAZT04] suggest
to generalize the Internet point to point communication to provide services like
multicast, anycast, and mobility on the basis of overlay networks. In the case
of multicast and anycast, the overlay network is an arborescence connecting the
source with the receivers. We simplify the scenario in many aspects and introduce
the following overlay network congestion game: in an overlay network game, we
are given an undirected graph G = (V| E) with a delay function d.: N — N for
every edge e € E and a fixed routing path P,, between any pair of nodes u and
v. For simplicity, we assume that the path P,, from u to v corresponds to the
path P,, from v to u. Every player i € A wants to allocate a multicast tree T;
on a subset V; C V of the nodes. From the point of view of a player i € N,
there is an edge between every pair of nodes u,v € V;, and every player ¢ wants
to allocate a spanning tree on the resulting complete graph with node set V;. In
the underlying network G, the edge between two nodes u,v € V; is simulated by
the corresponding path P,,, that is, if the chosen spanning tree contains an edge
between two nodes u € V; and v € Vj, the traffic is sent along the routing path
Py, in the underlying network G. In particular, the delay of the edge (u,v) in the
overlay network equals the delay on the path P,, in the network G. We show that
finding a Nash equilibrium in an overlay network game is PLS-complete, although,
from a local point of view, every player solves a matroid optimization problem.
This is remarkable because in matroid congestion games, a pure Nash equilibrium
can be computed efficiently by simulating the best response dynamics [ARV06a].

Theorem 2.1.14. Computing a pure Nash equilibrium in overlay network games
with linear delay functions is PLS-complete.

Proof. We give a PLS-reduction from quadratic threshold congestion games to
overlay network games. As in the proof of Theorem [2.1.9] we use the lower-left
triangle of an n x n-grid as basis of our construction, but now with undirected
edges, and we use the identifiers si,..., sy, t1,...,t,, and v;; to denote the same
nodes as before. The edges in the grid all have delay 0, the delay function of node
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v;; still equals the delay function of resource 7;;. Additionally, for each player
i € N, we add a node t; and an edge {t;,%,} with delay 0. Instead of having an
edge {s;,t;}, we add an edge {s;,#;} with delay function dg,, yy(z) = T;. In the
network, the routing path between s; and t; is defined to be the row-colum path as
in the proof of Theorem The routing paths between s; and ¢; and between
t; and t; in the overlay network are defined to be the direct edges contained in
the network G. For every player ¢ in the quadratic threshold game, we define a
player in the overlay network game with V; = {s;,t;,t.}. Using the assumptions
from Remark [2.1.8 our construction yields an overlay network game with linear
delay functions.

Every best response of player ¢ must contain the edge between ¢; and ¢, since
it has delay 0. Hence, every player decides between either taking the virtual edge
between s; and t; in the overlay network or the edge between s; and t;. In the
former case, her message is routed along the path through the grid. Analogously
to the proof of Theorem this shows that it is PLS-complete to find a Nash
equilibrium in an overlay network game. Moreover, observe that the reduction
is embedding since the subgraph of the transition graph of the network game
that contains exactly those states in which every player ¢ uses the edge {¢;,¢,} is
isomorphic to the transition graph of the quadratic threshold game, contains all
local optima, and has no outgoing edges. O

2.2 Uncoordinated Two-Sided Markets

In this section, we consider two-sided markets without a central authority to match
agents. We start by repeating some of the definitions from Section and make
them more formal. We assume that two disjoint groups of agents X and ) are
given and that each agent has preferences about the agents of the other side. An
agent 1 € X U ) can be matched to one agent j on the other side. Then she gets
a payoff of p;(j). If the preference list of agent i is (ai,aq,...,a,), we say that
agent i gets payoff k € {0,...,n—1} if she is matched to agent a,,_;. Also, we say
that an agent has payoff —1 if she is unmatched. Given a matching M, we denote
the payoff of an agent ¢ in matching M by p;(M). Throughout this section, we
call agents from X women or players and we call agents from ) men or resources.

We model the uncoordinated two-sided market (X,)) as a game G(X,))
among agents in X. A strategy of an agent x € X is to choose an agent y € ), and
the goal of each agent x € X is to maximize her payoff p,(y). Given a strategy
vector, agent « obtains payoff p,(y) if she proposes to y, and if she is the winner of
y. Agent x is the winner of y if y ranks = highest among all agents who currently
propose to him. Additionally, agent y obtains payoff p,(z) if = is the winner of y.

In general, there are no dependencies between the preference lists of agents.
We introduce correlated two-sided markets to model correlated preference lists.
Assume that there is a payoff p,, € N associated with every pair (z,y) of agents
x € X and y € Y such that p,(y) = py(x) = pgy. The preference lists of the
agents from X' U) are then defined according to these payoffs, e.g., an agent y € Y
prefers an agent x € X to an agent «’ € X if pyy > py . We assume that for
every agent i, the payoffs associated with all pairs including agent ¢ are pairwise
distinct. Then the preference lists are uniquely determined by the ordering of the
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ma meo ms mMp—2 Mp—1 My,
w1 1 2 3 ... n—2 n-—1 n
wWo n 1 2 ... n—=3 n—2 n-—1
w3 n—1 n 1 ... n—4 n—-3 n-—2
Wnp—-1 3 4 5 n 1
W, 2 3 4 ... n-—1 n 1

Figure 2.2.1: The weights of the edges in our construction.

payoffs.

In a many-to-one two-sided market, the strategy space F, C 2V of every player
x € X is a collection of subsets of resources, that is, every player x € X can propose
to a subset S, € F, of resources. Each resource y € ) has a strict preference list
over the set of players in X'. Given a vector of strategies S = (S, ...,5,) for the
players from X = {1,...,n}, a resource y is matched to the winner x of y, that is,
the most preferred player who proposes to . The goal of each player x € X is to
maximize the total payoff of the resources that she wins. More formally, given a
strategy vector S, let T,,(S) C S, be the set of resources that agent x wins. The
goal of each player x is to maximize ZyeTz( $) P (y).

A matroid two-sided market is a many-to-one two-sided market in which for
each player x, the family F, of subsets of resources corresponds to the indepen-
dent sets of a matroid. In other words, in a matroid two-sided market for every
player x € X, the set system (), F,) is a matroid. (Appendix [A| contains a brief
introduction to matroids.) Such matroid two-sided markets arise naturally if, for
example, every employer is interested in hiring a fixed number of workers or if the
workers can be partitioned into different classes and a certain number of workers
from each class is to be hired. We define correlated matroid two-sided markets
analogously to the singleton case, that is, there is a payoff p,, € N associated
with every pair (z,y) € X x Y such that p,(y) = py(x) = pg.y-

2.2.1 Better Response Dynamics

In this section, we consider the random better response dynamics and present
instances for which it takes with high probability an exponential number of steps
to reach a stable matching. This is in contrast to the result due to Roth and
Vande Vate [RV90] that from every matching there exists a polynomial sequence
of better responses leading to a stable matching. In the following, we assume
that X = {wy,...,w,} and Y = {my,...,my} for some n € N. We present our
instances using an edge-weighted bipartite graph with an edge for each pair of
woman and man. A woman w prefers a man m to a man m/’ if the weight of the
edge {w, m} is smaller than the weight of {w, m'}. On the other hand, a man m
prefers a woman w to a woman w’ if the weight of the edge {m,w} is larger than
the weight of the edge {m,w’}. The weights of the edges in the bipartite graph
are depicted in Figure [2.2.1] Before we analyze the number of better responses
needed to reach a stable matching, we prove a structural property of the instances
shown in Figure [2.2.1
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Lemma 2.2.1. For the family of two-sided markets that is depicted in Figure|2.2.1
a matching M 1is stable if and only if it is perfect and every woman has the same
payoff in M.

Proof. First we show that every perfect matching M in which every woman has the
same payoff is stable. One crucial property of our construction is that whenever
a woman w and a man m are married, the sum p,,(m) + py,(w) of their payoffs
is n — 1. In order to see this, assume that the edge between w and m has weight
[+ 1. Then there are [ men whom woman w prefers to m, i.e., p,,(m)=n—1—1.
Furthermore, there are n — 1 —[ women whom man m prefers to w, i.e., pp,,(w) = L.
This implies p,,(m) + pm(w) = n — 1, regardless of [. We consider the case that
every woman has payoff £ and hence every man has a payoff of n — 1 — k in M.
Assume that there exists a blocking pair (w,m). Currently w has payoff k, m has
payoff n — 1 — k, and w and m are not married to each other. Since (w, m) is a
blocking pair, p,,(m) > k and hence p,,(w) =n—1—py(m) < n—1—k = p, (M),
contradicting the assumption that (w,m) is a blocking pair.

Now we have to show that a state M in which not every woman has the
same payoff cannot be a stable matching. We can assume that M is a perfect
matching as otherwise it obviously cannot be stable. Let M be a perfect matching
and define [(M) to be the lowest payoff that one of the women receives, i.e.,
I(M) = min{p,(M) | w € X}. Furthermore, by L(M ) we denote the set of women
receiving payoff I(M), i.e., L(M) = {w € X | pp,(M) = I(M)}. We claim that
there exists at least one woman in L(M) who forms a blocking pair with one of
the men.

First we consider the case that the lowest payoff is unique, i.e., L(M) = {w}.
Let m be the man with p,,(m) = [(M)+1. We claim that (w, m) is a blocking pair.
To see this, let M’ denote the matching obtained from M by resolving (w, m). We
have to show that the payoff p,, (M) of man m in matching M is smaller than
his payoff p,,(M’) in M’. Due to our construction p,(M') = n — 1 — py,(m)
and p,,(M) = n — 1 — py/(m), where w' denotes m’s partner in M. Due to
our assumption, w is the unique woman with the lowest payoff in M. Hence,
P (M) = pur (M) > pyy(M) = py(m) — 1. This implies pp,(M') > pp (M), which
in turn implies p,, (M) > p, (M) since w # w’, and hence, (w,m) is a blocking
pair.

It remains to consider the case that the woman with the lowest payoff is not
unique. We claim that also in this case we can identify one woman in L(M) who
forms a blocking pair. Let w(!) € L(M) be chosen arbitrarily and let m(!) denote
her partner in M. Let m®) denote the man with p,,q)(m®) = p, ) (m™M) +1 and
let w? denote the woman married to m® in M. If the payoff of w® in M is
larger than the payoff of w(® in M, then by the same arguments as for the case
|L(M)| = 1 it follows that (w®),m(?)) is a blocking pair. Otherwise, if p, ) (M) =
P (M), we continue our construction with w®. To be more precise, we choose
the man m®) with p_ e (m®)) = p_ e (m®) + 1 and denote by w® his partner
in M. Again either w® € L(M) or (w®,m®) is a blocking pair. In the former
case, we continue the process analogously, yielding a sequence m), m® m®) .
of men. If the sequence is finite, a blocking pair exists. Now we consider the case
that the sequence is not finite. Let j € {1,...,n} be chosen such that m® = m;.
Due to the weights shown in Figure @, it holds m® = M(j—i mod n)+1 for @ € N.
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Hence, in this case, every man appears in the sequence, and hence, every woman
has the same payoff [(M). O

Now we can prove that with high probability the number of better responses
needed to reach a stable matching is exponential.

Theorem 2.2.2. There exists an infinite family of two-sided markets Iy, Is, I3, . ..
and corresponding matchings My, Mo, Ms, ... such that, for n € N, I, consists of
n women and n men and a sequence of random better responses starting in M,
needs 24" steps to reach a stable matching with probability 1 — 2~ "),

Proof. We consider the instances shown in Figure [2.2.1] In Lemma [2.2.1] we have
shown that in any stable matching all women have the same payoff. For a given
matching M, we are interested in the most common payoff among the women and
denote by x (M) the number of women receiving this payoff, i.e.,
X(M) = max HweX|py(M)=i}| .

1€{0,...,n—1}
In the following, we show that whenever y (M) is at least 15n/16, then x(M) is
more likely to decrease than to increase. This yields a biased random walk that
takes with high probability exponentially many steps to reach x(M) = n. If the
most common payoff is unique, which is always the case if x(M) > n/2, then we
denote by X’(M) the set of women receiving this payoff and by )’'(M) the set of
men matched to women from X’ (M).

Let § = 15/16 and assume that x(M) > dn. First, we consider the case that
the current matching M is not perfect, i.e., there exists at least one unmatched
woman w and at least one unmatched man m. We call a blocking pair good if for
the matching M’ obtained from resolving it, x(M') < x(M) — 1. On the other
hand, we call a blocking pair bad if x(M') = x(M)+1 or if M is a perfect matching.
Let us count the number of good and of bad blocking pairs. Let k£ denote the most
common payoff. Both the unmarried woman w and the unmarried man m form
a blocking pair with each person who prefers her/him to his/her current partner.
Since the current payoff of the women in X'(M) is k, at most & of these women do
not improve their payoff by marrying the unmarried man m. Analogously, since
the payoff of the men in )'(M) is n — 1 — k, at most n — 1 — k of these men do not
improve their payoff by marrying the unmarried woman w. This implies that the
number of good blocking pairs is at least max{on—k,on—n+1+k} > (6—1/2)n.
On the other hand, there can be at most (1 — d)n + 1 bad blocking pairs. This
follows easily because only women from X \ X’(M) can form bad blocking pairs
and each of these women forms at most one bad blocking pair as there is only one
man who is at position n — k in her preference list. Furthermore, there exists at
most one blocking pair that makes the matching perfect.

The aforementioned arguments show that for a matching M with x (M) > on
and sufficiently large n, the ratio of good blocking pairs to bad blocking pairs is

bounded from below by
(0 —1/2)n - 7
1-0n+1~2"
This implies that the conditional probability of choosing a good blocking pair
under the condition that either a good or a bad blocking pair is chosen is bounded

from below by 7/9.
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Figure 2.2.2: Transition probabilities of the random walk.

If a good blocking pair is chosen, y decreases by at least 1. If a bad blocking
pair is chosen, x increases by 1 or the matching obtained is perfect. In the latter
case, after the next step again a matching M” is obtained that is not perfect. For
this matching M”, we have x(M") < x(M)+2. Since we are interested in proving
a lower bound, we can pessimistically assume that the current matching is not
perfect and that whenever a bad blocking pair is chosen, x increases by 2. Hence,
we can obtain a lower bound on the number of better responses needed to reach a
stable state, i.e., a state M with x(M) = n, by considering a random walk on the
set {[on],[dn] +1,...,n} that starts at [dn], terminates when it reaches n, and
has the transition probabilities as shown in Figure This is a biased random
walk. If we start with an arbitrary matching M satisfying x(M) < dn, then
one can show by applying standard arguments from the theory of random walks
(see, e.g., [Fel68]) that the biased random walk takes 2(") steps with probability
1 — 272" to reach state n. O

2.2.2 Best Response Dynamics

In this section, we study the best response dynamics in two-sided markets. We
start by presenting an example that shows that this dynamics can cycle.

Theorem 2.2.3. There exists a two-sided market with three women and three men
in which the best response dynamics can cycle.

Proof. Let wi,ws,ws denote the women and let mq, mo, ms denote the men. We
choose the following preference lists for women and men:

w1 meo ms3 ma ma w1 w3 w9
w9 mi mo ms mo w9 w1 w3
w3 | m3 mi mz m3 | w1 w2 w3

We describe a state by a triple (z,y, z), meaning that the first woman is married
to man m,, the second woman to man m,, and the third woman to man m.. A
value of —1 indicates that the corresponding woman is unmarried. The following
sequence of states constitutes a cycle in the best response dynamics:

(-1,2,3) — (3,2,-1) — (3,1,—1) — (3,—-1,1)
- (2,-1,1) = (—-1,2,1) — (-1,2,3) . O
Roth and Vande Vate [RV90] show that from every matching there exists a

polynomial sequence of better responses leading to a stable matching. We show
that this is also true for the best response dynamics.

Theorem 2.2.4. For every two-sided market with n women and m men and every
matching M, there exists a sequence of at most 2nm best responses starting in M
and leading to a stable matching.
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Figure 2.2.3: Nodes in the upper and lower row correspond to women and men,
respectively. The figure also shows the initial state and the preference lists. The lists
are only partially defined, but they can be completed arbitrarily.

Proof. We divide the sequence of best responses into two phases. In the first phase,
only married women are allowed to change their marriages. If no married woman
can improve her payoff anymore, then the second phase starts. In the second
phase, all women are allowed to play best responses in an arbitrary order. In the
first phase, we use the potential function

O(M) =) (m—ps(M)) ,

reX

where X denotes the set of married women. This potential function decreases
with every best response of a married woman by at least 1 because this woman
increases her payoff and the set X can only become smaller. Since ® is bounded
from above by nm, the first phase terminates after at most nm best responses in
a state in which no married woman can improve her payoff.

Now consider the second phase. We claim that if we start in a state M’ in
which no married woman can improve her marriage, then every sequence of best
responses terminates after at most nm steps in a stable matching. Assume that
we start in a state M’ in which no married woman can improve her marriage and
that an unmarried woman plays a best response and marries a man x, leading
to state M”. Then the payoff of x can only increase. Hence, man x does not
accept proposals in state M"” that he did not accept in M’. This implies that also
in M"” no married woman can improve her marriage. Since no married woman
becomes unhappy with her marriage, men are never left and therefore they can
only improve their payoffs. With every best response one man increases his payoff
by at least 1. This concludes the proof of the theorem as each of the m men can
increase his payoff at most n times. O

Finally, we also extend Theorem to the best response dynamics.

Theorem 2.2.5. There exists an infinite family of two-sided markets Iy, Is, I3, . ..
and corresponding matchings My, Mo, Ms, ... such that, for n € N, I, consists of
n women and n men and a sequence of random best responses starting in M, needs
224" steps to reach a stable matching with probability 1 — 2—n),

Proof. For every large enough n € N, we construct an instance I,, with n women
and n men in Which the preference lists and the initial state M, are chosen as
shown in Figure That is, every woman w; with ¢ € {2,...,n} prefers man
mi—1 to man m; Whom she prefers to every other man. Woman wy prefers the
men My /g, - - -, Mp—1 to man my whom she prefers to every other man. Man m;
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(a) Matching from M. (b) w1 proposes to my if 2+ < k < n.

H

(¢) A new diagonal is introduced.

Figure 2.2.4: One phase of the best response dynamics.

prefers woman w; to woman wy whom he prefers to every other woman. Every
man m; with i € {2,...,n— 1} prefers woman w; to woman w;;1 whom he prefers
to woman w; whom he prefers to every other woman. Man m,, prefers woman wy,
to all other women.

Let M denote the set of matchings that contain the edges

(w17m1)7 sy (wj*27 mj*Q)a (wj?mjfl)v R (wk’7mk—1)7

(Wht1, Mbt1)5 - - -5 (Wi, M), (W2, Mig1)s - -+ (W, Mp—1)

for some j < k < [ with n/16 < k—j < n/4, k < n/4, and | > 5n/8 (cf.
Figure (a)). We claim that if one starts in a matching that belongs to M,
then with probability 1—27<", for an appropriate constant ¢ > 0, another matching
from M is reached after ©(n) many steps. Since no matching from M is stable,
this implies the theorem.

If the current matching belongs to M, then there are at most three women
who have an incentive to change their marriage. Woman w;_; can propose to
man m;_i, woman w41 can propose to man my, and, if [ < n, woman w;y; can
propose to man m;y1. Intuitively, as long as we are in a state that belongs to M,
there exists one block of diagonal marriages in the first half, and possibly a second
block at the right end of the gadget. In every step the left end of the first block,
the right end of the first block, and the left end of the second block move with
the same probability one position to the right. Since the length of the first block
is (n), one can show by a standard application of a Chernoff bound that the
probability that the first block vanishes, i.e., its left end catches up with its right
end, before its right end reaches man m, is exponentially small. Furthermore,
since the distance between the first and the second block is ©(n), the probability
that the right end of the first block catches up with the left end of the second
block before the second block has vanished is also exponentially small.

When the right end of the first block has reached man mg, /g, 1.e., myzy,/g is
unmarried, then with probability exponentially close to 1, the second block has
already vanished (see Figure [2.2.4] (b)) because the initial distance between the
two blocks is at least 3n/8 and only with probability 2™ it decreases to n/8
before the second block vanishes. Now consider the case that the second block has
vanished and the right end of the first block lies in the interval {7n/8,...,n — 1},
woman wj has an incentive to change her marriage since she prefers m; with
ke {mn/8,...,n — 1} to m;. Once she has changed her strategy, a new block of
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diagonals can be created on the left end of the gadget (see Figure (¢)). In
particular, woman w; will only return to ms if no man my, with k € {7n/8,...,n—
1} is unmarried, that is, she will only return to my if the right end of the first block
has reached man m,,. Since it is as likely that a new diagonal at the beginning is
inserted as it is that the right end of the block moves one position further to the
right, the expected length of the newly created block is n/8. By Lemma it
follows that the length of the new block lies with high probability in the interval
[n/16,n/4]. Only with exponentially small probability the left end of the block
has not passed man ms, /g when the right end has reached man m,, because this
would imply that the length of the block has increased from at most n/4 to 3n/8.
If none of these exponentially unlikely failures events occurs, we are again in a
matching from M. O

In the following lemma, we use the notion of a geometric random variable with
parameter 1/2. Such a random variable X describes in a sequence of Bernoulli
trials with success probability 1/2, the number of failures before the first success
is obtained, that is, for i € {0,1,2,...}, Pr[X =i] = (1/2)"*L.

Lemma 2.2.6. Let X be the sum of n/8 geometric random variables with param-
eter p=1/2. There exists a constant ¢ > 0 such that

Pr(X ¢ [n/16,n/4]] <2e™ " .

Proof. The random variable X is negative binomially distributed with parameters
n/8 and 1/2. For a series of independent Bernoulli trials with success probability
1/2, the random variable X describes the number of failures before the (n/8)-th
success is obtained. For a € N, let Y, be a binomially distributed random variable
with parameters a and 1/2. Then

Pr(X > n/4] = Pr[Ys,s <n/8] = Pr [an/g < gE[ng/S]] <emen

where the last inequality follows, for an appropriate constant ¢ > 0, from a Chernoff
bound (see, e.g., Theorem [B.2.1)). Furthermore,

4
Pr(X <n/16] = Pr Y3,/ > n/8] = Pr [Y?m/w > gE [1/3,1/16]} <e ™. O

2.2.3 Correlated Two-Sided Markets

In this section, we show that in contrast to general two-sided markets, correlated
two-sided markets are potential games in which the random better and best re-
sponse dynamics converge in expected polynomial time.

Theorem 2.2.7. Correlated two-sided markets are potential games, that is, the
better response dynamics cannot cycle.

Proof. We prove the theorem using a potential function ®: M — N where M
denotes the set of all matchings and m is the number of resources. The potential
function ® maps a matching M to the vector (®1(M),..., D, (M)), where &;(M)
denotes the i-th highest payoff received by one of the resources in M. We use the
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convention that a resource has a payoff of —1 if it is unmatched. Let M denote the
current matching and assume that a player x € X plays a better response, which
leads to a matching M’. We show that ®(M’) is lexicographically larger than
®(M). Let 3y denote the resource to which player = is matched in M’. There are
two possible cases: either player z is unmatched in matching M or she is matched
to a resource gy in matching M. In the first case, the only change in the potential is
that the payoff of resource 1/ increases. Hence, also the potential increases in that
case. In the second case, player x improves and hence, p,(y') > p.(y). Since we
deal with correlated markets, we obtain p,/(x) = p.(y') > p2(y) = py(z). In the
potential function, the element p,(x) is removed and the element p,/(x) is added
and hence, the potential function increases lexicographically. O

It is easy to prove that correlated two-sided markets are not only potential
games, but that also the random better and best response dynamics converge in
expected polynomial time.

Theorem 2.2.8. In correlated two-sided markets, the random better and best re-
sponse dynamics reach a stable matching in expected polynomial time.

Proof. Let n denote the number of players and let m denote the number of re-
sources. We first consider the best response dynamics. Let p denote the highest
possible payoff that can be achieved. As long as no pair (z,y) € X x Y with
py(x) = p is contained in the matching, there exists one player whose best re-
sponse would result in such a pair. Since this player is allowed to play a best
response with probability at least 1/n in each step, it takes O(n) best responses
until a pair (z,y) € X x Y with p,(z) = p is contained in the matching in ex-
pectation. After that, player x never leaves resource y anymore. Furthermore, x
cannot be displaced from y since no player is strictly preferred to x by resource y.
Hence, the assignment of x to y can be fixed and we can remove x and y from the
game. By this, we obtain another two-sided market with one player and resource
less, and we can inductively apply the same argument to this game. Hence, the
random best response dynamics terminates after O(n?) steps in expectation.
Similar arguments can also be applied to the random better response dynamics.
As long as no pair with the highest possible payoff p is formed, there is at least one
blocking pair (z,y) with p,(z) = p. Since there can be at most nm blocking pairs,
it takes O(nm) steps in expectation until an assignment with profit p is obtained.
Then we can remove player x and resource y and apply the same argument to the
remaining two-sided market. O

Correlated Matroid Two-Sided Markets

In matroid two-sided markets, we consider a restricted class of better responses,
so-called lazy better responses, introduced in [ARV06D]. Given a state S, we call a
better response of a player z € X from S, to S, lazy if it can be decomposed into
a sequence of strategies S, = S9,SL ..., Sk = S’ such that |Sit!\ Si| = 1 and
the payoff of player z in state S @ Sit! is strictly larger than her payoff in state
S® St for all i € {0,...,k—1}. That is, a lazy better response can be decomposed
into a sequence of additions and exchanges of single resources such that each step
strictly increases the payoff of the corresponding player. In Lemma we show
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that for matroid strategy spaces, there does always exist a best response that is
lazy. In particular, the best response that exchanges the least number of resources
is lazy, and in singleton games, every better response is lazy.

Theorem 2.2.9. Correlated matroid two-sided markets are potential games with
respect to the lazy better response dynamics.

Proof. The theorem follows by the same potential function as Theorem Let
S denote a state and assume that a player z € X plays a lazy better response
and changes her strategy from S, to S.. Since the better response is lazy, it can
be decomposed into a sequence of strategies S, = S9, S ..., S* = S’ such that
|SiL\ S¢| = 1 and the payoff of player x in state S @ Sit! is strictly larger than
her payoff in state S @ S: for all i € {0,...,k — 1}. By the same arguments as in
Theorem it follows that the potential of S @ Sit! is lexicographically larger
than the potential of S @ S¢ for every i € {0,...,k— 1}, yielding the theorem. [

We show that the restriction to lazy better responses in Theorem [2.2.9 is
necessary because even the best response dynamics can cycle in correlated matroid
two-sided markets.

Theorem 2.2.10. The best response dynamics in correlated matroid two-sided
markets can cycle.

Proof. Let X = {1,2} denote the players and let V = {a, b, ¢,d} denote the mar-
kets. The set of strategies of player 1 is

F1={0,{a},{d}}

and the set of strategies of player 2 is

Fa =A{0,{a}, {0}, {c}, {d}, {a, b}, {b, c},{c, d}, {a,d}} .

The payoffs associated with the possible edges in X x ) are defined as follows:

Pla =5P1,d =3,p2a="7,p2p =L, p2c="T,p24=2 .

Given these payoffs, the following sequence of states is a cycle in the best response
dynamics:

({d},{a,d}) — ({d}, {b,c}) — ({a}, {b,c}) — ({a}, {a,d}) — ({d},{a,d}) . O

Correlated matroid two-sided markets are not only potential games with re-
spect to the lazy better response dynamics, but they also converge in expected
polynomial time if at each point in time a player is chosen uniformly at random
and allowed to play a lazy best response.

Theorem 2.2.11. In correlated matroid two-sided markets, the random lazy best
response dynamics converges to a stable matching in expected polynomial time.

Proof. The proof follows the arguments in Theorem Let p denote the highest
possible payoff that can be achieved. It takes O(n) best responses in expectation
until a pair (z,y) € X x Y with p,(z) = p is contained in the matching. This
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follows since players allocate optimal bases and an optimal basis of a matroid must
contain the most valuable element. After an edge (x,y) € X x ) with py(z) = p is
contained in the matching, player x will never leave resource y again because she
only plays lazy best responses. Furthermore, x cannot be displaced from y since
no player is strictly preferred to x by resource y. Hence, the assignment of x to y
can be fixed and we can modify the strategy space of by contracting its matroid
by removing y (see Appendix |A|for a formal definition of this operation). By this
contraction, we obtain another matroid two-sided market in which the rank of x’s
matroid is decreased by 1. Now we can inductively apply the same argument to
this game. O

2.3 Player-Specific Congestion Games with Priorities

In Section we introduced player-specific congestion games with priorities, in
which each resource r € R assigns a priority or rank rk.(i) to every player i € N.
For a state S, let rk,(S) = max;.,eg, rkr(7) denote the rank of the resource r. We
say that player i allocates resource r if r € S;, and we say that player i is assigned
to resource r if r € S; and rk, (i) = rk,(S). We define n)(S) to be the number of
players that are assigned to resource r, that is, the number of players i with r € S;
and 1k, (i) = 1k, (S). The delay that an assigned player i incurs on 7 is d.(n?(9)),
where d’. denotes a non-decreasing delay function. Players who allocate a resource
but are not assigned to it incur an infinite delay. We say that the priorities are
consistent if the priorities assigned to the players coincide for all resources. Since
in singleton congestion games, each player can allocate only one resource at each
point in time, we can specify the state of a singleton congestion game by a vector
(r1,...,mn) € R™, where r; denotes the resource allocated by player i € N.

This model can also be seen as a model of two-sided markets with ties. We
define a two-sided market with ties to be a two-sided market in which the preference
lists of the resources can have ties. Assume that every player i € N proposes to a
resource ;. We say that a player ¢ € N is matched to resource r € R if r = r; and
if there is no player j € N such that r = r; and j is strictly preferred to @ by r.
For a resource r, we denote by n,(S) the number of players proposing to r and by
nr(S) the number of players that are matched to r. We assume that every player
i has a non-increasing payoff function p’: N — N for every resource r. A player
i who is matched to resource r receives a payoff of pi(n*(S)). Also for two-sided
markets with ties, we call a state S a stable matching if none of the players can
increase her payoff given the proposals of the other players.

In the remainder of this section, we use the terminology of congestion games.
Our results do not only hold for singleton congestion games, in which the strategy
spaces of the players consist of singleton sets, but also for matroid congestion
games, in which the strategies of each player are the bases of some matroid over
the resources. To be more precise, for i € N, we denote by Z; the set {X | X C
Y € %}, and we assume that the set system (R, Z;) is a matroid whose set of bases
is ¥;. For a matroid congestion game I'; we denote by rk(I') the maximal rank of
one of the strategy spaces of the players. Examples of matroid congestion games
are singleton games and games in which the resources are the edges of a graph and
every player has to allocate a spanning tree. Again, these games can also be seen
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as an extension of two-sided markets in which each player can propose to a subset
of resources instead of only one, so-called many-to-one markets, and in which the
preference lists of the resources can have ties. We first state our results for the
singleton case and present the extension to the matroid case in Section [2.3.3

2.3.1 Congestion Games with Priorities

In this section, we consider singleton congestion games with priorities but without
player-specific delay functions. For games with consistent priorities, we show that
the better response dynamics reaches a Nash equilibrium after a polynomial num-
ber of rounds. We use the term round to denote a sequence of activations of players
in which every player gets at least once the chance to improve. For example, our
result implies that a polynomial (expected) number of better responses suffices if
players are activated in a round-robin fashion or uniformly at random. We also
prove that games in which different resources can assign different priorities to the
players are potential games. We leave open the question whether they converge in
a polynomial number of rounds.

Theorem 2.3.1. In singleton congestion games with consistent priorities, the
better response dynamics reaches a Nash equilibrium after a polynomial number of
rounds.

Proof. Teong et al. [IMNT05] prove that in singleton congestion games every se-
quence of better responses terminates in a Nash equilibrium after a polynomial
number of steps. Since the players with the highest priority are not affected by
the other players, the result by leong et al. shows that after a polynomial number
of rounds, none of them has an incentive to change her strategy anymore. From
that point on, the strategies of these players are fixed and we can again apply
the result by Ieong et al. to the players with the second highest priority. After a
polynomially number of rounds, also none of them has an incentive to change her
strategy anymore. After that, the argument can be applied to the players with
the third highest priority and so on. O

Next we consider congestion games in which different resources can assign
different priorities to the players.

Theorem 2.3.2. Singleton congestion games with priorities are potential games.

Proof. We set D = (NU {oco}) x N and for elements z = (x1,22) € D and y =
(y1,y2) € D we denote by “<” the lexicographic order on D in which the first
component is to be minimized and the second component is to be maximized, i.e.,
we define z < y if and only if 1 < y1 or if x1 = y; and x2 > y2. We construct a
potential function ®: ¥; X --- x 3, — D" that maps every state S = (r1,...,7y)
to a vector of values from D. In state S, every resource r € R contributes n,(.5)
values to the vector ®(5) and ®(5) is obtained by sorting all values contributed by
the resources in non-decreasing order according to the lexicographic order defined
above. Resource r contributes the values (d,(1), 1k, (S5)),..., (d-(n:(S)), rk.(5)) to
the vector ®(5) and n,(S) — n;(S) times the value (c0,0). We claim that if state
S’ is obtained from S by letting one player play a better response, then ®(S’) is



2.3. Player-Specific Congestion Games with Priorities 53

lexicographically smaller than ®(S), i.e., there is a k with ®;(S) = ®;(S’) for all
7 < k and (I)k(S,) < CI)k(S)

Assume that in state S player i plays a better response by changing her al-
location from resource r; to resource r,. We compare the two vectors ®(S) and
®(S’), and we show that the smallest element added to the potential vector is
smaller than the smallest element removed from the potential vector, showing that
the potential decreases lexicographically. Due to the strategy change of player
i, either the value (d,,(ny,(5)),rk,(S)) or the value (00,0) is replaced by the
value (d,/ (n7,(5')),1k,/(S")). Since player i plays a better response, d,(n},(S")) <
dr,(ny,(S)) or dyr(ny,(S")) < oo, respectively, and hence, the term added to the
potential is smaller than the term removed from the potential. In the following we
show that all values that are contained in ®(S) but not in ®(S’) are larger than
(dp(ny,(S")), 1k, (S7)). Clearly, only terms for the resources r; and r; change and
we can restrict our considerations to these two resources.

Let us consider resource r; first. If the rank of r; does not decrease by the
strategy change of player i or if no player allocates resource r; in state S’, then
only the term (d,(n;,(S5)),rk;,(S)) or (c0,0) is not contained in the vector ®(S5")
anymore. All other terms contributed by resource r; do not change. If the rank of
resource 7; is decreased by the strategy change of player i, then additionally some
terms (0o, 0) in the potential are replaced by other terms. Obviously, the removed
terms (oo, 0) are larger than (d.(n}, (S")), vk, (5")).

Now we consider resource r}. If tlhe rank of 7} does not increase by the strategy
change of player ¢ or if no player allocates r, in state S, then only the term
(d (n:f;(S’ ), 1k, (S)) is added to the potential. All other terms contributed by

r; do not change. If the rank of ] is increased by the strategy change of player 1,
then additionally the terms (d,. (1), k. (5)), ..., (dy (n7,(5)), rk. (S)) are replaced
by 1 (S) terms (00,0). In this case, n* (S’) = 1 and the smallest removed term,
(drg(ll),rkT;(S)), is larger than (drg(l),rszg(S/)) = (dp(n},(S8')), 1k, (")) because
tk,((S') > ke (S). l 0

2.3.2 Player-Specific Congestion Games with Priorities

In this section, we consider singleton congestion games with priorities and player-
specific delay functions and we show that these games always possess Nash equi-
libria. Our proof also yields an efficient algorithm for finding an equilibrium.

Theorem 2.3.3. Fvery player-specific singleton congestion game with priorities
possesses a pure Nash equilibrium that can be computed in polynomial time by
O(m -n3) strategy changes.

Proof. In order to compute an equilibrium, we compute a sequence of states
59 ..., 8% such that SO is the state in which no player allocates a resource and S*
is a state in which every player allocates a resource. Remember that we distinguish
between allocating a resource and being assigned to it. Our construction ensures
the invariant that in each state S® in this sequence, every player who allocates a
resource has no incentive to change her strategy. Clearly, this invariant is true for
S9 and it implies that S* is a pure Nash equilibrium.
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In state S® we pick an arbitrary player ¢ who is allocating no resource and we
let her play her best response. If in state S* there is no resource to which 7 can
be assigned, then ¢ can allocate an arbitrary resource without affecting the players
who are already allocating a resource and hence without affecting the invariant.
It remains to consider the case that after her best response, player ¢ is assigned
to a resource r. If we leave the strategies of the other players unchanged, then
the invariant may not be true anymore after the strategy change of player 7. The
invariant can, however, only be false for players who are assigned to resource r in
state S®. We distinguish between two cases in order to describe how the strategies
of these players are modified in order to maintain the invariant.

First we consider the case that the rank of resource r does not change by the
strategy change of player . If there is a player j who is assigned to resource r in
S and who can improve her strategy after ¢ is also assigned to r, then we change
the strategy of j to the empty set, i.e., in state S*t! player j belongs to the set
of players who do not allocate any resource. Besides this, no further modifications
of the strategies are necessary because all other players are not affected by the
replacement of j by ¢ on resource r. In the case that the rank of resource r increases
by the strategy change of player 7, all players who are assigned to resource r in
state S¢ are set to their empty strategy in S+,

It only remains to show that the described process terminates after a polyno-
mial number of strategy changes in a stable state. We prove this by a potential
function that is the lexicographic order of two components. The most important
component is the sum of the ranks of the resources, i.e., Y  prk.(5%), which
is to be maximized. Observe that this sum does not decrease in any of the two
aforementioned cases, and that it increases strictly in the second case. Thus we
need to show that after a polynomial number of consecutive occurrences of the
first case, the second case must occur. Therefore, we need a second and less im-
portant component in our potential function. In order to define this component,
we associate with every pair (i,7) € N'x R for which i is assigned to r in state S*
a tolerance toly (i, r) that describes how many players (including i) can be assigned
to 7 without changing the property that r is an optimal strategy for i, i.e.,

min{max{b | in S, r is best resp. for 7 if i shares r with b — 1 players},n} .

The second component of the potential function is the sum of the tolerances of the
assigned pairs in S%, which is to be maximized. We denote the set of assignments
in state S by E* C N x R and define the potential function as

(5% = [ Y rke(SY), Y tola(i,r)

reR (i,r)€E®

In every occurrence of the first case, the second component increases by at least 1.
Since the values of the components are bounded from above by m - n and n? and
bounded below from 0, the potential function implies that there can be at most
m-n?3 strategy changes before an equilibrium is reached. This does not include the
last strategy change of players who are not assigned to any resource in the final
state. In their last strategy change, these players allocate an arbitrary resource,
which does not affect the potential. However, there are less than n such strategy
changes. 0
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Let us remark that the potential function does not imply that the considered
games are potential games because it increases only if the strategy changes are
made according to the above described policy.

2.3.3 Extensions to Matroid Strategy Spaces

In this section, we study player-specific congestion games with priorities in which
each strategy space ¥; consists of the bases of a matroid over the resources. For
this setting, we generalize the results that we obtained for the singleton case.

Theorem 2.3.4. In matroid congestion games with consistent priorities, the best
response dynamics reaches a Nash equilibrium after a polynomial number of rounds.

For matroid congestion games, it is known that every sequence of best responses
reaches a Nash equilibrium after a polynomial number of steps [ARV06a]. Using
this result yields the theorem analogously to the proof of Theorem [2.3.1

Theorem 2.3.5. Matroid congestion games with priorities are potential games
with respect to lazy better responses.

Since lazy best responses (cf. Section can be decomposed into exchanges
of single resources, the same potential function as in the proof of Theorem [2.3.2]
also works for the matroid case. The restriction to lazy better responses in Theo-
rem [2.3.5] is necessary, as shown by the following result.

Theorem 2.3.6. The best response dynamics in matroid congestion games with
priorities can cycle.

Proof. Let N' = {1,2} denote the players and let R = {a,b,c,d} denote the
resources. The set of strategies of player 1 is

Y1 = {{a}, {d}}

and the set of strategies of player 2 is

Yo = {{a,b},{b,c},{c,d}, {a,d}} .

Resource a assigns a higher priority to player 2, and resource d assigns the same
priority to both players. The delay functions are chosen as follows:

da(1) = 1,dp(1) = 3,do(1) = 1,dg(1) = 2,dg(2) = 4 .

Given these delays, the following sequence of states is a cycle in the best response
dynamics:

({d},{a.d}) — ({d},{b,c}) — ({a}.{b,c}) — ({a},{a.d}) — ({d},{a.d}) . O
Similar arguments as for Theorem [2.3.3] yield the following generalization.

Theorem 2.3.7. Fvery player-specific matroid congestion game I' with priorities
possesses a pure Nash equilibrium that can be computed in polynomial time by
O(m - n® - 1k(T)) strategy changes.
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Proof. For i € N, we denote by Z; the set {X | X C Y € %,;}, and we assume
that the set system (R,Z;) is a matroid. We use the same arguments as in the
proof of Theorem that is, we compute a sequence of states S°,. .., S* such
that S is the state in which every player allocates the empty set and S* is a Nash
equilibrium. In contrast to the definition of matroid congestion games, where each
player ¢ is required to allocate a basis from ¥;, we also allow partial strategies from
7Z; in states S* with a < k. To be precise, in states S* with a < k it can happen
that the set of resources that a player allocates is a strict subset of a basis. For
a player ¢ € N, let R¢ C R denote the set of resources she can be assigned to in
state S, i.e., R contains exactly those resources that are in state S not assigned
to a player that they strictly prefer to i. Let M¢ = (R?,3¢) denote the matroid
that is obtained from M; by deleting all resources in R \ R (see Appendix |A| for
a formal definition of this operation). The following invariant will be true for all
states S.

Invariant 2.3.8. For every player i € N, there ezists a basis B} € ¥¢ of the
matroid M$ with S{ C B that has minimum delay given the partial strategies of
the other players in S®.

That is, if the other players do not change their strategies, no player is forced
to leave resources that she currently allocates in order to obtain a basis with
minimum delay. If the basis B{ of the matroid M is not a basis of the matroid
M;, then player ¢ has no strategy with finite delay given the partial strategies of
the other players in S°.

Now we describe how state S9! is obtained from state S¢. If in state S°
every player 7 allocates a basis of the matroid MY, then due to the invariant, an
equilibrium S*! is obtained from S® by letting each player i allocate an arbitrary
basis Bf“ of M; with S C BZ‘.‘H. Assume that there exists a player i € N’ who
is not allocating a basis of M?. In order to obtain S**!, we choose an arbitrary
resource r € B¢\ S and let player i allocate 7, i.e., we set S¢™! = S U {r}. If we
leave all other strategies unchanged, then the invariant may not be true anymore.

We distinguish between three different cases in order to determine the strategies

of the other players in state Se+1.
1. If no player allocates r in S®, then S]‘”l =S¢ for all j € N\ {i}.

2. If 7 is ranked higher in r’s preference list than the players assigned to r in
5%, then resource r is removed from the strategies of all players assigned to
r in S%, i.e., for all these players j we set S?H = 57\ {r}. The strategies of
all other players remain as in S¢.

3. If 7 is tied in 7’s preference list with the players assigned to r in state S¢,
then we check whether the invariant stays true if additionally i is assigned
to r. If this is not the case, then we remove one player k from r for whom
the invariant becomes false, i.e., we set S{ =S¢\ {r} and S}”’l = S7 for

all j € N'\ {i, k}.

First we show that the invariant stays true in all three cases. This is based on
the following property of matroids, which is proven in Appendix [A]
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Lemma 2.3.9. Let (R,Z) be a matroid with weights w: R — N and let B be a
basis of minimum weight. If the weight of a single resource r € B is increased
such that B is no longer of minimum weight, then, in order to obtain a basis of
minimum weight, it suffices to exchange r with a resource v’ € R of minimum
weight such that BU {r'} \ {r} is a basis.

Consider the first case and assume that the invariant is true in state S%. Since
no player is assigned to resource r in state S, there is no player whose current delay
is increased by assigning 4 to r, but there can be players j € N with r € Bj. For
these players, either Bf is still a basis of minimum delay or, due to Lemma @,
they can choose a basis B;?H with S;l C B}-"H of minimum delay given that i is
assigned to r. Since players j € N with r ¢ B} are not affected by the strategy
change of player 7, the invariant is also true in state S®!. In the second case, the
invariant stays true for all players who are assigned to r in state S because they
just need to exchange r with another resource to obtain a basis with minimum
delay again due to Lemma [2.3.9] It stays true for all other players j with r € B}
due to Lemma and again players j € N with r ¢ B} are not affected by the
strategy change of player i. In the third case, for all players j € N \ {i,k} the
effects of the strategy changes of ¢ and k cancel each other out, and hence, these
players are not affected by the strategy changes of ¢ and k. The invariant stays
true for k due to Lemma 2.3.9

It only remains to show that the described process terminates after a poly-
nomial number of strategy changes in an equilibrium. This follows by the same
potential function as in the proof of Theorem [2.3.3] The upper bound on the
second component of the potential function increases by a rk(I') factor, which
accounts for the increased number of strategy changes. O
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CHAPTER 3

Pareto-Optimal Solutions

This chapter is devoted to the study of bicriteria integer optimization problems.
We prove the results discussed in Section[I.2]and state them in their full generality.
In the preliminaries, we introduce the considered semi-random input model and
define some notations used throughout the chapter. After that, we prove the upper
and lower bounds on the expected number of Pareto-optimal solutions. Then
we demonstrate that the upper bound can be used to simplify and to improve
the analysis of certain structural properties of semi-random integer optimization
problems. We conclude the chapter by showing how these structural properties
can be applied to analyze the smoothed complexity of integer programming and
to enumerating the Pareto set.

3.1 Preliminaries

In the model described in the introduction, an adversary specifies a set S C D"
of feasible solutions, an arbitrary weight function w: & — R and a linear cost
function c: S — R of the form ¢(z) = c1z1+- - -+ ¢ 2, with coefficients ¢y, ..., ¢, €
[—1, 1]. These coefficients are then randomly perturbed by adding an independent
Gaussian random variable with mean 0 and standard deviation o to each of them.
In other words, the costs are independent Gaussian random variables with standard
deviation o and the adversary can specify their mean values in [—1, 1]. Our analysis
does not make use of the fact that the costs are Gaussian random variables. In
fact, the adversary can specify arbitrary probability distributions with bounded
density and finite absolute mean values.

In the following, we assume that ¢; is a random variable with density f; and that
fi(z) < ¢; for all z € R. Furthermore, we denote by u; the expected absolute value
of ¢;, e, i = Ellcil] = [, cp 2] fi(x) dz. Let ¢ = max;c,) ¢i and p = maxepy) i,
and by slight abuse of notation, let ¢ not only denote the cost function, but also
the vector (ci,...,¢,). Then the cost ¢(x) of a solution z € S can be expressed
as ¢ - x. We denote by [n] the set {1,...,n}, we use the notations d = |D| and
D = max{a — b | a,b € D}, and we denote by H; the i-th harmonic number, i.e.,
H; = Zé‘:l j~1. Readers who are unfamiliar with continuous random variables
are referred to Appendix for a brief introduction.

Similar to the standard deviation o for Gaussian random variables, the param-
eter ¢ can be seen as a measure how close the analysis is to a worst-case analysis.
The larger ¢ is chosen, the more concentrated the probability mass can be. For

Gaussian and uniformly distributed random variables, ¢ is proportional to o ~!.



60 Chapter 3 — Pareto-Optimal Solutions

3.2 Expected Number of Pareto-Optimal Solutions

In this section, we analyze the expected number of Pareto-optimal solutions in
semi-random integer optimization problems.

3.2.1 Upper Bound

Since the costs are continuous random variables, the probability that there exist
two solutions with exactly the same costs is zero. Hence, we can ignore this event
and assume that no two solutions with the same costs exist. Furthermore, we
assume without loss of generality that there are no two solutions with the same
weight. If the adversary specifies a weight function in which two solutions have
the same weight, we apply an arbitrary tie-breaking, which can only increase
the expected number of Pareto-optimal solutions. The following theorem is a
generalization of Theorem [1.2.1]

Theorem 3.2.1. Let S C D" be a set of solutions with an arbitrary weight function
w: S — R with a finite domain D C Z. Let q denote the number of Pareto-optimal
solutions. Then, using the notations defined in Section|3.1

E[¢] <2DdH, (ﬁ: <Z5z‘> (i: Mz‘) +dn+1)+1 .
=1

i=1
For D=H{0,...,k— 1}, the bound simplifies to
E[q] = O(uon?k?logk) .

Notice that the number of Pareto-optimal solutions is not affected when all
weights are scaled by some positive constant ¢ > 0. Our bound is invariant under
this scaling too. The random variable ac; has maximal density ¢;/a and the
expected absolute value is ap;. Hence, the factor a cancels out in our bound.

Proof of Theorem[3.2.1. We start the proof by defining d subsets of the Pareto
set. We say that a Pareto-optimal solution = belongs to class a € D if there exists
an index ¢ € [n| with z; # a such that the succeeding Pareto-optimal solution
y satisfies y; = a, where succeeding Pareto-optimal solution refers to the Pareto-
optimal solution with the smallest weight among all solutions with lower cost than
x (cf. Fig.[3.2.1)). The Pareto-optimal solution with the lowest cost, which does not
have a succeeding Pareto-optimal solution, is not contained in any of the classes,
but every other Pareto-optimal solution belongs to at least one class. Let ¢, denote
the number of Pareto-optimal solutions in class a. Since ¢ < 143 1 qq, linearity
of expectation implies

E[g<1+) Elq] - (3.2.1)
a€D

In Lemma we present a method for bounding the expected number of
Pareto-optimal solutions in class 0. We conclude the proof of the theorem by
showing that counting the expected number of Pareto-optimal solutions in class
a for a € D with a # 0 can be reduced to counting the expected number of
Pareto-optimal solutions in class 0. Starting from the original set S, we obtain
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A

cost 4
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Yi = a

»

weigh?

Figure 3.2.1: Solution y succeeds solution x, which is class-a Pareto-optimal.

a modified set S by subtracting (a,...,a) from each solution vector x € S, i.e.,
S§* ={z - (a,...,a) | x € S}. This way, the cost of each solution is reduced
by a ¢;. Observe that this operation does not affect the set of Pareto-optimal
solutions if the weights of the solutions remain as in §. A solution x is class-
a Pareto-optimal in S if and only if the corresponding solution = — (a,...,a)
is class-0 Pareto-optimal in §%. Hence, the number ¢, of class-a Pareto-optimal
solutions in S corresponds to the number ¢o(S) of class-0 Pareto-optimal solutions
in 8¢ We apply Lemma for the solution set S® with a corresponding domain
D* = {z —a | z € D}. Since the difference between the largest and the smallest
element of the domain does not change, Lemma and Equation yield
that E[g| is bounded from above by

L+ D Elao(S9) <1+ 3 <2DHd (Z¢>> (Zu) +n+ 1) :

a€D a€D

yielding the theorem. O

In the next lemma, we present an upper bound on the expected number of
Pareto-optimal solutions in class 0.

Lemma 3.2.2. Let S C D™ be a set of solutions with an arbitrary weight function
w: S — R, where D C Z denotes a finite domain with 0 € D. Let qo denote the
number of class-0 Pareto-optimal solutions. Then

E[q] < 2DH, <Z ¢>i> (Zm) +n+1.
i—1

=1

Proof. If the vector 0" is a feasible solution, then we remove it from the set S.
Observe that if 0" is a Pareto-optimal solution, then its preceding Pareto-optimal
solution is class-0 Pareto-optimal, but it might not be class-0 Pareto-optimal with
respect to the modified solution set S\ {0™} anymore. Hence, removing 0" from
the set of feasible solutions can decrease the number of class-0 Pareto-optimal
solutions by one. We take this into account and assume in the following that 0"
does not belong to S.

The main part of the proof is an upper bound on the probability that there
exists a class-0 Pareto-optimal solution whose cost lies in a small interval (¢, ¢+ €],
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cost 4

Weigh?

Figure 3.2.2: If & is a class-0 Pareto-optimal solution, then there must be an index
¢ with 7 = 0 and £; # 0.

for some given t € R and ¢ > 0. Roughly speaking, if ¢ is smaller than the smallest
cost difference of two Pareto-optimal solutions, then this probability equals the
expected number of class-0 Pareto-optimal solutions in the interval (¢,¢+¢]. Then
we can divide R into intervals of length ¢ and sum these expectations to obtain
the desired bound on the expected number of Pareto-optimal solutions.

Let t € R be chosen arbitrarily. We define z* to be the solution from § with
the lowest weight among all solutions satisfying the constraint ¢ -z < t, that is,

x* = argmin w(z) .
z€S:cx<t
If x* exists, then it is Pareto-optimal. Let & denote the Pareto-optimal solution
that precedes z*, that is,

T= argmin  c-x .
zeSw(z)<w(z*)

See Fig. for an illustration of these definitions. We aim at bounding the
probability that & is a class-0 Pareto-optimal solution whose cost falls into the
interval (t,t+ €.

In order to upper bound the probability that there exists a class-0 Pareto-
optimal solution whose cost lies in the interval (¢,¢+ €], we classify class-0 Pareto-
optimal solutions to be ordinary or extraordinary. Considering only ordinary so-
lutions allows us to prove a bound that depends not only on the length ¢ of the
interval but also on |¢|, the distance to zero. This captures the intuition that it be-
comes increasingly unlikely to observe solutions whose costs are much larger than
the expected cost of the most expensive solution. The final bound is obtained
by observing that there can be at most n extraordinary class-0 Pareto-optimal
solutions.

We classify solutions to be ordinary or extraordinary as follows. Let x be a
class-0 Pareto-optimal solution and let y be the succeeding Pareto-optimal solu-
tion, which must exist as the Pareto-optimal solution with the lowest cost is not
class-0 Pareto-optimal. We say that z is extraordinary if for all indices i € [n]
with x; # 0 and y; = 0, all Pareto-optimal solutions z that precede x satisfy
z; # 0. In other words, for those indices ¢ that make x class-0 Pareto-optimal, y
is the Pareto-optimal solution with the largest cost that is independent of ¢; (see
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Figure 3.2.3: The solution z is an extraordinary class-0 Pareto-optimal solution if
z; # 0 and 2] # 0 holds for all indices 7 € [n] for which z; # 0 and y; = 0.

Fig.[3.2.3). For every index i € [n], there can be at most one extraordinary class-0
Pareto-optimal solution. In the following, we restrict ourselves to solutions & that
are ordinary, and we denote by P the set of ordinary class-0 Pareto-optimal solu-
tions. We define the loser gap to be the slack of the solution & from the threshold
t, that is,

A = { c-2—t if 2* and 2 exist and & € P,
€ otherwise.

If A(t) < e, then there exists a solution z € P? with ¢-x € (¢, + €], namely .
The reverse is not true because it might be the case that 2 ¢ P° and that there
exists another solution # € PV with c¢-x € (t,t + ¢]. If, however, ¢ is smaller than
the minimum cost difference of two Pareto-optimal solutions, then the existence of
a solution # € P? with c-x € (t,t +¢] implies & = x and hence A(t) < e. Let F(¢)
denote the event that there are two Pareto-optimal solutions whose costs differ by
at most ¢, then

Pr{3zeP’:c -z e (tt+e]| ~F(e)] =Pr[Alt) <e| ~F(e)] . (3.2.2)

In the following, we estimate, for a given a > 0, the expected number of Pareto-
optimal solutions whose costs lie in the interval (—a, a]. For this, we partition the
interval (—a,a] into 2am subintervals of length m~! each, and we let the number
2am of subintervals tend infinity. For m € N and i € {0,...,2am — 1}, we set
I = (bi, bi1] with b; = —a+im~"'. Since the number of Pareto-optimal solutions
is always bounded by d", we obtain

E[IPY] < lim (Pr[~F (m )] -E[|P|| -F (m™")] + Pr[F(m™")] - d")

m—00

The probability that two given solutions have a cost difference of at most € can be
bounded from above by €¢. Hence, a union bound over all pairs of solutions yields

Pr [F(m_l)] < d™¢pmt |
which tends to 0 when m tends to infinity. Hence, it holds

E[|PY] < lim (Pr[~F (m™")]-E[|P°|| -F (m™")]) . (3.2.3)
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Under the condition =F (m‘l), every interval I]" can contain at most one Pareto-
optimal solution, and hence, under this condition, the probability that I;™ contains
a Pareto-optimal solution from P equals the expected number of Pareto-optimal
solutions from P° in I /', yielding together with and (| - ) that the ex-
pected number of ordinary class-0 Pareto-optimal Solutlons with costs in (—a, al
is bounded from above by

lim (Pr [ﬂ}" (mfl)} ~2a§:1Pr[E|ac ePc.z e Ilm‘ -F (ml)])

m—00 ;
=0

= lim (Pr [-F (m™ )] - ami Pr[A(b) <m™"| -F (m_l)]>

2am—1
< lim > Pr[A() <m'] . (3.2.4)
=0

The only missing part is to analyze the probability of the event A(t) < e for given
t € R and € > 0, which is done in the following lemma.

Lemma 3.2.3. Let

Zc] and C~ ch,

Jic;>0 Jic;<0

and let d* and d~ denote the largest and the smallest element in D, respectively.
For allt € R and e > 0,

n Pr[d*Ct +d=C~ >1t] fort>0,
Pr{A(t) <e] <2eHy (; ¢i) ' {Pr[d*C +d Ct <t] fort<O.

By using Lemma we can upper bound ({3.2.4]) by

2am—1
lim > | 2H, Z@ Pr[dtCt+d C™ >b] -m™!
am—1
+ lim Y quj Pr[-d"C™ —d CT>-b] -m™!
=0

By the definition of the Riemann integral, we can rewrite the previous limit as

2H, (Zqﬁz)/ Pr[dtCt +d C™ >t] dt
+ 2H, (Z @») /a Pr[—d*C™ —d C" >t] dt .
i=1 0

This term is an upper bound on the expected number of ordinary class-0 Pareto-
optimal solutions in the interval (—a,a]. As 0 € D, it holds d* > 0 and d~ < 0,
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and hence we have d*Ct +d~C~ > 0 and —dtC~ — d~C* > 0. Using this
and letting a tend to infinity yield that the expected number of ordinary class-0
Pareto-optimal solutions can be bounded from above by

2H, (f: @-) (E[d"CT +d C7|+E[-d"C™ —d C"))
=2H, (i ¢i> (dF—d")-E[CT - C7]
=2H, (Zn: <Z>z‘> (d¥—d”)-E Zn: |cil | =2DHy <Zn: ¢z‘> (Zn: Mi)

Taking into account that at most n class-0 Pareto-optimal solutions can be ex-
traordinary and that by removing 0" from S we might have decreased the number
of class-0 Pareto-optimal solutions by one yields the lemma. O

We conclude the proof of Theorem by proving Lemma [3.2.3

Proof of Lemma[3.2.3, In order to analyze the probability of the event A(t) < e,
we define a set of auxiliary random variables such that A(t) is guaranteed to always
take a value also taken by one of the auxiliary random variables. Then we analyze
the auxiliary random variables and use a union bound to conclude the desired
bound for A(t).

Define D' = D\ {0} and §*=V ={z € S | 2; = v} for all i € [n] and v € D.
We denote by z*() the solution from S*=° with lowest weight with cost at most
t, that is,

2@ = argmin  w(z) .
2€8%i=0:c.x<t

For each i € [n] and v € D', we define the set L% as follows. If () does
not exist or if no solution in S%= with cost larger than ¢ exists, then we define
£00) = (. Otherwise £%) consists of all solutions from S%=" that have smaller
weight than 2. Let #(**) denote the Pareto-optimal solution from the set £(*)
with the lowest cost, that is,

700) = argminc- x .
xeL(:v)

Finally, we define for each i € [n] and v € D', the auxiliary random variable

AY(E) = c- 200 — ¢ if 209 exists,
t 1 otherwise.

If A}(t) € (0,¢], which excludes A} (t) =L, then the following three events must
co-occur:

&£1: There exists a solution z € S%=0 with ¢ -z < t (namely z*®).
ot There exists a solution z € S*=0 with ¢-x > t (due to the definition of £&)).

E;: The solution 2(+?) exists and its cost lies in the interval (t,t+¢].
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The events &1 and & depend only on the costs ¢j, j # i. The existence and
identity of #(4?) is completely determined by those costs as well. Hence, if we fix
all costs except for ¢;, then () is fixed and its cost is x -+ v¢; for some constant x
that depends on the costs already fixed. Observe that the random variable k + v¢;
has density at most ¢;/|v|. Hence, we obtain

i

Pr [c -2 € (¢t + €] ‘ #0) exists } Serr
v

For t > 0, the event & implies d*C* 4+ d~C~ > t, and hence,
Pr[#0%) exists] < Pr[&] < Pr[d*CT +d C™ > 1]

For t < 0, the event & implies dTC~ +d~C* < t, and hence,
Pr[ (5:0) ex1sts] <Prl&|<Pr[dtC™ +d C* <]

By combining these results, we get

Pr[AV(t) € (0,]] < O {Pr[d+c+ +d=C~ >1t] fort>0,

!U| Pr[dtC~ +d C*T <t] fort<0.

Next we argue that A(t) < e implies AY(¢) € (0,¢] for at least one pair (i,v) €
[n] x D'. So assume that A(t) < e. By definition, z* and & exist and & is an
ordinary class-0 Pareto-optimal solution. Since % is class-0 Pareto-optimal and z*
is the succeeding Pareto-optimal solution, there exists an index i € [n] such that

(a) zf =0 and ; = v # 0 for some v € D', and
(b) there exists a solution x € § with cost larger than t.

The second condition is a consequence of the assumption that Z is not extraor-
dinary, i.e., there exists a Pareto-optimal solution z with z; = 0 that has larger
cost than # and hence larger cost than t. Recall that z*(" is defined to be the
solution with the smallest weight in S¥=0 with c-z < t. As 2* € §%=9, g* = *(0),
Moreover, L) consists of all solutions from S¥=? that have smaller weight than
z*. Thus, Z € £0Y), By construction, & has the smallest weight among the solu-
tions in £*) and therefore, (%) = & and AY(t) = A(t). Applying a union bound
yields, for all ¢ > 0,

Priat) <] <3 3 PriAl(t) € (0,¢]

i=1 veD’
<ZZPI‘ [dTCT+d C™ >t]e "i”
i=1 veD’

< 2¢H, (Z ¢Z> Pr[dTCT +d C™ >t

For t <0, we get analogously

Pr [A()<s]<25Hd<Z¢Z> Pr[dtC™+d Ct <t] . O

=1
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3.2.2 Lower Bound for Linear Weight Functions

In this section, we present a lower bound of Q(n?klog(k + 1)) on the expected
number of Pareto-optimal solutions for D = {0,...,k}, generalizing a bound of
Q(n?) for the binary case presented in [BV04]. In the following section, we prove
the stronger bound €(n?k?) under slightly stronger assumptions. In the bound
presented in this section, the weight function is linear, that is, we specify a vector
of weights w = (wy, ..., wy,) such that w(x) = wiz; + - - -+ wpzy. For the stronger
bound we can only prove that there is some weight function w: & — R for which
the bound holds, but this function might not be linear.

For the sake of an intuitive presentation, we describe the lower bounds in
terms of the bounded knapsack problem. That is, we replace the cost function
c: § — R by a profit function p: & — R which is to be maximized. For linear
weight functions, we prove the following lower bound on the expected number of
Pareto-optimal solutions.

Theorem 3.2.4. Let D = {0,...,k} and suppose that the profits are drawn inde-
pendently at random according to a continuous probability distribution with non-
increasing density function f: R>og — Rxo. Let g denote the number of Pareto-
optimal solutions over S = D™. Then there is a vector of weights w1, ..., w, € Ryg

for which
H
E[q] > Tkk‘(n2 —n)+kn+1.

If the profits are drawn according to the uniform distribution over some interval
[0, a] with a > 0, then the above inequality holds with equality.

Similarly, a lower bound of Q(n?klog(k+ 1)) can be obtained for the case that
f is the density of a Gaussian random variable with mean 0. Since all weights
w; are larger than 0, an item with a negative profit cannot be contained in any
Pareto-optimal solution. Hence, we can ignore those items. Restricted to the
interval [0,00), the density of a Gaussian random variable with mean 0 is non-
increasing and hence we can apply Theorem [3.2.4] to the items with positive profit.
With high probability, there are (n) such items. By similar reasoning, also
Theorem|[1.2.3]is implied by Theorem[3.2.4] By the same arguments as for Gaussian
random variables, Theorem can also be applied if the profits are chosen
uniformly at random from the interval [—1,1]. Choosing profits, which are to be
maximized, uniformly at random from the interval [—1, 1] is equivalent to choosing
costs, which are to be minimized, uniformly at random from [—1, 1], which implies

Theorem [[.2.3]

Proof of Theorem |3.2.4). The set S = D" corresponds to the solution set of the
bounded knapsack problem in which up to k identical instances of each item can
be put into the knapsack. For the sake of a simple presentation, we describe our
construction in terms of this knapsack problem. We fix the weights of all items
by setting w; = (k + 1) for all 4 € [n]. This way, the lexicographic order of the
solutions in § is the same as the order defined by the weight w-x of solutions. Since
the density function of the profits is assumed to be non-increasing, the distribution
function F': R>g — [0,1] is concave as I’ = f. Furthermore, F(0) = 0. Observe
that such a function is sub-additive, that is, F(a + b) < F(a) + F(b) for every
a,b> 0.
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pj

Figure 3.2.4: In this example, event A{ occurs. We have k = 2 and XJ = Xg;l +
X2, + 1 with X)=1 =3 and X/, =2

Let S; denote the set of the first (k + 1)7 solutions in the lexicographic order,
which are exactly those solutions that contain only items 1,...,j. We define
P; = kY], pi and we denote by P; the set of Pareto-optimal solutions over S;.
Observe that the last solution in §; has profit P; and it is Pareto-optimal with
probability 1.

For any given a > 0, let X7, denote the number of Pareto-optimal solutions
in P; with profit at least P; — a, not counting the last solution in this sequence,
which is (k,...,k,0,...,0). By induction we show E [Xé} > Zle F(%), where
F' denotes the distribution function of the profits. We partition the interval [0, co0)
into disjoint intervals Iy = (o, 00), I} = (a/(l + 1), /1] for I € [k — 1], and I}, =
[0, /k]. For every i € [n] and for [ € {0,...,k}, we denote by A the event that p;
lies in the interval J;. For all I € [k — 1] it holds Pr [A}] = F(a/l) — F(a/(1 + 1)),
and it holds Pr [A}] = F(a/k).

For j = 1, the base case of the induction, observe that X! = min{|a/p1], k}
and hence X! = [ holds if and only if the event A} occurs. Hence,

k k—1 k
E[X}] =) U-Pr[A]] =k-Pr[A]+) (Fla/)=F(a/(1+1) =) F (%)
=0 =1 =1

Now we consider the case j > 1. We group the solutions in &; into k£ + 1 blocks,
with block I € {0, ..., k} containing all solutions with z; = [. Block 0 corresponds
to Sj—1. Each Pareto-optimal solution in S;_; with profit in the interval (P;_; —
pj, Pj—1] gives rise to one new Pareto-optimal solution in each of the £ following
blocks. In the event Ag) we have Xg; = Xg;‘l because all solutions that contribute
to X7 are in block k. In the event A{ we have Xf,;l + 1 Pareto-optimal solutions

in block £ and X, g:})j + 1 Pareto-optimal solutions in block k£ — 1. Since the last

solution is not counted in X7, we have X7, = ng_l + Xf;;)j +1 (cf. Figure .

By similar reasoning, event A{ implies X7, = ngj_l +X ijpj + . Hence, it follows
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that we can lower bound the expected value of X7 by

a—Ip;

oo [a] (B | 4] - 323, | 4] <0

_ Zk: @) (1-BXIT )+ B[XIT,| +1) do

=0 z€l]
k k k

>N [ f@) < G—1) ZF() (—1) ZF( >+l>da:,
1=0 /=€ i=1 i—1

where the last inequality follows from the induction hypothesis. We can further
rewrite this term as

Xk: @ <(j—1)§:[l'F(f)+F< leﬂ +z> du

Lo o))
— (-1 Z;F( )+Zz Pr[AJ}_JZF( ) ,

where the inequality is due to the fact that the function F' is sub-additive. If every
profit is chosen uniformly at random from some interval [0,a] with a > 0, then
this term equals exactly the expected number of Pareto-optimal solutions.

Now let Y; = |P;| — |P;— 1| denote the number of new Pareto-optimal solutions

in P;. Observe that Y; = kXj, Ik The additive k is due to the fact that the last
solution in P;j_1 is not counted in Xj - s ' bug yields k new solutions in P;. Since p;
and Xé_l are independent, the induction hypothesis implies

k
P pj
k(j 1);F<Z,>+k

Furthermore, the number of Pareto-optimal solutions in P, is ¢ = 1—1—2?:1 Y;. The

E[Y;]=E [k:Xg;l + k} >E

additional 1 is due to the first solution (0,...,0), which is always Pareto-optimal.
Therefore,
n
d=1+Y E[Y]] _1+ZE[I<:X9 1+k}
j=1
n k
>1+Y E[k(j—1) ZF( )
j=1 =1

The random variable F'(p;) is uniformly distributed over the interval [0, 1], thus
E[F(p;)] = 1/2. As F is sub-additive, i - F((p;/i) > F(p;) holds, which implies

E[F(p;/i)] = BIF(p;)/i] = 1/(2i). Using B[S, F(%)| = }Hy yields

H
E[q] > —kk:(n —n)+kn+1 .
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If the profits are drawn according to the uniform distribution over some interval
[0, a] with @ > 0, then the above inequality holds with equality. O

3.2.3 Lower Bound for General Weight Functions

Now we consider general weight functions and show a lower bound of Q(n%k?)
on the expected number of Pareto-optimal solutions for D = {0,...,k} and S =
D". Every weight function induces a ranking on the set of solutions, and in the
following, we use the terms weight function and ranking synonymously. We assume
that k is a function of n with (5(c+ 1) + 1)logn < k < n° for some constant c.
We use the probabilistic method to show that, for each sufficiently large n € N, a
ranking exists for which the expected number of Pareto-optimal solutions is lower
bounded by kn?k? for some constant x depending only on c¢. That is, we create a
ranking at random (but independently of the profits) and show that the expected
number of Pareto-optimal solutions (where the expectation is taken over both the
random ranking and the random profits) satisfies the desired lower bound. This
implies that, for each sufficiently large n € N, there must exist a deterministic
ranking on {0, ..., k}"™ for which the expected number of Pareto-optimal solutions
(where the expectation is now taken only over the random profits) is at least kn?k?.
The following theorem is a more precise version of Theorem [1.2.2]

Theorem 3.2.5. Let (5(c+ 1)+ 1)logn < k < n® for some ¢ > 2 and assume
that n is a multiple of c+2. There exists a ranking on {0, ..., k}" and a constant
Kk depending only on c¢ such that the expected number of Pareto-optimal solutions
is lower bounded by kn’k? if each profit p; is chosen independently uniformly at
random from the interval [—1,1].

In order to describe the way of how the ranking is created, we introduce the
notion of wvirtual items. Let [n] be the set of original items and assume that we
have k instances of each of these n items. A virtual item is a vector x € D™.
Intuitively, adding the virtual item x to the knapsack corresponds to inserting x;
instances of the i-th original item into the knapsack for every i € [n].

Assume that a sequence (V... 2® of virtual items is given. Based on this
sequence, we create a ranking on the set of solutions D" similar to the ranking
used in Theorem but for the binary case in which every virtual item can be
“contained” at most once in every solution. That is, we create a ranking such
that solutions that “contain” the ¢-th virtual item cannot dominate solutions that
“consist” only of a subset of the first ¢ — 1 virtual items. Let So = {(0,...,0)}
and assume that the solution (0,...,0) has the highest rank, i.e., that it cannot
be dominated by any other solution. Let S; denote the set of solutions that can
be obtained by adding a subset of the first ¢ virtual items, that is,

Si=8_1U {IL‘ + m(z) | T € 81;1}

Let S = &; \ Si—1. In the ranking we define, each solution from S} is ranked
lower than every solution from S;_;. It remains to define the ranking among two
solutions z,y € S. The solutions x and y can uniquely be written as x = 2/ + z(®)
and y = ¢/ + 2 for some 2,y € S;_;. Based on this observation, we define the
ranking between z and y to be the same as the one between x’ and y/. Furthermore,
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we define the ranking in such a way that all solutions in § \ §; are ranked lower
than all solutions in S;. Hence, we do not need to consider the solutions in S\ §;
anymore. For a given sequence of virtual items, this yields a fixed ranking among
the solutions in ;.

Example. In order to illustrate the way of how the ranking is created, let us
give an example. Let us assume that n = 3 and that three virtual items are cho-
sen, namely () = (1,0,1), 2z = (1,1,0), and z® = (0,0,1). Then Sy =
{(0,0,0)}, & = {(0,0,0),(1,0,1)}, S = {(0,0,0),(1,0,1),(1,1,0),(2,1,1)}, and
Ss = {(0,0,0),(1,0,1),(1,1,0),(2,1,1),(0,0,1),(1,0,2),(1,1,1),(2,1,2)}. The solu-
tions in Ss are listed according to the ranking, that is, (0,0,0) is the highest ranked
solution and (2,1,2) is the lowest ranked solution.

Now we describe how the sequence of virtual items is chosen. We set | =
nk/(2e(c + 2)). Since we assumed that n is a multiple of ¢ + 2, we can partition
the set of original items into ¢ + 2 groups with n’ = n/(c + 2) items each. Let V
denote the set of virtual items that contain one instance from each group, that is,

V= {3:6{0,1}” Vi€ {0,...,c+1}: ij.n,ﬂ._1}
=1

Every virtual item z(? is drawn independently and uniformly from the set V. It
can happen that there exists an original item that occurs in more than k virtual
items. In this case, the sequence of virtual items is not valid because we have only
k instances of each item. Then the ranking is replaced by an arbitrary ranking on
D". The following lemma shows that this failure event is unlikely to occur.

Lemma 3.2.6. The probability that the sequence of virtual items is not valid be-
cause more than k instances of one original item are contained in the virtual items
is bounded from above by 1/(nk)°.

Proof. For i € [n], let L; denote the number of instances of item ¢ that are con-
tained in the virtual items. We can bound the probability that L; exceeds k by

I 1 k+1
;> < =
peit =< (L) (2)

N = AN 1\ *
< | — o — < | —
—“\k+1 n 2
A union bound yields

1 k 1 (5(c+1)+1)logn
Pr(F3ien]:Li>k+1]<n- <2> <n- <2>

1 1

= 5(erD) < (nk)s M

We prove Theorem [3.2.5| in two steps. First we prove the following lemma
about how the profits of the virtual items in V are distributed, where the profit
of a virtual item x € {0,1}" is defined as p - x. Observe that scaling all profits by
the same factor does not affect the number of Pareto-optimal solutions. Hence,
we can assume that the profits are chosen uniformly at random from the interval
[—a, a] for an arbitrary a > 0.
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Lemma 3.2.7. If the profits p1,...,pn of the original items are chosen inde-
pendently uniformly at random from the interval [-nt1 nt1], then there ewist
constants p > 0 and p > 0 depending only on ¢ such that with probability at least
p, for each j € {0,...,n°tt — 1}, the set V contains at least n/p virtual items
whose profits lie in the interval (4,7 +1).

Furthermore, we adapt the lower bound of Q(n?) in [BV04] for the binary
case from uniformly random profits to profits that are chosen only “nearly” uni-
formly at random. To make this more precise, consider a knapsack instance with
n items in which the i-th item has weight 2° and the profits of the items are cho-
sen independently according to a probability distribution F': R — R>(. Assume
that F' consists of two components, that is, there exists a constant 6 > 0 such
that ' =9 -U + (1 — ) - G for two probability distributions U and G. Further-
more, assume that U has the property that for each j € {0,...,7 — 1} it holds
Pr[X € (j,j +1)] = 1/T for a random variable X distributed according to U and
some T > n.

Lemma 3.2.8. The expected number of Pareto-optimal solutions in the aforemen-
tioned scenario is lower bounded by §°n?/128.

Together Lemmas [3.2.6] [3.2.7, and [3.2.8] and the upper bound on the ex-
pected number of Pareto-optimal solutions presented in Theorem [3.2.1] imply The-
orem [5.2.9)

Proof of Theorem[3.2.5 Assume that the ranking on the set of solutions is de-
termined as described above, that is, the ranking is induced by [ randomly cho-
sen virtual items from V. Let F; denote the event that there exists some j €
{0,...,n"t — 1} for which less than n/p elements in V have a profit in (j,j + 1).
Due to Lemma the probability of the event Fj is bounded from above by
1 — p. Intuitively, the failure event F; occurs if the profits p1,...,p, are chosen
such that the profit distribution of the virtual items is not uniform enough. We
first analyze the number ¢’ of Pareto-optimal solutions in a different random ex-
periment. In this random experiment, we do not care if the sequence of virtual
items is valid, that is, we assume D = {0, ... [}, for which the sequence is always
valid.

Let X denote the random variable that describes the profit of a randomly
chosen virtual item from V. Under the assumption that F; does not occur, we
can write the distribution of X in a form such that Lemma [3.2.8 is applicable.
Since for every j € {0,...,n“"t — 1} the interval (4,7 + 1) contains at least n/p
virtual items and since there are n/¢t2 virtual items in V, the probability that one
of the first n/p items in one of these intervals is chosen is § = n°*2/(pn/“*?) =
(c+2)°*2/p. Hence, with probability &, X is chosen according to a distribution U
that is uniform on the intervals (4, j+1) with j € {0,...,n°™' —1}. The number of
virtual items in the sequence is [ = nk/(2e(c¢+2)). These virtual items are chosen
independently and hence we can apply Lemma yielding that the expected
number of Pareto-optimal solutions is lower bounded by 6%12/128 = x'n%k? for
k' = §2/(512€2(c + 2)?). Altogether, we have shown E[q' | ~F1] > x'n%k2.

Now we take into account that the sequence of virtual items might not be a
valid sequence for D = {0,...,k}. Let Fy denote the event that the sequence
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of virtual items is not allowed because it contains more than k instances of one
item. Due to Lemma we know that Pr[%,] < 1/(nk)®. Remember that if
this failure event occurs, the ranking is set to an arbitrary ranking on D". Let ¢
denote the number of Pareto-optimal solutions. By definition of ¢’ and the failure
event Fa, we know that E[q| —F2] = E[¢'| =F2]. Furthermore, since Fy does not
affect the choice of the profits, we can use Theorem to bound E[¢'| F»], but
we have to take into account that in the modified random experiment for which ¢’
is defined we have D = {0,...,1}. Hence, we obtain E[¢'| F2] < x"nk?log (nk)
for a sufficiently large constant x”.
Putting these results together yields

Elq] > Pr[~F] - E[q| -7

=Pr[-%] E[{ ’ — ]

=E[(] - Pr[R]-E[{| 7]

> Pr[=F]-E[d | ~F] - Pr[R]-E[d| 7]
k2 k"n*k? log (nk)
(nk)?

for a sufficiently large constant . O

Proof of Lemma

In order to prove Lemma we analyze an auxiliary random experiment first.
A well studied random process is the experiment of placing n balls uniformly and
independently at random into m bins. In this random allocation process, the ex-
pected load of each bin is n/m and one can use Chernoff bounds to show that
in the case n > m it is unlikely that there exists a bin whose load deviates by
more than a logarithmic factor from its expectation. In this section, we consider a
random experiment in which the locations of the balls are chosen as linear combi-
nations of independent random variables. Since the same random variables appear
in linear combinations for different balls, the locations of the balls are dependent
in a special way.

Let ¢ € N with ¢ > 2 be an arbitrary constant and assume that we are given
n independent random variables that are chosen uniformly at random from the
interval [—n¢t! n°t1]. We assume that n is a multiple of ¢ + 2, and we partition
the set of random variables into ¢ + 2 sets with n’ = n/(c + 2) random variables
each. For i € {1,...,¢c+2} and j € {1,...,n}, let pé- denote the j-th random
variable in the i-th group.

For every [ € [c+2], we consider a random experiment in which the set of balls
is [n/]" and the bins are the intervals (—in°t!, —Inctt +1),..., (In°t1 — 1,Int1).
In the following, bin j denotes the interval (4, j + 1). Hence, the number of balls is
(n")! and the number of bins is 2In°*!. Instead of placing these balls independently
in the bins, the location of a ball a € [n/]! is chosen to be p(ll1 + -+ pfll, that
is, it is placed in bin Lp}ll + -+ pfllj. We show that despite these dependencies,
the allocation process generates a more or less balanced allocation with constant
probability. We use the following weighted Chernoff bound whose proof can be
found in Appendix
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Lemma 3.2.9. Let X1q,...,X,, be independent discrete random variables with val-
ues in [0,z] for some z > 0. Let X = >" | X; and p = E[X]. Then for every
x>0,

X x

e - M .Z/Z el_u/x . M 33/2
Pr[Xza:]<<—) and Pr(X <z]< | ———

Lemma 3.2.10. Forl = c+ 1, the average number of balls per bin is a constant
depending on ¢, and with probability 1 — o(1), the mazimal number of balls in any
bin is bounded from above by Inn.

Proof. Instead of assigning all balls to the bins at once, we consider ¢ + 1 rounds
separately. In round i € {1,...,c+ 1}, we consider the set of balls [n’]’. Each ball
a € [n']" is placed at position p}h + .. —1—1921,7 that is, in the interval (7,7 + 1) with
j= Lptlll + .+ pfllj Intuitively, at the beginning of round 4, we replace each ball
from round 7 — 1 by n’ identical copies. Then these n’ copies are moved, where the
location of the j-th copy is obtained by adding pg. to the current location.

During the first round, n’ balls are placed independently uniformly at random
in 2n“t! possible bins. We define F; to be the event that there exists a bin that
contains more than one ball after the first round. Since ¢ > 2, the probability of
F1 can be bounded by (n')?/(2n°t1) = o(1).

Now we consider round 7 with ¢ € {2,...,c}. Let F; denote the event that after
round i there exists a bin that contains more than (2c + 4)"~! balls, and let X;:
denote the number of balls in bin j after the i-th round. Assume that the random
variables in the first ¢ — 1 groups are already fixed in such a way that the event
Fi—1 does not occur. Under this assumption, also the variables X;_l are fixed and
have values of at most (2c + 4)*~2. Consider a bin j after round i — 1 and assume
that to all elements in that bin the d-th element of the i-th group is added. The
profits of the items obtained this way are in the interval (j + [p}],7 + [p}] + 2),
that is, they lie either in bin j + [p}] or j + |p}]| + 1. Hence, we can bound X; by

n/
i < i1 i
X] < dE 1 Y;.’pé with YJ

—i1 — xi-1 l_ 1 oxi-!
P J—1p}l

j=lphl-1 -

Hence, when the random variables in the first ¢ — 1 groups are fixed such that
Fi—1 does not occur, then X} is bounded by the sum of independent discrete

random variables in_il that take only values from the set {0, ..., 2(2c+4)*"2}. The

Py

expected value of XJ’: is bounded from above by (n')!/(2n°t1) < 1/n. Altogether,
this implies that we can use Lemma, to bound the probability that X; exceeds
its expectation. We obtain

c+2
j i—1 € —(c+2

c+1

Applying a union bound over all 2in“"" bins j yields

Pr(F;| ~Fia) <Pr[3j: X! > (2c+4)7 | =Fimy] < (2inT) 0T = 0(1) .
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Now consider round ¢+ 1. The expected value of X;H is bounded from above
by (n')¢t1/(2n°t1) < 1 and similar arguments as for the previous rounds show that
X;H can be bounded by the sum of independent random variables with values
from the set {0,...,2(2c +4)°"1} when the random variables in the first ¢ groups

are fixed such that F. does not occur. Hence, we can again apply Lemma to
obtain

<n~ Inlnn/(2(2c+4)¢~1)+1 .

Pr[X:" = Inn| -7 < (6>1nn/<2<2c+4>~>

Inn

Let F.y1 denote the event that after round ¢ + 1 there exists a bin that contains
more than Inn balls. Applying a union bound over all 2(c + 1)n*! bins yields

Pr[fc-i-l ‘ _‘fc] < (2(C+ 1)nc+1) . n*lnlnn/(2(2c+4)671)+1 _ 0<1) .

Now we can bound the probability that F.y; occurs as

Pr{Fei1] < Pr[F.] + Pr[Fepi| ~F]
< Pr[Fe_1] + Pr|[F.| ~Fe1] + o(1)
[

<Pr -7:072] + Pr[]:cfl | _‘]:072] + 0(1)
<...=o(1) . O

Based on Lemma [3.2.10] we prove the following lemma about the allocation
after round ¢ + 2, which directly implies Lemma

Lemma 3.2.11. For every constant ¢ > 2, there exist constants p > 0 and p > 0
such that with probability at least p the above described process yields an allocation
of the (n')**? balls to the 2(c+2)nt! bins in which every bin j € {0,...,nt —1}
contains at least n/p balls.

Proof. In order to analyze the last round, we need besides =F.;1 one additional
property that has to be satisfied after round ¢ + 1. Let Y denote the number of
balls after round ¢ + 1 that are assigned to bins j with j € {0,...,n°"! —1}. The
probability that a fixed ball a € [n/]°™! is placed in one of these bins is at least
1/(2(c +1)). Hence, the expected value of Y is at least (n/)t1/(2(c + 1)). Let
Y denote the number of balls after round ¢ + 1 that are not assigned to bins in
{0,...,n°tt — 1}. The expected value of Y is at most (n/)*1(2c + 1)/(2c + 2).
Applying Markov’s inequality yields

(n/)c—H
dc+ 4

4c+ 3 < 4c+ 2

Pr|Y < .
r[ = de+2| = dc+3

]gP%YzEW}
Let G denote the failure event that Y is less than (n/)t1/(4c + 4). We have seen
that =G occurs with constant probability.

Now we analyze round ¢ + 2 and assume that the random variables in the
first ¢ + 1 groups are fixed in such a way that =F.1 1 N =G occurs. Consider a
bin j € {0,...,n°"! —1}. Since under the assumption -G, there are together at

least (n')*1/(4c + 4) balls in the bins in {0,...,nt! — 1}, the expected value of
XJ‘?+2 is at least (n')°*2/((4c + 4)2n°t1) > n/(c + 2)°™. Furthermore, under the
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assumption = Foy1, ij;i ! takes only values in the interval {0,...,2Inn}. We apply
Lemma to bound the probability that X§+2 deviates from its mean:

. n 9 n/(4(c+2)t2Inn)
et2 o M| gl < (2
P < g | )= ()

Let F denote the event that there exists a bin j € {0,...,n°"! — 1} whose load is
smaller than n/(2(c + 2)°™®). We can bound the probability of F by

9 n/(4(c+2)c+5 Inn)
> =o(1) .

Pr[F| ~Fepr N 6] < n°t'- (

Altogether this implies

Pr|F| <Pr[F.11 UG+ Pr[F| ~Fer1 NG|

de+ 2
1
4c+3+0( )

dc+ 2
4c+ 3

<Pr[F]+Pr|[Fep| ~F] +

< Pr[j:cfl} +Pr[fc| _‘]:cfl] +

‘”<4c+2
~ 4c+ 3

+o(1)

<

+o(1) ,
which yields the lemma. O

Proof of Lemma [3.2.§

Beier and Vocking [BV04] prove a lower bound of Q(n?) on the expected number
of Pareto-optimal knapsack fillings for exponentially growing weights and profits
that are chosen independently and uniformly at random from the interval [0, 1].
In this section, we adapt their proof for a random experiment in which the profits
are chosen only “nearly” uniformly at random. Assume that we are given n items
and that the i-th item has weight w; = 2. Furthermore, let T € N be given and
assume that 7' > n. In order to determine the profit p; of the i-th item, first one of
the intervals (0,1),(1,2),...,(T — 1,T) is chosen uniformly at random. Then an
adversary is allowed to choose the exact profit within the randomly chosen interval.
We call an item whose profit is chosen this way a nearly uniform item. We prove
that also in this scenario the expected number of Pareto-optimal solutions is lower
bounded by Q(n?).

Lemma 3.2.12. For instances consisting of n nearly uniform items, the expected
number of Pareto-optimal solutions is bounded from below by n?/16.

Proof. The proof follows the line of the proof of Theorem for the binary
case. Let P; denote the set of Pareto-optimal solutions over the first j items,
and let P; denote the total profit of the first j items. For j € [n] and o > 0,
let X2 denote the number of Pareto-optimal solutions from P; with profits in the
interval [P; — a, Pj). Observe that p; > a implies X, =X, and pj < o implies
X} = ng_l + X/~! 4+ 1. For integral a € [T], the adversary cannot influence the

Pj
event p; < «, as the interval from which he is allowed to pick a values for p; lies
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either completely left or completely right of a. Hence, for o € [T'] we can bound
the expected value of X2, recursively as follows:

B[] = Prip > of BX| p, >
+Pr[pj<a]-(E[Xg]__1‘pj<a}+E[X] ! ‘pj<oz]+1)

As X ;3‘—1 is independent of p; and X é_l is monotone in 3, we have

E[X]] > Prlp; > o] - E[X]7]
+Prlp; < al - (E[Xfpj ’ p; <a] —I—E[Xfalp ’pj <04] —1—1)
(3.2.5)

In the following, we prove by induction on j that for every « € [T7],
. a . j
EX| > — .
[ a:| — 2T
For j =1 and « € [T, we obtain

E[X;]:Pr[p1<a]:gz% .

N~

Using the induction hypothesis and (3.2.5)), we obtain, for j € [n]\{1} and a € [T],
that [Xé} is lower bounded by

Prip; > o] -E [ngl]
+Prlp; < o] (E[Xj‘j)pj <a] +E[X] ", ‘ pj <al+1)

>T «a 04]—1

N oiPI‘ e i+ D) (B[x] +B[x22 ] +1)

=T
T—-« aj—l Jj-1) (oz—z'—l)(j—l)
> .
> 12 +z ( = i1
T-« a(J—l) a ((a—1)(F—1)
T 2T +T< 2T *
_a(j—l) e 17]—1
~ o 7 2T
Loi-h ol
= T T 2
_ o
2T

This yields the following lower bound on the expected number of Pareto-
optimal solutions:

n

j:1 J=1

[\
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We further generalize the scenario that we considered above and analyze the
expected number of Pareto-optimal solutions for instances that do not only consist
of nearly uniform items but also of some adversarial items. To be more precise,
we assume that the profit of each item is chosen as follows: First a coin is tossed
which comes up head with probability 6 > 0. If the coin comes up head, then
the profit of the item is chosen as for nearly uniform items, that is, an interval is
chosen uniformly at random and after that an adversary may choose an arbitrary
profit in that interval. If the coin comes up tail, then an arbitrary non-integer
profit can be chosen by an oblivious adversary who does not know the outcomes
of the previous profits.

Proof of Lemma[3.2.8 First of all, we show that the presence of adversarial items
does not affect the lower bound for the expected number of Pareto-optimal solu-
tions. That is, we show that if there are 7 nearly uniform items and an arbitrary
number of adversarial items, one can still apply Lemma to obtain a lower
bound of 72 /16 on the expected number of Pareto optimal solutions. For this, con-
sider the situation that the first j items are nearly uniform items and that item
j + 1 is an adversarial item. Due to Lemma we obtain that the expected
value of X, is bounded from below by j - a/(2T) for every a € [T]. We show that
the expected value of X2 is lower bounded by the same value. For this, consider
the two alternatives that the adversary has. He can either choose pj;1 > « or
pj+1 < a. In the former case, we have X2 = X2 In the latter case, we have
(a—1)j a-j

+1>—.

EXJ‘+1>E[XJ' } E[Xj } 1>
(X2 = i tiz oT = T

[pj+1 la—p;]
Hence, the adversarial profit of item j + 1 does not affect the lower bound for
the expected number of Pareto-optimal solutions. One can apply this argument
inductively to show the desired lower bound of 72/16.

In expectation the number 7 of nearly uniform items is dn and applying a Cher-
noff bound yields that with high probability n > dn /2. For sufficiently large n, we
can bound the probability that 7w < dn/2 from above by 1/2. Hence, with probabil-
ity 1/2 the expected number of Pareto-optimal solutions is at least (dn/2)?/16, and
hence, the expected number of Pareto-optimal solutions is bounded from below by
(6n)2/128. O

3.3 Smoothed Complexity of Integer Programming

We start this section by summarizing some definitions and results about the
smoothed complexity of binary and integer optimization problems due to Beier
and Vocking [BV06] and Réglin and Vocking [RV07]. After that, we show that
our upper bound on the expected number of Pareto-optimal solutions presented in
Theorem [3.2.T] can be used to simplify and to improve the analysis of the smoothed
complexity of integer optimization problems.

Beier and Vocking [BV06] initiated the study of the smoothed complexity of
binary optimization problems. They consider binary optimization problems in
which an objective function ¢: § — R is to be minimized over a set of feasible
solutions that is given as SNB1N...NB;,, where S C {0, 1}" denotes a fixed ground
set and B; denotes a halfspace induced by a linear constraint of the form w; 21 +
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o Fw; p @y < t;. Similar to the semi-random input model in which we analyzed the
expected number of Pareto-optimal solutions, it is assumed that the coefficients
w; ; are independent continuous random variables whose densities are bounded
by ¢ and whose expected absolute values are bounded by u. To avoid technical
details that are not of interest for the results in this thesis, we make the same
simplifying assumptions as in Section that is, we assume that an adversary
can specify the coefficients w; ; in the interval [—1,1] and that they are perturbed
by adding Gaussian or uniform random variables with standard deviation o and
constant expected absolute value. Also the case that the objective function c is
linear and its coefficients are random variables with the aforementioned properties
is considered in [BV06]. Roglin and Vécking [RVOT7] consider the same scenario
for integer optimization problems, in which S is a subset of D" for a finite set of
integers D.

In the following theorem, it is assumed that an integer optimization problem
is given in which at least one component is linear and perturbed, that is, either
the objective function is linear and its coeflicients are perturbed or at least one
constraint is linear with perturbed coefficients or both. The theorem is proven for
the binary case in [BV06] and for the integer case in [RVQT].

Theorem 3.3.1. ([BV06,[RV07]) An integer optimization problem has polynomial
smoothed complexity if and only if it can be solved in pseudopolynomial time with
respect to the perturbed coefficients in the worst case.

Before we define the term polynomial smoothed complexity formally, let us
present two examples that illustrate Theorem The constrained spanning tree
problem, in which edges have lengths and weights and one has to find the shortest
spanning tree whose weight lies below a given threshold, is NP-hard but it can
be solved in pseudopolynomial time with respect to lengths and weights [RG96].
Given a graph G = (V, E), we introduce a binary decision variable =, € {0,1} for
cach edge e € E and we let the ground set S be the set of all vectors from {0, 1}!¥!
that encode spanning trees. Furthermore, we have one linear constraint for the
weights and B; denotes all subsets of edges whose total weight is below the given
threshold. Since there is an algorithm that is pseudopolynomial in the weights
and lengths, Theorem [3.3.1| implies that the constrained spanning tree problem
has polynomial smoothed complexity if both the weights and the lengths are per-
turbed. On the other hand, let us consider the traveling salesperson problem, in
which we are interested in finding the cheapest Hamiltonian cycle in a given graph.
Analogously, we can introduce a decision variable for each edge and let S denote
the set of Hamiltonian cycles. It is well known that the TSP is strongly NP-hard
and hence, there is no pseudopolynomial algorithm, unless P = NP. Hence, The-
orem implies that under the assumption P # NP, the TSP does not have
polynomial smoothed complexity if the costs of the edges are randomly perturbed,
which coincides with the observation that the TSP is hard to solve even on in-
stances that occur in practical applications.

An obvious way to define the term polynomial smoothed complexity would be
to require that the expected running time of the considered algorithm must be
polynomial in the input size and in the reciprocal of the standard deviation . Beier
and Vocking introduce a different definition because defining polynomial smoothed
complexity based on the expected running time is not a sufficiently robust notion.
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For example, an algorithm with expected polynomial running time on one machine
model might have expected exponential running time on another machine model,
even if in the latter model, the former can be simulated in polynomial time. In
Beier and Vocking’s definition, a problem II is said to have polynomial smoothed
complexity if it admits a polynomial P and an algorithm A whose running time
T satisfies for every instance I, for every ¢ € (0, 1], and for every o € (0, 1],

Pr(T(I,) > P (|I],07"e")] <e, (3.3.1)
where |I| denotes the length of instance I, and I, denotes the random instance
obtained from I by adding to each coefficient in the linear components a Gaussian
or uniform random variable with standard deviation o and constant expected
absolute value. That is, with probability at least 1 — ¢ the running time of A is
polynomially bounded in the input length |I| and the reciprocals of the standard
deviation ¢ and the failure probability €. This definition of polynomial smoothed
complexity follows more or less the way how polynomial complexity is defined in
average-case complexity theory [Wan97|, adding the requirement that the running
time should be polynomially bounded not only in the input length but also in
o~ 1. As described in Section it is assumed that the algorithm can access the
perturbed numbers by an oracle.

In the following, we summarize the main idea that is used in the proof of Theo-
rem to transform an algorithm with pseudopolynomial worst-case complexity
into an algorithm with polynomial smoothed complexity.

3.3.1 Winner, Loser, and Feasibility Gap

A common algorithmic approach to find approximate solutions for NP-hard prob-
lems that admit a pseudopolynomial time algorithm is to round all numbers in the
input and to apply the pseudopolynomial time algorithm to the rounded instance.
If every rounded number can be represented by a logarithmic number of bits, then
the pseudopolynomial time algorithm runs in polynomial time on the rounded in-
stance. If all coefficients that need to be rounded occur in the objective function,
then this approach often yields fully polynomial time approximation schemes, as
it is the case for the knapsack problem and the constrained shortest path prob-
lem. The situation becomes more difficult if also coefficients in the constraints
are rounded. Then the optimal solution with respect to the rounded coefficients
might not even be feasible in the original unrounded instance. However, the crucial
observation in the proof of Theorem is that perturbed instances of integer
optimization problems are typically very robust against rounding the coefficients.
To be precise, the optimal solution of a perturbed instance stays optimal with high
probability if each coefficient is rounded after a logarithmic number of bits. This
is a remarkable observation because in the worst case even the slightest rounding
can change the optimal solution. The proof of this observation is based on three
structural properties of integer optimization problems, called winner, loser, and
feasibility gap, which we introduce in the following.

Let us first consider integer optimization problems in which only the objective
function is randomly perturbed. In this case, the set S C D" of feasible solutions
is fixed and one is interested in minimizing a linear objective function ¢: & — R
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Figure 3.3.1: Illustration of the definitions of winner, loser, and feasibility gap.

of the form ¢(z) = c1x1 + - - - + ¢cpxn. The solution z* that minimizes ¢ over S is
called the winner, and we denote by x** the second best solution, that is,

2™ = argmin c- x .

zeS\{z*}
The winner gap A is defined to be the difference between the best and the second
best solution, that is,

A=c- 2" —c-2*

Even though the winner gap can be arbitrarily small in the worst case, it is typi-

cally polynomially large if the coefficients in the objective function are perturbed.
Following the notations in Section we set d = |D|.

Lemma 3.3.2. ([BV0d, [RV07]) Let the costs ci,...,c, be independent random
variables whose densities are bounded by ¢ and let S C D™ be chosen arbitrarily.

For every e > 0,
Pr[A <] < epnd® .

Now let us consider the case that one linear constraint is perturbed. In this
case, a function ¢: § — R is to be minimized over a set of feasible solutions that
can be written as the intersection of a fixed ground set & C D" and a set B that
contains all solutions that satisfy a constraint of the form wizi + -+ + wpz, < t.
Let z* denote the winner, that is, the solution from S N B that minimizes the
function ¢. According to Beier and Vocking [BV06], we define the feasibility gap
I" to be the slack of this solution from the threshold ¢, that is,

r_ t—w-z* ifSNB#W,
L otherwise.

The set £ of losers is defined to be the set of all solutions from S that have lower
costs than x* but are infeasible due to the linear constraint, that is,

L={zeS|c(z)<c(z")} .

The minimal loser Z is defined to be the solution from £ that has the smallest
weight and the loser gap A denotes the distance of & to the threshold ¢, that is,

A:{w-cﬁ—t if £ #10,

1 otherwise.
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The definitions of winner, loser, and feasibility gap are illustrated in Figure [3.3.1
The following lemma shows that even though both the feasibility and the loser gap
can be arbitrarily small in the worst case, they are typically polynomially large.
We use the notations d = |D| and dmax = max{|a| | a € D}.

Lemma 3.3.3. ([BV06, RV07]) Let the weights wy, . . ., wy, be independent random
variables whose densities are bounded by ¢ and whose expected absolute values are

bounded by . For arbitrary cost functions c: § — R, arbitrary sets S C D™ with
0" ¢ S, and every € € [0, (32un’d" dyax®?) 1],

Prl < ¢] < 2(e - 32un°d dpaxd?)'/®  and Pr[A <e] < 2(e-32un’d dpmaxd?®) /3.
In the binary case (i.e., D ={0,1}), it holds for every e >0,

Pr[[ <e] <egpn® and Pr[A <e] <epn? .

How much Accuracy is Necessary?

The crucial observation is that whenever winner, loser, and feasibility gap are
polynomially large, the optimal solution stays optimal even if all coefficients are
rounded after a logarithmic number of bits. In order to see this, observe that
rounding down a coefficient to a number that can be represented with b bits after
the binary point, lowers its value by at most 27°. Hence, the total cost and the
total weight of any solution x € S is decreased due to the rounding by at most
Ndpax2?. Let us first consider the case that the coefficients in the objective
function, the costs, are rounded down. Let z* € S denote the optimal solution
and let y € S denote an arbitrary solution with y # x*. If the winner gap is larger
than ndmax2 01, then

coy—c -zt > A > ndpa2 0T

If |c|p denotes the vector in which every cost is rounded down after the b-th bit
after the binary point, then this implies

lely-y—lelp-2* > |elp-y—c- 2" — ndmax2?
>c-y—c-x*— M2l > A — ndpax2 T >0 .
Hence, if the winner gap is larger than ndma.x2 °t!, rounding every cost down
after the b-th bit after the binary point does not change the optimal solution.
Let us assume that, for example, we are given an integer optimization problem in
which the costs are randomly perturbed and for which there exists an algorithm
whose running time is pseudopolynomial with respect to the costs. For any desired
failure probability p € (0, 1], the above reasoning and Lemma imply that,
with probability at least 1 — p, rounding down each cost after

b =log (n*d*dmaxdp™ ") + 1

bits does not change the optimal solution. If we apply the pseudopolynomial time
algorithm to this rounded instance, then its running time is polynomial in the
input size, the maximal density ¢, and the reciprocal of the failure probability p.
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Now let us consider the case that the coefficients in the constraint, the weights,
are rounded down. Let x € S denote an arbitrary loser, that is, an arbitrary
solution that has lower costs than the optimal solution z*. If the loser gap is
larger than ndmax2_b, then

Wz —t> A > ndpa2?

If |w]p denotes the vector in which every weight is rounded down after the b-th
bit after the binary point, then

ijb-a;—tzw-x—t—ndmaXQ*bZA—ndmaX27b>0 )

Hence, all solutions that have lower costs than the optimal solution z* remain
infeasible if all weights are rounded down after the b-th bit after the binary point.
Similarly, one can argue that if the feasibility gap is larger than ndmax2~?, then
the optimal solution x* is still feasible after the rounding. Altogether, this implies
that if both the loser and the feasibility gap exceed ndmax2~?, the optimal solution
x* is also optimal with respect to the rounded coefficients. Assume, for example,
that we are given an integer optimization problem in which one linear constraint is
perturbed and for which an algorithm exists that is pseudopolynomial with respect
to the coeflicients in this constraint. Then by similar reasoning as above and by
Lemma [3.3.3] rounding down each coefficient after

b= @(log (nddmaxgb,up_l))

bits does not change the optimal solution with probability at least 1 — p.

Adaptive Rounding

The final ingredient for turning an algorithm with pseudopolynomial worst-case
complexity into an algorithm with polynomial smoothed complexity is an adap-
tive rounding procedure. The main idea of this procedure is very simple: starting
with b = 1, we round each coefficient after the b-th bit after the binary point, we
apply the pseudopolynomial time algorithm to obtain an optimal solution z; for
the rounded instance, and we check whether this solution is also optimal for the
original unrounded instance. If this is not the case, the precision b is increased
by one and the aforementioned steps are repeated. In [BV06] and [RV07] it is
described how it can be checked efficiently whether zj is optimal for the orig-
inal instance if the winner and the feasibility gap are large enough. Based on
Lemmas [3.3.2] and [3.3.3] it is shown that this adaptive rounding procedure has
polynomial smoothed complexity, that is, its running time satisfies .

3.3.2 Improved Analysis of Loser and Feasibility Gap

The main contribution in our article [RV07] is the analysis of the random variables
loser and feasibility gap for integer optimization problems. In a rather technical
and lengthy analysis, we generalize Lemma from the binary to the integer
case. In this section, we present a much simpler proof for the following improved
version of the lemma. We use the notations d = |D| and D = max{a—b | a,b € D}.
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Lemma 3.3.4. Let the weights wy, ..., w, be independent random variables whose
densities are bounded by ¢ and whose expected absolute values are bounded by .
There exists a constant k such that for arbitrary cost functions c: S — R, arbitrary
sets S C D" with 0" ¢ S, and every € > 0,

Pr([l <] < enp*unDdlog’d and Pr[A <¢] < ex¢’un®Ddlog®d .

The main improvement upon our previous analysis is that the bounds in
Lemma depend only linearly on ¢ instead of /3, which allows us to prove
Theorem [.2.8

Proof of Lemmal[3.3.4 Already in [BV06] it has been observed that the optimal
solution x* and the minimal loser & are always Pareto-optimal solutions. Based
on this observation, we can rewrite the probabilities as

Prll <e¢]=Pr3zeP|w- -x€[t—e¢,t]
and

PriA<e]=Pr[3zeP|w-ze(tt+e] ,

where P denotes the set of Pareto-optimal solutions. Hence, in both cases we
have to estimate the probability that there exists a Pareto-optimal solution whose
weight lies in a certain interval I of length e, where the interval I is independent
of the random variables w;. In the following, let I denote an arbitrary interval of
length €.

Define D' = D\ {0}. For every i € [n] and v € D', we define S*=" = {z €
S | x; = v}. Furthermore, we define P*=" C S*=" to be the set of solutions from
S%=Y that are not dominated by other solutions from S*=". Since 0" ¢ S, every
Pareto-optimal solution from P is contained in at least one set P*=". Hence,

PrldzeP:w-zel] < Z ZPr[HwEP“:”: w-x € I
1€[n] veD’

It remains to analyze the probability that there exists a solution in P%=" whose
weight lies in the interval I. In order to bound this probability, we assume that all
weights w; with j # ¢ have already been chosen. Then the set P*~" is fixed since
w; affects all solutions from S*=" in the same fashion. In particular, a condition
of the form |P*="| = a does not affect the random variable w; and

Pr(3z e P"~":w-z €I
S - - - (3.3.2)
:ZPI'HPZ |=a] -Pr[dz e P w -z el| P’ =ad]

a=1

For every solution x € P*="  we can define an interval I, of length ¢/|v| such
that the weight of solution z lies in the interval I if and only if the weight w;
lies in the interval I,. The union of all these intervals I, has measure at most
e|P*="|/|v|, and as the density of the random variable w; is bounded by ¢,

Pr(3z e P ":w-zel||P""|=a] < a¢>|a . (3.3.3)

lv
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Figure 3.3.2: Let z* be the winner and let 1 and x5 be the only losers, then x; is
the minimal loser determining the loser gap A.

Together (3.3.2)) and (3.3.3)) yield

Pr(dz e P " w-zel] < ZPr[|P“:”| =al- Eﬁif = Tf -E[[P*Y]] .

From Theorem [3.2.1] we know that there exists a constant » such that the
expected value of |P%="| is bounded by k¢un?Ddlogd for every i € [n] and
v € D'. Hence,

a=1

PridzeP:w-zel] < Z ZPr[EIwEP“T":”:w-xEI]
1€[n] veD’

< Z T(ﬁ’mqﬁunQDdlogd
i€[n] veD’ v

< 2ekg?undDdlog? d |

which implies the lemma. ]

Loser and Feasibility Gap for Multiple Constraints

Now we consider briefly the case that the set of feasible solutions is determined
by multiple linear constraints. That is, we assume that a function ¢: & — R is
to be minimized over a set SN Bi N ...N B, where S C D" denotes a fixed
ground set and B; denotes a halfspace induced by a linear constraint of the form
wi1x1 + -+ wipry, < t;. Again, we denote by z* the optimal solution and
we define the feasibility gap as the minimal slack of the winner z* to one of the
thresholds, that is,

- Mine () (ti — (wi1x] + -+ winzy)) HSNBiIN...N By, #0,
L otherwise.

A solution in S is called a loser if it has a lower cost than z*, and we denote
by L the set of all losers. Observe that a loser only needs to be infeasible with
respect to one of the m constraints. In particular, it is not true that the weight
values of each loser are likely to be far away from the corresponding thresholds
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t;; not even if we consider only those constraints for which the respective loser is
infeasible. Fortunately, however, we do not need such a property in the application
of the loser gap. For every loser, one only needs a single constraint that renders it
infeasible. Therefore, we define the loser gap A for multiple constraints as

A Minger MaX;e ) (Wi121 + - + Wi oy —t;) if L#0,
L otherwise.

These definitions are illustrated in Figure [3.3.2

In [BVO6] it is shown how Lemmam gives rise to bounds on the sizes of loser
and feasibility gap for multiple constraints. By applying the same arguments, our
bounds in Lemma yield the following lemma.

Lemma 3.3.5. Let the weights w; ; be independent random variables whose densi-
ties are bounded by ¢ and whose expected absolute values are bounded by u. There
exists a constant k such that for arbitrary cost functions c: S — R, arbitrary sets
S C D" with 0™ ¢ S, and every e > 0,

PrI' <g¢] < 6/€<Z>Q,umn3Ddlog2 d and Pr[A<e < snngumnnglogQ d .

Proof. First we show the bound for the feasibility gap. Let x* denote the winner
and suppose I' < e. Then there exists a constraint ¢ € [m] such that z* has
distance at most € from the threshold ¢;, and hence,

Prl < < ) Prft;— (wiia} + -+ wina}) <
1€[m)|

For each individual i € [m], we can apply Lemma assuming that the set of
feasible solutions with respect to all other constraints is fixed as the coefficients in
constraint ¢ are stochastically independent from the other constraints. This way,
we obtain

Pr(l < €] < enp*umn®Ddlog?d .

Next, we turn our attention to the loser gap. Unfortunately, we cannot general-
ize the bound on the loser gap from one to multiple constraints in the same way as
we generalized the feasibility gap since the loser gap for multiple constraints does
not correspond to the minimal loser gap over the individual constraints. Instead
we make use of the result for the feasibility gap established above. Assume A < e.
Then there exists a loser x satisfying

Vi€ m]:wiiz) 4+ wipx, —t; <€

Let x denote a loser that has the smallest cost among all losers with this prop-
erty. We consider a relaxed instance in which the thresholds of all constraints
are increased by €. Observe that z is feasible in the relaxed instance, and by the
definition of x, no solution with smaller cost is feasible. Thus, x is the winner in
the relaxed instance. Since for some i € [m]

ti <wiir1 4+ Fwipe, <t e,

the feasibility gap I' of the relaxed problem is smaller than €. Hence, A < ¢
implies IV < e. Finally, applying the bound derived in the first part of the proof
yields

PriA <e]<Pr[I'<¢] < ekd?umnDdlog? d . O
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Expected Polynomial Running Time

The aforementioned definition of polynomial smoothed complexity yields a notion
that does not vary among classes of machines admitting polynomial time simula-
tions among each other. The drawback of this definition is, however, that polyno-
mial smoothed complexity does not imply expected polynomial running time. For
the binary case, it is shown in [BV06] that problems that admit a pseudolinear
algorithm, i.e., an algorithm whose running time is bounded by O(poly(N) - W),
where N denotes the input size and W the largest absolute value of one of the co-
efficients in the input, can be solved in expected polynomial time on semi-random
instances. For this, one has to assume that the tail functions of the random coeffi-
cients exhibit an exponential decay. More precisely, we assume that there exists a
constant £ € R>¢ such that Pr[|X| > aFE] < 27 for every a > 2 and for every co-
efficient X. For example, the Gaussian and the exponential distribution have this
property as well as all distributions with finite domain. Based on Lemma |3.3.5
we prove the following theorem, which is a generalization of Theorem [1.2.8

Theorem 3.3.6. Assume that there exists a constant E > 0 such that for every
random coefficient X it holds Pr[|X| > aE] < 27% for every a > 2. If an integer
optimization problem can be solved in the worst case in time O(poly(N) - W),
then it allows an algorithm with expected polynomial running time on perturbed
nstances.

Proof. We analyze the expected running time of the adaptive rounding procedure
described in Section Remember that in this procedure, we start by revealing
the first bit of each random coefficient after the binary point. Then we compute the
solution that is optimal with respect to the rounded coefficients and check whether
it is also optimal with respect to the original non-rounded coefficients. If this is not
the case, we increase the number b of revealed bits after the binary point by one and
repeat the aforementioned steps. Let us consider one iteration of this algorithm
in which b bits after the binary point of each number have already been revealed.
The running time of this iteration is made up of the running time for finding
the optimal solution of the rounded instance and the running time for checking
whether it is also optimal for the non-rounded instance. In [RV07], we show that
this check can be performed by solving O(n) rounded instances. In these rounded
instances, each number is rounded after b bits after the binary point, but some
numbers are rounded up while others are rounded down. The largest number in the
rounded instances in the considered iteration is W = W;Wa, where W = 2 and
Ws denotes the largest absolute integer part of any of the coefficients. The factor
W, is due to the fact that we have to scale the rounded coefficients by 2° in order
to make them integers. Hence, if the running time of the pseudopolynomial time
algorithm is O(N'"1W) for some constant [, the running time of the considered
iteration is O(nN'"'WWs) = O(N'2°W5).

By similar arguments as in Section m it is shown in [RV07] that more
than b bits after the binary point need only be revealed if, in the case that the
objective function is perturbed, the winner gap is smaller than ndma2°T! or if, in
the case that constraints are perturbed, the loser or the feasibility gap is smaller
than (ndmax +1)2°1. We denote by k the number of perturbed linear expressions,
that is, K = m if only m constraints are perturbed, and k = m + 1 if m constraints



88 Chapter 3 — Pareto-Optimal Solutions

and the objective function are perturbed. Due to Lemmas and we can
upper bound the probability of this event by

poly (¢, k, n, diax) - 27", (3.3.4)

where we used the fact that the expected absolute values of the coefficients are
bounded by some constant depending on F.

We define F to be the failure event that either at least nlog d bits after the bi-
nary point of each random coefficient need to be revealed or that Wy > (nlogd)E.
Due to the assumption about the probability distributions of the coefficients, the
probability for the latter event can be bounded by a union bound from above by

nk-27mosd — (pk)d—" .

Together with (3.3.4]) this implies that the probability of the failure event F is
bounded from above by

poly (o, k,n, dmax) - g—nlogd | (nk)d™" = poly(¢p, k,n,dmax) - d" " .

Before the adaptive rounding procedure is started, it is checked whether the ab-
solute value of one of the coefficients is larger than (nlogd)E. If this is the case,
the problem is solved by a brute force enumeration over all d" possible solutions.
If this is not the case, we start the adaptive rounding procedure. If this procedure
reveals nlogd bits after the binary point of each coefficient without finding the
optimal solution, it is stopped and again replaced by a brute force enumeration.
In this case, the running time of the unsuccessful adaptive rounding procedure is

nlogd
lob . 1
b; O (N'2"(nlogd)E) = O (N'd"(nlog d)E)

Hence, in case of the failure event F, the running time is bounded from above
by poly(¢, k, N, dmax) - d". Since the failure event occurs only with probability at
most poly(¢, k,n, dmax) -d~", this implies that the contribution of the failure event
to the expected running time is polynomial.

It remains to consider the case that the failure event F does not occur. Let
b denote the number of bits that have been revealed of each number in the last
iteration of the adaptive rounding procedure and let W; = 2°. We define the
random variable W7 as

Wi = {W1 in case of —F,

0 otherwise.

By (3.3.4)), it follows that

nlogd nlogd
EW] <> Pr[Wwf=21]2"< Y Pr[W; =22
=0 1=0

nlogd

< S poly(d, konydias) - 27 2 = poly(d, kon, dias) - (3.3.5)
1=0
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Let T' denote the running time of this algorithm. Since
E [W{] = Pr[~F|E[W] | ~F| = Pr[~F|E[W;| -F]

and, in case of =F, the running time of the adaptive rounding procedure is always
dominated by the running time of the last iteration, we obtain

E[T| < Pr[-F]-E[T| ~-F|]+Pr[F]-E[T| F]
< N'((nlogd)E) - Pr[~F] - E[Wy | ~F] 4 poly(¢, k, N, diax)
< poly(¢, k, N, dmax) ,

which concludes the proof. O

Observe that the previous proof does not yield expected polynomial run-
ning time, when the old bounds derived in [RVQ7] instead of our new bounds in
Lemma are used. When the old bounds are used, the running time in
is not polynomial anymore.

3.4 Enumeration of the Pareto Set

In this section, we consider bicriteria binary optimization problems in which an
adversary can choose an arbitrary set S C {0, 1}" of feasible solutions and in which
the costs ¢: § — R and the weights w: & — R are to be minimized. We consider
semi-random instances in which both the cost and the weight function are linear
with perturbed coefficients. That is, we assume that c¢(x) = c1z1 + - - - + ¢y, and
w(z) = wix1+- - - +wyx, and that the costs ¢; and the weights w; are independent
random variables whose densities are bounded by ¢ and whose expected absolute
values are bounded by p. We make the additional assumption that all weights w;
are non-negative.

For a few problems like, for example, the shortest path problem, algorithms are
known that compute the Pareto set in polynomial time in the input size and the size
of the Pareto set. For many other well-studied problems like the spanning tree and
the perfect matching problem, it is still unknown whether such algorithms exist.
In this section, we consider problems for which the Pareto set can be computed
in pseudopolynomial time in the worst case. For these problems, we present an
algorithmic approach that allows use to compute with probability at least 1 —p, for
every desired failure probability p > 0, the Pareto set of semi-random instances
in polynomial time. The assumption that the Pareto set can be computed in
pseudopolynomial time is not very restrictive. This assumption is, for instance,
satisfied for every problem whose exact single-criterion version (i.e., the question,
“Is there a solution with cost exactly x7”) can be solved in pseudopolynomial
time, including the spanning tree and the perfect matching problem.

In [ANRVO0T7], we show that f-II problems are NP-hard even for simple poly-
nomial objective functions and we show that it is hard to approximate them for
rapidly increasing objective functions if Il is the bicriteria spanning tree, shortest
path, or perfect matching problem. The optimal solution of an f-II problem is a
Pareto-optimal solution if f is non-decreasing. Hence, our aforementioned result
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implies that we can, for any problem II whose Pareto set can be computed in pseu-
dopolynomial time and for every non-decreasing function f, devise an algorithm
for the f-II problem that is efficient on semi-random inputs.

In the previous section, we have shown that integer optimization problems
are robust against rounding of the coefficients. In this section, we show that
the Pareto set of bicriteria binary optimization problems is also robust against
rounding. To be precise, we show that if one rounds each coefficient in the linear
objective functions, that is, each weight and each cost, after a logarithmic number
of bits, then with high probability every solution that is Pareto-optimal in the
original instance is also Pareto-optimal in the rounded instance. Hence, with
high probability we can generate the complete Pareto set by taking into account
only a logarithmic number of bits of each input number. This way, an algorithm
with pseudopolynomial worst-case complexity for generating the Pareto set can be
turned into a polynomial time algorithm that succeeds with high probability on
semi-random instances.

Outline of the Approach

We show how a pseudopolynomial time algorithm A for generating the Pareto set
can be turned into a polynomial time algorithm that succeeds with probability
at least 1 — p, for arbitrary p > 0, on semi-random inputs. In order to apply
A efficiently it is necessary to round the costs and weights such that they are
only polynomially large after the rounding, i.e., such that the lengths of their
representations are only logarithmic in the input size. Let [c|; and |w];, denote
the costs and weights rounded down to b bits after the binary point. We denote
by P the Pareto set with respect to the objective functions ¢ and w and by P
the Pareto set with respect to the rounded objective functions |¢|, and |w]p. The
following lemma is the main result in this section.

Lemma 3.4.1. Let the costs c1, ..., c, and the non-negative weights wy, . .., w, be
independent random variables whose densities are bounded by ¢ and whose expected
absolute values are bounded by p. There exists a constant k such that for every
p > 0 and for b = klog (nqmp_l) , the Pareto set P is a subset of Py with probability
at least 1 — p.

This means, we can round the coefficients after only a logarithmic number of
bits and use the pseudopolynomial time algorithm, which runs on the rounded
input in polynomial time, to obtain P,. With probability at least 1 — p, the set Py
contains all Pareto-optimal solutions from P. It can contain polynomially many
additional solutions that are not Pareto-optimal w.r.t. ¢ and w. By removing these
superfluous solutions, we obtain the set P with probability at least 1 — p. This
implies Theorem [1.2.7| stated in the introduction.

From the definition of a Pareto-optimal solution, it follows that the optimal
solution z* of a constrained problem, i.e., the solution with the smallest cost among
all solutions fulfilling a weight constraint w - x < t, is always Pareto-optimal.
Otherwise, if there were a solution x that dominates x*, then z would also be a
better solution to the constrained problem. We show that with sufficiently large
probability, for every x € P, we can find a threshold ¢ such that x is the optimal
solution to the constrained problem in which the function |c|;- is to be minimized
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Figure 3.4.1: In this illustration, none of the failure events occurs. We have ¢ < ¥
and the weight of every solution lies in the interval [0, z¢]. Additionally, (D) = xél) =
(3) (4) (5)

2y _ .(2) _ (3 _ _ 4) _ _ 5) _ _
x67x()—xb —x()—xb —(Eg,x()—l'b —xz,x()—xb = x21.

over § with the additional constraint that |w], -« < ¢. This implies that with
sufficiently large probability, every x € P is Pareto-optimal w.r.t. the rounded
coefficients.

To be more precise, we consider, for appropriately chosen z € N and € > 0, z
many constrained problems with costs |c|p, weights |w]p, and thresholds ¢; = ie,
for i € [z]. We denote the minimal weight difference between two different Pareto-
optimal solutions by W, i.e.,

U= min|lw-z—w-y| .
x,y€P
TF#Y

If U is larger than ¢ and the weight of all solutions lies in the interval [0, z&],
then P consists only of solutions to constrained problems of the form min(c - x),
w.r.t. z € S and w - x < t; because in that case we do not miss a Pareto-optimal
solution by our choice of thresholds. We prove that, for each i € [z], the solution
2@ to the constrained problem min(c- z) w.r.t. z € S and w - z < t; is the same
as the solution :cl(f) to the constrained problem min(|c|y - ) wrt. z € S and
|w]p - & < t; with sufficiently large probability. Thus, if ¢ < ¥, the weights of all
solutions lie in the interval [0, ze], and () = ml(f) for all i € [z], then P C Pp. See
Figure for an illustration of this approach.

We do not know how to determine W in polynomial time, but we can show
a lower bound for ¥ that holds with a certain probability. Based on this lower
bound, we can appropriately choose €. Then we choose z sufficiently large, so
that w -z € [0, ze] holds with sufficiently large probability for every solution x.
Thus, our analysis fails only if one of the following three failure events occurs (cf.
Figures and :

Fi: ¥ is smaller than the chosen ¢.
Fo: For one i € 2], the solution () to min(c-z) w.r.t. z € S and w -z < t; does
not equal the solution xl(f) to min([c|p - z) wrt. z € S and |w]p -z < t;.

F3: There exists a solution x with w - x > ze.
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Figure 3.4.3: Failure event Fp: (2 = x5 # 24 = xl(f).

In order to prove Lemma we first have to estimate the probability of the
failure events. Depending on these failure probabilities, we can choose appropriate
values for z, €, and b yielding the theorem. We start by estimating the probability
of the first failure event, which is the most involved part of the proof.

Estimating the Size of the Smallest Gap

For bounding ¥, it is not necessary that the costs are chosen at random because
the bound that we prove holds for every deterministic choice of the costs. Thus,
we assume the costs to be fixed arbitrarily.

Let yM, ...,y denote a sequence containing all elements from S ordered in
increasing order of costs, that is, ¢ -y < ... < ¢-yW. For j {2,...,1}, we
define

¥; = min (w-y"”) - min(w-y) .
i€j—1] i€[j]
Observe that a solution y), for j € {2,...,1}, is Pareto-optimal if and only if
¥; > 0 and that ¥; describes how much less y) weighs compared to the solutions
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Figure 3.4.4: In this example, ¥4y = U5 =0 and ¥ = Ug.

y®) with i < j (see Figure . Thus, we can write ¥ as

/3

U = m j o

= in
FEMN{1}:0,>0

Our goal is to bound the probability that W lies below a given value €. There-
fore, we rewrite the probability of the event ¥ < ¢ as

PriV<e]=Pr[dje[[]\{1}: 0<¥; <¢]

< > Pr[¥;>0-Pr[¥<e|¥;>0] . (3.4.1)
e}

Let us assume that we can bound the conditional probability Pr[¥; < e| ¥; > 0]
from above for every j by some term a. Then we have

Pr(¥ <¢l<a- > Pr[¥; >0
jelN}
=a-(Elg]-1)<a-E[q ,

where ¢ denotes the number of Pareto-optimal solutions.

We can apply Theorem to obtain a polynomial upper bound on the ex-
pected number of Pareto-optimal solutions. The crucial point in Beier and Vock-
ing’s analysis [BV04] of the expected number of Pareto-optimal solutions is a lower
bound on E[¥; | ¥; > 0] for every j € [I] \ {1}. Unfortunately, we cannot apply
their results directly to bound the conditional probability Pr[¥; <e| ¥, > 0]
since in general, a bound on the conditional expectation does not imply a bound
on the conditional probability. Nonetheless, we prove the following result.

Lemma 3.4.2. Let the weights be independent positive random wvariables whose
densities are bounded by ¢ and whose expected absolute values are bounded by .
Then, for every e < (6n°¢?u)~1,

Pr|¥ < ¢] < 2(6en’¢?p)'/3 .

Analogously to the analysis in [BV04], we also look at long-tailed distributions
first, and after that we use the results for long-tailed distributions to analyze the
general case.
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Long-Tailed Distributions. One can classify continuous probability distribu-
tions by comparing their tails with the tail of the exponential distribution. In
principle, if the tail function of a distribution can be lower bounded by the tail
function of an exponential function, then we say the distribution has a “long tail”.

Of special interest to us is the behavior of the tail function under a logarithmic
scale. Given any continuous probability distribution with density f: R>o — R>o,
the tail function T: R>o — [0,1] is defined by T(t) = [ f(z) dz. We define the
slope of T' at x € R>g to be the first derivative of the function —In(7'(-)) at =,
i.e., slopep(z) = — & In(T(x)). For example, the tail function of the exponential
distribution with parameter X is T'(x) = exp(—Az) so that the slope of this function
is slopep(x) = A for every x > 0. The tail of a continuous probability distribution
is defined to be long if there exists a constant o > 0 such that slopey(z) < a for
every x > 0.

For i € [n], we denote by T; the tail function of the weight w; and by f; the
corresponding density function. Beier and Vocking prove the following theorem
on the expected number of Pareto-optimal solutions.

Theorem 3.4.3 ([BV04]). Let the weights wy, ..., w, be positive long-tailed ran-
dom variables with expected values at most u, and let « be a positive real number
such that sloper, (z) < a for every x > 0 and every i € [n]. For the number q of
Pareto-optimal solutions, it holds

Elg) <aun®+1 .

In order to bound the conditional probability Pr[¥; < e| ¥; > 0], we have
to take a closer look into the proof of Theorem [3.4:3] The following lemma is
implicitly contained in this proof.

Lemma 3.4.4 ([BV04]). Let o and p be defined as in Theorem [3.4.3 Then for
every j € [I] \ {1}, it holds

Pr(¥; <e|¥; >0] <1-—exp(—nae) .

Let € > 0 be fixed arbitrarily. Combining Theorem [3.4.3| and Lemma [3.4.4
with equation (3.4.1]) yields

Pr(¥ <e/ < Y  Pr[¥;>0]-Pr[¥; <c| T, >0
jel1}
< (1 — exp(—nae)) - E[q]
<e-na-Elq]

<e-2m3a’u .
Thus, we obtain the following lemma.
Lemma 3.4.5. Let a and p be defined as in Theorem|3.4.5 Then for every e > 0,

Pr[¥ <¢| <e-2n%a%y .
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General Distributions with Bounded Mean and Bounded Density. For
general distributions, a statement like Lemma [3.4.4]is not true anymore. Nonethe-
less, Lemma is also true for short-tailed distributions.

Proof of Lemma[3.4.3 For every weight i € [n], we define a random variable W; =
T;(w;). For any a > 0, let F, denote the event that, for at least one weight i € [n], it
holds W; < a. We show that we can apply the analysis for long-tailed distributions
if F, does not occur. We estimate the probability of the event that ¥ is smaller
than € as

PriV <e| <Pr[F]+Pr¥<eAn-F,] . (3.4.2)

The random variables W; are uniformly distributed over [0, 1] because for every
z €10,1],

Pr(W; < z] =Pr|w; > Ti_l(z)}
= /00 fi(z)dz
Tiil(z)

=TT () = = .

Thus, we obtain
Pr[Fo] =Pr[3i € [n]: z; <a] <na . (3.4.3)

We would like to estimate Pr|[¥ < e A =F,] in such a way that we get rid of the
event —F, since, under the condition —F,, the random variables w; are short-tailed
instead of long-tailed. If the event F, does not occur, the distribution of a weight
w; for values larger than Ti_l(a) is not important. Thus, we can replace the tail
function T; by a tail function 7} with

ey - JTi@) if 2 < T, Y(a),
L) = {a -exp (—¢n (z — T, '(a))) otherwise.

We denote by w; a random variable drawn according to the tail function 73*.
Furthermore, we denote by ¥* the random variable equivalent to ¥ but w.r.t. the
weights w] drawn according to the tail functions 77" instead of T;. Then

PriV < e AN=F,] =Pr[¥* <ecA-F,] <Pr[¥* <¢ . (3.4.4)

Let f denote a density corresponding to the tail function T}*. The random variable

w; is long-tailed since

dx F(x) T

~

d * f < T'_l ’
sloper- () = ——In(T} () = o) = {27/1& ;tie;wi;e. “

For a < 1/n, this implies
sloper-(z) < ¢/a .
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Before we can apply Lemma we have to calculate the expectations of the
random variables w; drawn according to the tail functions 7;". It holds

0o Ti_l(a) 00
/0 xff(z)dx = /0 xfi(x)dx + /Ti—l(a) zff(z)dx

< u+agn / (@ + T (a))e "™ do
0
< pu+ agn (/ re” 9T dy —1—/ T, (a)e o dx)
0 0
Spe ot a)

An application of Markov’s inequality yields T;(u/a) = Pr|w; > p/a] < a, and
hence, T, !(a) < p/a. Therefore, we have

(o9}
a
/ off(e)dr Spt S p <1<
0

Applying Lemma with o/ = ¢/a and u' = 3 yields, for every € > 0,

6en3o?

Pr(¥ <e < ——

(3.4.5)

Equations (3.4.2)) to (3.4.5)) result in the following bound:

6en3p?

Pr(¥V <e¢] <na+ 5
a

We choose a = (6en?¢?)'/3 and obtain
Pr|VU < ¢] < 2(6en’¢?p)'/3 .

We assumed a to be less or equal to 1/n. Thus, we have to choose ¢ such that
(6en?¢?u)'/3 < 1/n. This is equivalent to & < (6n°¢?u) L. O

Proof of Lemma [3.4.7]

In the following, fix some i € [z] and let .7-'2@) denote the event that the solution

2@ does not equal the solution ml(f). The situation is very similar to the situation

considered in Section [3:3] We have a binary optimization problem and we need to
bound the probability that rounding the coefficients in the objective function and
the constraint changes the optimal solution. The crucial observation in Section [3.3]
is that whenever the winner, loser, and feasibility gap are large enough, the op-
timal solution of the constrained problem stays optimal even w.r.t. the rounded
coefficients. To be precise, we have seen that for the binary case, rounding down
each coefficient after the b-th bit after the binary point cannot change the optimal
solution if the winner gap is larger than n2~+! and if both loser and feasibility
gap are larger than n27. In fact, for the binary case, the optimal solution (%)
cannot become infeasible due to the rounding because all coefficients are rounded
down and hence, the weight of (") can only decrease by the rounding. This means,
for the binary case, the feasibility gap is not important. By this reasoning, using

Lemmas and yields the following lemma.
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Lemma 3.4.6. The probability of the failure event Fo is bounded from above by
P 2—b+2n3¢ )

Proof. We show that for every i € [z], the probability of the event ]:2(2) is bounded
from above by 27°+2n3¢. Then a union bound over all i € [2] yields the lemma.
Let ¢ € [2] be fixed. Let A denote the loser gap of the constrained problem
min(c- x), wr.t. x € S and w - x < ¢;. And let A denote the winner gap of the
constrained problem min(c-z), w.r.t. x € S and |w|p -z < ¢;, in which the weights
are already rounded. From the argumentation in Section it follows that the

winners z(? and :cl()i) can only differ if either A < n27%*+! or A < n27°. Combining
this observation with Lemmas and yields

Prvy}SPﬂASnI*H}+P%A§nTﬂ

<n?. 270 gy pd.ob g
< 9274234

which implies the lemma. O
Now we use the Lemmas and to prove Lemma [3.4.1

Proof of Lemma|3.4.1. We would like to choose €, z and b in such a way that
each failure probability Pr|[F;] is bounded by p/3. By Lemma choosing
e = p3(1296n°¢%u)~! yields Pr[F;] < p/3. By a simple application of Markov’s
inequality, we obtain that choosing

3888n5¢2 12
r=
p
implies Pr[F3] < p/3. Due to Lemma setting b = log(an®¢3u?p~?), for an
appropriate constant «, yields Pr[Fa] < p/3.
This proves the lemma since for b = log(an?¢3u?p=5) = O(log(neup=')), the
failure probability is at most p. O
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CHAPTER 4

Local Optima

In this chapter, we prove the results about the 2-Opt heuristic for the traveling
salesperson problem that we described in Section After stating some pre-
liminaries and notations, we start by presenting the lower bounds, showing that
the 2-Opt heuristic can take an exponential number of steps on two-dimensional
instances for each L, metric. Then we present the upper bounds on the expected
running time and the expected approximation ratio.

4.1 Preliminaries

An instance of the TSP consists of a set V = {v1,...,v,} of vertices (depending
on the context, synonymously referred to as points) and a symmetric distance
function d: V xV — R>( that associates with each pair {v;,v;} of distinct vertices
a distance d(v;, vj) = d(vj,v;). The goal is to find a Hamiltonian cycle of minimum
length. We also use the term tour to denote a Hamiltonian cycle. For a natural
number n € N, we denote the set {1,...,n} by [n].

A pair (V,d) of a nonempty set V' and a function d: V' x V — R is called a
metric space if for all x,y,z € V the following properties are satisfied:

(a) d(z,y) =0 if and only if x =y (reflexivity),

(b) d(z,y) = d(y,x) (symmetry),
(c) d(z,2) <d(z,y) +d(y, 2) (triangle inequality).

If (V,d) is a metric space, then d is called a metric on V. A TSP instance with
vertices V and distance function d is called metric TSP instance if (V, d) is a metric
space.

A well-known class of metrics on R? is the class of L, metrics. For p € N,
the distance d,(x,y) of two points = € R? and y € R? with respect to the L,
metric is given by d,(z,y) = /|1 — 1P + -+ - + |24 — yalP. The L; metric is often
called Manhattan metric, and the Lo metric is well-known as Fuclidean metric.
For p — oo, the L, metric converges to the L., metric defined by the distance
function deo(x,y) = max{|z1 — y1|,...,|zq — va|}. A TSP instance (V,d) with
V C R? in which d equals d, restricted to V' is called an L, instance. We also
use the terms Manhattan instance and Fuclidean instance to denote L1 and Lo
instances, respectively. Furthermore, if p is clear from context, we write d instead
of d.

A tour construction heuristic for the TSP incrementally constructs a tour and
stops as soon as a valid tour is created. Usually, a tour constructed by such a
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heuristic is used as the initial solution 2-Opt starts with. A well-known class
of tour construction heuristics for metric TSP instances are so-called insertion
heuristics. These heuristics insert the vertices into the tour one after another,
and every vertex is inserted between two consecutive vertices in the current tour
where it fits best. To make this more precise, let T; denote a subtour on a subset
S; of i vertices, and suppose v ¢ S; is the next vertex to be inserted. If (z,y)
denotes an edge in 7T; that minimizes d(z,v) 4+ d(v,y) — d(z,y), then the new tour
T;+1 is obtained from T; by deleting the edge (z,y) and adding the edges (x,v)
and (v,y). Depending on the order in which the vertices are inserted into the
tour, one distinguishes between several different insertion heuristics. Rosenkrantz
et al. [RSI77] show an upper bound of [logn] 4+ 1 on the approximation factor
of any insertion heuristic on metric TSP instances. Furthermore, they show that
two variants which they call nearest insertion and cheapest insertion achieve an
approximation ratio of 2 for metric TSP instances. The nearest insertion heuristic
always inserts the vertex with the smallest distance to the current tour, and the
cheapest insertion heuristic always inserts the vertex whose insertion leads to the
cheapest tour Tj4.

4.2 Exponential Lower Bounds

In this section, we answer Chandra, Karloff, and Tovey’s question [CKT99] whether
it is possible to construct TSP instances in the Euclidean plane on which 2-Opt
can take an exponential number of steps. We present, for every p € NU {o0}, a
family of two-dimensional L, instances with exponentially long sequences of im-
proving 2-changes. In Section we present our construction for the Euclidean
plane, and in Section we extend this construction to general L, metrics.

4.2.1 Exponential Lower Bound for the Euclidean Plane

In Lueker’s construction [Lue75] many of the 2-changes remove two edges that are
far apart in the current tour in the sense that many vertices are visited between
them, no matter of how the direction of the tour is chosen. Our construction differs
significantly from the previous one as the 2-changes in our construction affect the
tour only locally. The instances we construct are composed of gadgets of constant
size. Fach of these gadgets has a zero state and a one state, and there exists a
sequence of improving 2-changes starting in the zero state and eventually leading
to the one state. Let Gy, ..., G,—1 denote these gadgets. If gadget G; with ¢ > 0
has reached state one, then it can be reset to its zero state by gadget G;—1. The
crucial property of our construction is that whenever a gadget G;_1 changes its
state from zero to one, it resets gadget G; twice. Hence, if in the initial tour,
gadget Gy is in its zero state and every other gadget is in state one, then for every
i with 0 < i < n — 1, gadget G; performs 2! state changes from zero to one as, for
i > 0, gadget G; is reset 2! times.

Every gadget is composed of 2 subgadgets, which we refer to as blocks. Each
of these blocks consists of 4 vertices that are consecutively visited in the tour.
For i € {0,...,n— 1} and j € [2], let B} and B} denote the blocks of gadget G;
and let A;, B;, C}, and D; denote the four points B; consist of. If one ignores
certain intermediate configurations that arise when one gadget resets another one,
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Figure 4.2.1: In the illustration, we use m to denote n — 1. Every tour that occurs
in the sequence of 2-changes contains the thick edges. For each block, either both
solid or both dashed edges are contained. In the former case the block is in its short
state; in the latter case the block is in its long state.

our construction ensures the following properties: The points A;, B;, C’;:, and D;
are always consecutive in the tour, the edge between B} and C] is contained in
every tour, and B} and CJZ- are always the inner points of the block. That is, if one
excludes the intermediate configurations, only the configurations A%B%C"%D% and

RS Vit e i
AZCZ-B’-D;- occur during the sequence of 2-changes. Observe that the change from

orie g)f éhese configurations to the other corresponds to a single 2-change in which
the edges A;B;- and C’;D; are replaced by the edges A;C; and B;-D;-, or vice versa.
In the following, we assume that the sum d(A;, B;) + d(C’;, D;) is strictly smaller
than the sum d(A;, C]z) + d(B;-7 D;-), and we refer to the configuration A;B}C’;Dé
as the short state of the block and to the configuration A;C’;B;-D;- as the long
state. Another property of our construction is that neither the order in which the
blocks are visited nor the order of the gadgets is changed during the sequence of
2-changes. Again with the exception of the intermediate configurations, the order
in which the blocks are visited is BYBIBI B ... B By~ (see Figure .

Due to the aforementioned properties, we can describe every non-intermediate
tour that occurs during the sequence of 2-changes completely by specifying for
every block if it is in its short state or in its long state. In the following, we denote
the state of a gadget G; by a pair (x1,x2) with z; € {S, L}, meaning that block
B;- is in its short state if and only if ; = S. Since every gadget consists of two
blocks, there are four possible states for each gadget. However, only three of them
appear in the sequence of 2-changes, namely (L, L), (S,L), and (S,S5). We call
state (L, L) the zero state and state (S5, 5) the one state. In order to guarantee the
existence of an exponentially long sequence of 2-changes, the gadgets we construct
possess the following property.

Property 4.2.1. If, fori € {0,...,n — 2}, gadget G; is in state (L,L) or (S, L)
and gadget Giy1 is in state (S, S), then there exists a sequence of seven consecutive
2-changes terminating with gadget G; being in state (S, L) or (S,S), respectively,
and gadget Giy1 in state (L, L). In this sequence only edges of and between the
gadgets G; and G;11 are involved.

If this property is satisfied and if in the initial tour gadget Gy is in its zero
state (L, L) and every other gadget is in its one state (S,.5), then there exists an
exponentially long sequence of 2-changes in which gadget G; changes 2° times from
state zero to state one, as the following lemma shows.
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Lemma 4.2.2. If, fori € {0,...,n—2}, gadget G; is in the zero state (L, L) and
all gadgets G with j > i are in the one state (S, S), then there exists a sequence of
nt3=1 _ 14 consecutive 2-changes in which only edges of and between the gadgets
Gj with j > 1 are involved and that terminates in a state in which all gadgets G
with 7 > 1 are in the one state.

Proof. We prove the lemma by induction on i. If gadget G,_; is in state (L, L),
then it can change its state with two 2-changes to (.S, .S) without affecting the other
gadgets. Hence, the lemma is true for ¢ = n — 1. Now assume that the lemma
is true for i + 1 and consider a state in which gadget G; is in state (L, L) and
all gadgets G; with j > ¢ are in state (S5,.5). Due to Property there exists
a sequence of seven consecutive 2-changes in which only edges of and between
G; and G4 are involved terminating with G; being in state (S,L) and G,
being in state (L,L). By the induction hypothesis there exists a sequence of
27271 — 14 2-changes after which all gadgets G; with j > i are in state (S, 9).
Then, due to Property [£.2.1] there exists a sequence of seven consecutive 2-changes
in which only G; changes its state from (S, L) to (.5, S) while resetting gadget G;1+1
again from (S,5) to (L, L). Hence, we can apply the induction hypothesis again,
yielding that after another 2"+2=% — 14 2-changes all gadgets G; with j > 7 are
in state (S,.5). This concludes the proof as the number of 2-changes performed is
14 4 2(27 271 — 14) = 2nH3—1 14, O

In particular, this implies that, given Property [£.2.I] one can construct in-
stances consisting of 2n gadgets, i.e., 16n points, whose transition graphs contain
paths of length 223 — 14 > 27+% _ 22 ag desired in Theorem [1.3.1}

Detailed Description of the Sequence of Steps

Now we describe in detail how a sequence of 2-changes satisfying Property
can be constructed. First, we assume that gadget G; is in state (S, L) and that
gadget G;11 is in state (5,.5). Under this assumption, there are three consecutive
blocks, namely Bg, Bi“, and Bgﬂ, such that the leftmost one is in its long state,
and the other blocks are in their short states. We need to find a sequence of 2-
changes in which only edges of and between these three blocks are involved and
after which the first block is in its short state and the other blocks are in their long
states. Remember that when the edges {u1,u2} and {vy,v2} are removed from the
tour and the vertices appear in the order ui,us,v1,v2 in the current tour, then
the edges {u1,v1} and {ug,vs} are added to the tour and the subtour between
u1 and vg is visited in reverse order. If, e.g., the current tour corresponds to the
permutation (1,2,3,4,5,6,7) and the edges {1,2} and {5, 6} are removed, then the
new tour is (1,5,4,3,2,6,7). The following sequence of 2-changes has the desired
properties. Brackets indicate the edges that are removed from the tour.
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If gadget G; is in state (L, L) instead of state (S, L), a sequence of steps that
satisfies Property can be constructed analogously. Additionally, one has
to take into account that the three involved blocks By, Bi*!, and Byt are not
consecutive in the tour but that block B lies between them. However, one can
easily verify that this block is not affected by the sequence of 2-changes, as after
the seven 2-changes have been performed, the block is in the same state and at
the same position as before.

Embedding the Construction into the Euclidean Plane

The only missing step in the proof of Theorem for the Euclidean plane is to
find points such that all of the 2-changes that we described in the previous section
are improving. We specify the positions of the points of gadget GG,,—1 and give a
rule how the points of gadget G; can be derived when all points of gadget G;41
have already been placed. In our construction it happens that different points
have exactly the same coordinates. This is only for ease of notation; if one wants
to obtain a TSP instance in which distinct points have distinct coordinates, one
can slightly move these points without affecting the property that all 2-changes
are improving. For j € [2], we choose A;-L*l = (0,0), B;Li1 = (1,0), C’;Lil =
(—0.1,1.4), and D}~" = (—1.1,4.8). Then A7~ 'BI~'C7~' DI~ is the short state
because

n—1 n—1 n—1 n—1 n—1 n—1 n—1 n—1
d(A7, CY ) +d(B) 7, D) — (d(A} ", BY ) +d(C}, DY) > 2.09 .
We place the points of gadget G; as follows (see Figure 4.2.2)):

1. Start with the coordinates of the points of gadget G;41.
2. Rotate these points around the origin by 37 /2.
3. Scale each coordinate with a factor of 3.

4. Translate the points by the vector (—1.2,0.1).

For j € [2], this yields A}~ = (=1.2,0.1), B} % = (=1.2,-2.9), C}"% = (3,0.4),
and D% = (13.2,3.4),

From this construction it follows that each gadget is a scaled, rotated, and
translated copy of gadget G,,—1. If one has a set of points in the Euclidean plane
that admit certain improving 2-changes, then these 2-changes are still improving
if one scales, rotates, and translates all points in the same manner. Hence, it
suffices to show that the sequences in which gadget G,,—2 resets gadget G,,—1 from
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n—2
Bj

Figure 4.2.2: This illustration shows the points of the gadgets G,,—; and G,,_2. One
can see that G,,_s is a scaled, rotated, and translated copy of G,,_1.

(S,S) to (L, L) are improving. There are two such sequences; in the first one,
gadget G,,—o changes its state from (L, L) to (S, L), in the second one, gadget
Gpn—2 changes its state from (S, L) to (S,S). Since the coordinates of the points
in both blocks of gadget G,,_o are the same, the inequalities for both sequences
are also identical. The improvements made by the steps in these sequences are
bounded from below by 0.03, 0.91, 0.06, 0.05, 0.43, 0.06, and 0.53. This concludes
the proof of Theorem for the Euclidean plane as it shows that all 2-changes
in Lemma [£:2.2] are improving.

4.2.2 Exponential Lower Bound for L, Metrics

We were not able to find a set of points in the plane such that all 2-changes in
Lemma [£:2.2] are improving with respect to the Manhattan metric. Therefore, we
modify the construction of the gadgets and the sequence of 2-changes. Our con-
struction for the Manhattan metric is based on the construction for the Euclidean
plane, but it does not possess the property that every gadget resets its neighboring
gadget twice. This property is only true for half of the gadgets. To be more pre-
cise, we construct two different types of gadgets which we call reset gadgets and
propagation gadgets. Reset gadgets perform the same sequence of 2-changes as the
gadgets that we constructed for the Euclidean plane. Propagation gadgets also
have the same structure as the gadgets for the Euclidean plane, but when such a
gadget changes its state from (L, L) to (.5,.5), it resets its neighboring gadget only
once. Due to this relaxed requirement it is possible to find points in the Manhattan
plane whose distances satisfy all necessary inequalities. Instead of n gadgets, our
constructions consists of 2n gadgets, namely n propagation gadgets GéD TN Gf_l
and n reset gadgets GZ, ..., Gfﬁl. The order in which these gadgets appear in
the tour is GPGEGYGE...GF_,GE .

As before, every gadget consists of two blocks and the order in which the blocks
and the gadgets are visited does not change during the sequence of 2-changes.
Consider a reset gadget G¥ and its neighboring propagation gadget Gﬁrl. Then
Property is still satisfied. That is, if GF is in state (L,L) or (S, L) and
Gﬁrl is in state (S, S), then there exists a sequence of seven consecutive 2-changes
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resetting gadget GL. | to state (L, L) and leaving gadget G in state (S, L) or
(S, 5), respectively. The situation is different for a propagation gadget Gf and its
neighboring reset gadget GI*. In this case, if GF is in state (L, L), it first changes
its state with a single 2-change to (S, L). After that, gadget Gf changes its state
to (9,5) while resetting gadget G from state (9,5) to state (L, L) by a sequence
of seven consecutive 2-changes. In both cases, the sequences of 2-changes in which
one block changes from its long to its short state while resetting two blocks of the
neighboring gadget from their short to their long states are chosen analogously to
the ones for the Euclidean plane described in Section

In the initial tour, only gadget G¥ is in state (L, L) and every other gadget is
in state (5,.5). With similar arguments as for the Euclidean plane, we can show
that gadget GF is reset from its one state (5, 9) to its zero state (L, L) 2¢ times
and that the total number of steps is 274 — 22.

Embedding the Construction into the Manhattan Plane

Similar to the construction in the Euclidean plane, the points in both blocks of
a reset gadget GZR have the same coordinates. Also in this case one can slightly
move all the points without affecting the inequalities if one wants distinct coordi-
nates for distinct points. Again, we choose points for the gadgets fol and Gﬁq
and describe how the points of the gadgets GI' and GI can be chosen when the
points of the gadgets Gzﬂl and Gﬁu are already chosen. For j € [2], we choose
At =(0,1), B! = (0,0), it = (=0.7,0.1), and D' = (=1.2,0.08). Fur-
thermore, we choose A% ;' = (=2,1.8), By ' = (=3.3,2.8), Cp ' = (-1.3,1.4),
DYt = (1.5,09), AR, = (=0.7,1.6), BE,' = (-1.5,1.2), C},' = (1.9,-1.5),
and Dot = (0.8, —1.1).

Before we describe how the points of the other gadgets are chosen, we first show
that the 2-changes within and between the gadgets fol and fol are improving.
For j € [2], AEEIBESICEEID?&I is the short state because

d(AR;', Oy +d(BRj" Dij') — (AR By +d(CRy' D)) = 1.36 .

Also the 2-change in which GI'_; changes its state from (L, L) to (S, L) is improving
because

d(Ap,', O +d(BEL " DEy) — (d(ARL B +d(Cy L DY) = 2.2

The improvements made by the 2-changes in the sequence in which G,Iffl changes
its state from (S, L) to (S,9) while resetting G® | are 0.04, 0.4, 0.04, 0.16, 0.4,
0.04, and 0.6.

Again, our construction possesses the property that each pair of gadgets GZP
and GF is a scaled and translated version of the pair GE_| and GE ;. Since we
have relaxed the requirements for the gadgets, we do not even need rotations here.
We place the points of GZP and GZR as follows:

1. Start with the coordinates specified for the points of gadgets Gﬁl and Gﬁl.
2. Scale each coordinate with a factor of 7.7.

3. Translate the points by the vector (1.93,0.3).
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For j € [2], this yields A}, ? = (1.93,8), Bjy? = (1.93,0.3), C}, % = (=3.46,1.07),
and D?{J.Q = (—7.31,0.916). Similar to our construction for the Euclidean plane,

it suffices to show that the sequences in which gadget Gfﬁ2 resets gadget fol
from (S, 5) to (L, L) are improving. As the coordinates of the points in the two
blocks of gadget foz are the same, the inequalities for both sequences are also
identical. The improvements made by the steps in these sequences are 1.06, 1.032,
0.168, 1.14, 0.06, 0.4, and 0.012. This concludes the proof of Theorem for
the Manhattan metric as it shows that all 2-changes are improving.

Let us remark that this also implies Theorem for the L, metric because
distances w.r.t. the L., metric coincide with distances w.r.t. the Manhattan metric
if one rotates all points by /4 around the origin and scales every coordinate with

1/v/2.

Embedding the Construction into General L, Metrics

It is also possible to embed our construction into the L, metric for p > 3. For
j € [2], we choose A%-' = (0,1), B ' = (0,0), C}-! = (3.5,3.7), and D' =
(7.8,—3.2). Moreover, we choose A?{ll = (—2.5,-2.4), Bg—ll = (—4.7,-7.3
Cpi' = (=86,-4.6), D}' = (3.7,9.8), Ap,' = (3.2,2), BE,' = (7.2,7.2
C’I”D’;l = (—6.5,—1.6), and D}@;l = (—1.5,—7.1). We place the points of GI’ and
GE as follows:

);
);

1. Start with the coordinates specified for the points of gadgets GZP+1 and Gﬁl.
2. Rotate these points around the origin by .

3. Scale each coordinate with a factor of 7.8.

4. Translate the points by the vector (7.2,5.3).

It can be calculated that the distances of these points when measured according
to the L, metric for any p > 3 satisfy all necessary inequalities.

4.3 Expected Number of 2-Changes

We analyze the expected number of 2-changes on random d-dimensional Manhat-
tan and Euclidean instances, for an arbitrary constant dimension d > 2, and on
general TSP instances. The previous results on the expected number of 2-changes
due to Kern [Ker89] and Chandra, Karloff, and Tovey [CKT99] are based on the
analysis of the improvement made by the smallest improving 2-change. If the
smallest improvement is not too small, then the number of improvements cannot
be large. In our analyses for the Manhattan and the Euclidean metric, we consider
not only a single step but certain pairs of steps. We show that the smallest im-
provement made by any such pair is typically much larger than the improvement
made by a single step, which yields our improved bounds. Our approach is not
restricted to pairs of steps. One could also consider sequences of steps of length
k for any small enough k. In fact, for general ¢-perturbed graphs with m edges,
we consider sequences of length y/logm. The reason why we can analyze longer
sequences for general graphs is that these inputs possess more randomness than
¢-perturbed Manhattan and Euclidean instances because every edge length is a
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random variable that is independent of the other edge lengths. Hence, the analysis
for general ¢-perturbed graphs demonstrates the limits of our approach under op-
timal conditions. For Manhattan and Euclidean instances, the gain of considering
longer sequences is small due to the dependencies between the edge lengths.

4.3.1 Manhattan Instances

In this section, we analyze the expected number of 2-changes on ¢-perturbed Man-
hattan instances. First we prove a weaker bound than the one in Theorem [1.3.2
The proof of this weaker bound illustrates our approach and reveals the problems
one has to tackle in order to improve the upper bounds. It is solely based on an
analysis of the smallest improvement made by any of the possible 2-Opt steps. If
with high probability every 2-Opt step decreases the tour length by a polynomially
large amount, then with high probability only polynomially many 2-Opt steps are
possible before a local optimum is reached.

Theorem 4.3.1. Starting with an arbitrary tour, the expected number of steps
performed by 2-Opt on ¢-perturbed Manhattan instances with n vertices is O(nS -

logn - ¢).

Proof. In order to prove the desired bound on the expected convergence time, we
only need two simple observations. First, the initial tour can have length at most
dn as the number of edges is n and every edge has length at most d. And second,
every 2-Opt step decreases the length of the tour by a polynomially large amount
with high probability. The latter can be shown by a union bound over all possible
2-Opt steps. Consider a fixed 2-Opt step S, let e; and e denote the edges removed
from the tour in step S, and let e; and e4 denote the edges added to the tour.
Then the improvement A(S) of step S can be written as

A(S) = d(e1) + d(e2) — d(es) — d(es) . (4.3.1)

Without loss of generality let e; = (v1,v2) be the edge between the vertices vy
and v, and let ey = (v3,v4), e3 = (vi,v3), and eq4 = (vo2,v4). Furthermore,
for i € {1,...4}, let 2* € R? denote the coordinates of vertex v;. Then the
improvement A(S) of step S can be written as

d
AS) = (lef —af| + |2} —af| — |z} —af| — |27 —f]) -
=1

Depending on the order of the coordinates, A(S) can be written as linear combi-
nation of the coordinates. If, e.g., for all i € [d], z} > 22 > 23 > 2}, then the
improvement A(S) can be written as Zle(—%v? + 223). There are (4!)¢ such
orders and each one gives rise to a linear combination of the mf ’s with integer
coefficients. For each of these linear combinations, the probability that it takes
a value in the interval (0,¢] is bounded from above by e¢, following, e.g., from
Lemma Since A(S) can only take a value in the interval (0,¢] if one of
the linear combinations takes a value in this interval, the probability of the event
A(S) € (0,¢] can be upper bounded by (4!)%¢.
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Let Apin denote the improvement of the smallest improving 2-Opt step 5, i.e.,
Apin = min{A(S) | A(S) > 0}. We can estimate Api, by a union bound, yielding

Pr[Api < ] < (4)%eny

as there are at most n* different 2-Opt steps. Let T denote the random variable
describing the number of 2-Opt steps before a local optimum is reached. Observe
that 71" can only exceed a given number ¢ if the smallest improvement Ay, is less
than dn/t, and hence

41)dpd
Pr[T > {] gPr[Ammgcﬂ gW .

Since there are at most (n!) different TSP tours and none of these tours can appear
twice during the local search, T is always bounded by (n!). Altogether, we can
bound the expected value of T by

ZPrT>t <Z 4'd %

Since we assumed the dimension d to be a constant, bounding the n-th harmonic
number by In(n) + 1 and using In(n!) = O(nlogn) yields

E[T] = O(n® -logn - ¢) . O

The bound in Theorem [4.3.1]is only based on the smallest improvement Ay
made by any of the 2-Opt steps. Intuitively, this is too pessimistic since most of
the steps performed by 2-Opt yield a larger improvement than Apy,. In particular,
two consecutive steps yield an improvement of at least Ay plus the improvement
Al . of the second smallest step. This observation alone, however, does not suffice
to improve the bound substantially. Instead, we regroup the 2-changes to pairs
such that each pair of 2-changes is linked by an edge, i.e., one edge added to the
tour in the first 2-change is removed from the tour in the second 2-change, and
we analyze the smallest improvement made by any pair of linked 2-Opt steps.
Obviously, this improvement is at least A, + Ainin but one can hope that it
is much larger because it is unlikely that the 2-change that yields the smallest
improvement and the 2-change that yields the second smallest improvement form
a pair of linked steps. We show that this is indeed the case and use this result
to prove the bound on the expected length of the longest path in the transition
graph of 2-Opt on ¢-perturbed Manhattan instances claimed in Theorem [I.3.2

Construction of Pairs of Linked 2-Changes

Consider an arbitrary sequence of consecutive 2-changes of length ¢. The following
lemma guarantees that the number of disjoint linked pairs of 2-changes in every
such sequence increases linearly with the length £.

Lemma 4.3.2. In every sequence of t consecutive 2-changes, the number of dis-
joint pairs of 2-changes that are linked by an edge, i.e., pairs such that there exists
an edge added to the tour in the first 2-change of the pair and removed from the
tour in the second 2-change of the pair, is at least t/3 —n(n — 1)/4.
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Figure 4.3.2: Pairs of type 2.

Proof. Let Sy,...,S: denote an arbitrary sequence of consecutive 2-changes. The
sequence is processed step by step and a list £ of disjoint linked pairs of 2-changes
is created. Assume that the 2-changes Si,...,.5;—1 have already been processed
and that now 2-change S; has to be processed. Assume further that in step S; the
edges e; and e are exchanged with the edges es and e4. Let j denote the smallest
index with j > 4 such that edge e3 is removed from the tour in step S; if such a
step exists, and let 7/ denote the smallest index with j’ > 7 such that edge ey is
removed from the tour in step Sj if such a step exists. If the index j is defined,
the pair (5;,5;) is added to the constructed list £. If the index j is not defined
but the index j" is defined, the pair (S;,Sj) is added to the constructed list L.
After that, both steps S; and Sj (if defined) are removed from the sequence of
2-changes, that is, they are not processed in the following in order to guarantee
disjointness of the pairs in L.

If one 2-change is processed, it excludes at most two other 2-changes from
being processed. Hence, the number of pairs added to £ is at least t/3—n(n—1)/4
because there can be at most |[n(n — 1)/4] steps S; for which neither j nor j' is
defined. O

Consider a fixed pair of 2-changes linked by an edge. Without loss of generality
assume that in the first step the edges {vi,v2} and {vs,v4} are exchanged with
the edges {v1,v3} and {v9,v4}, for distinct vertices vy,...,v4. Also without loss
of generality assume that in the second step the edges {vi,vs} and {vs,vs} are
exchanged with the edges {v1,v5} and {vs,vs}. However, note that the vertices
vs and vg are not necessarily distinct from the vertices vy and v4. We distinguish
between three different types of pairs.

1. |{va,va} N {vs,v6}| = 0. This case is illustrated in Figure [£.3.1]

2. {v2,va} N{vs,v6}| = 1. We can assume w.l.o.g. that vy € {vs,v6}. We
have to distinguish between two subcases: a) The edges {vi,v5} and {va, v3}
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are added to the tour in the second step. b) The edges {vi,v2} and {vs,vs}
are added to the tour in the second step. These cases are illustrated in

Figure

3. [{v2,va} N{vs,v6}| = 2. The case va = vs and vy = vg cannot appear as it
would imply that the tour is not changed by performing the considered pair
of steps. Hence, for pairs of this type, we must have vo = vg and vq4 = vs.

When distances are measured according to the Euclidean metric, pairs of type
3 result in vast dependencies and hence the probability that there exists a pair of
this type in which both steps are improvements by at most € w.r.t. the Euclidean
metric cannot be bounded appropriately. In order to reduce the number of cases
we have to consider and in order to prepare the analysis of ¢-perturbed Euclidean
instances, we exclude pairs of type 3 from our probabilistic analysis by leaving out
all pairs of type 3 when constructing the list £ in the proof of Lemma [4.3.2

We only need to show that there are always enough pairs of type 1 or 2.
Consider two steps S; and S; with ¢ < j that form a pair of type 3. Assume that
in step S; the edges {v1,v2} and {vs,v4} are replaced by the edges {vi,v3} and
{v2,v4}, and that in step S; these edges are replaced by the edges {vi,v4} and
{v2,v3}. Now consider the next step S; with [ > j in which the edge {v1,v4} is
removed from the tour if such a step exists and the next step Sy with I’ > j in
which the edge {v2,v3} is removed from the tour if such a step exists. Observe
that neither (Sj,5;) nor (S}, Sy) can be a pair of type 3 because otherwise the
improvement of one of the steps S;, Sj, and S;, or Sy, respectively, must be
negative. In particular, we must have [ # [’.

If we encounter a pair (5;,5;) of type 3 in the construction of the list £, we
mark step S; as being processed without adding a pair of 2-changes to £ and
without removing S; from the sequence of steps to be processed. Let x denote
the number of pairs of type 3 that we encounter during the construction of the
list £. Our argument above shows that the number of pairs of type 1 or 2 that
are added to L is at least x — n(n — 1)/4. This implies ¢ > 2z — n(n — 1)/4 and
x < t/2+n(n —1)/8. Hence, the number of relevant steps reduces from ¢ to
t'=t—x >1t/2—n(n—1)/8 Using this estimate in Lemma yields the

following lemma.

Lemma 4.3.3. In every sequence of t consecutive 2-changes the number of disjoint
pairs of 2-changes of type 1 or 2 is at least t/6 — Tn(n — 1)/24. O

Analysis of Pairs of Linked 2-Changes

The following lemma gives a bound on the probability that there exists a pair of
type 1 or 2 in which both steps are small improvements.

Lemma 4.3.4. In a ¢-perturbed Manhattan instance with n vertices, the prob-
ability that there exists a pair of type 1 or type 2 in which both 2-changes are
improvements by at most € is bounded by O(n% - &2 - ¢?).

Proof. First, we consider pairs of type 1. We assume that in the first step the
edges {vi,v2} and {vs,vs4} are replaced by the edges {v1,v3} and {va,vs} and
that in the second step the edges {v1,vs3} and {vs,vs} are replaced by the edges
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{v1,v5} and {vs,ve}. For i € [6], let ' € R? denote the coordinates of vertex v;.
Furthermore, let A; denote the (possibly negative) improvement of the first step
and let Ag denote the (possibly negative) improvement of the second step. The
random variables A; and As can be written as

d
Ay =Y la} = aF| +1af - of| - lo} - 23| - |o? - af

7 i
i=1

and

SR

d
DNy =7 o —ad| +|af —af| — |z} —af| -

=1
For any fixed order of the coordinates, A1 and As can be expressed as linear
combinations of the coordinates with integer coefficients. For i € [d], let o; denote
an order of the coordinates ;... ,ZL‘?, let 0 = (01,...,04), and let A] and A§
denote the corresponding linear combinations. We denote by A the event that both
Aj and Ay take values in the interval (0,¢], and we denote by A” the event that
both linear combinations A{ and A§ take values in the interval (0,e]. Obviously

A can only occur if for at least one o, the event A occurs. Hence, we obtain

Pr(A] < ZPr[AG]

Since there are (6!)¢ different orders o, which is constant for constant dimension
d, it suffices to show that for every tuple of orders o, the probability of the event
A is bounded from above by O(g2¢?). Then a union bound over all possible pairs
of linked 2-changes of type 1 yields the lemma for pairs of type 1.

We divide the set of possible pairs of linear combinations (A{, Ag) into three
classes. We say that a pair of linear combinations belongs to class A if at least one
of the linear combinations equals 0, we say that it belongs to class B if A] = —A9,
and we say that it belongs to class C if A] and A§ are linearly independent. For
tuple of orders o that yield pairs from class A or B, the event A% can never
occur because in both cases the value of at least one linear combination is at most
0. For tuples o that yield pairs from class C, we can apply Lemma [B.3.1] from
Appendix which shows that the probability of the event A? is bounded from
above by (¢¢)%. Hence, we only need to show that every pair (A7, Ag) of linear
combinations belongs either to class A, B, or C.

Consider a fixed tuple of orders o = (01,...,04). We split A] and A§ into
d parts that correspond to the d dimensions. To be precise, for j € [2], we write

1 6

o _ Tisj o0 : ot :
Aj = Zie[d] X; ", where X"’ is a linear combination of the variables z;, ..., z;.

For i € [d], we show that the pair of linear combinations (X", X7**) belongs
either to class A, B, or C. This directly implies that also (A, AJ) must belong to
one of these classes.

Assume that the pair of linear combinations (X i’l, X7 1’2) is linearly dependent
for the fixed order ¢;. Observe that this can only happen if X 1 does not contain
xf and :z:;l and if X 2 does not contain azf and x?. The former can only happen

e 3 4 .2 4 2 1 e 3 4 .2 4 2 1
if either z7 > z}, 7 > z, and z; > z; or if x7 <z}, 7 < z;, and 7 < x;.
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e 6 3 6 5 1 oy if 40 6

The latter can only happen if either x 2 x;, x; > a7, and x7 > x; orif x7 < a7,
xf’ < a:?, and a:? < a;zl

If one chooses the order such that z?, 7,

37 > w one can verify by a case distinction that X"

x3, and 2% cancel out and such that
'€ {0, -2z} + 223} and
X; 72 ¢ {0 27} —223}. Hence, in this case the resulting pair of linear comblnatlons
belongs elther to class A or B. Analogously, if one chooses the order such that x?
a:4, x;, and a: cancel out and such that :c3 > x , we have XU“ € {0, 2x - 2x3}
and Xf“ € {O, —Qxi + fo’} Hence, also in this case, the pair of resulting linear
combinations belongs either to class A or B.

With similar arguments we prove the lemma for pairs of type 2. We first prove
the lemma for pairs of type 2 a). Using the same notations as for pairs of type 1,
we can write the improvement As as

Ny = o — | +|af — 2| = |z} — 2P| - |af — ]| .
1€[d]

Again we show that, for every i € [d] and every order o;, the pair of linear
combinations (X i’l, 71,2 ) belongs either to class A, B, or C. Assume that the
pair is linearly dependent for the fixed order ;. Observe that this can only happen
if XUZ"1 does not contain :U and if XU“2 does not contain m5 The former can only
happen if either 3 > a; and x> x or 1f x3 < a; and z3 < x The latter can
only happen if either :z:l > a:Z and a:z > % or if ml < azl and :1:Z § xi.

If one chooses the order such that z} and z? cancel out and such that x} > 23,
one can verify by a case distinction that X‘”’1 € {0, —2I1 +2332 —2331 +2:c3 —2x2+
223} and Xf”’2 € {0, 2z} — 222, 2z} —21’3 222 —21‘3} Hence, under the assumption
that the linear combinations Xi“ and Xf 2 are linearly dependent, the pair
of resulting linear combinations in the case mzl > x? belongs either to class A
or B. Analogously, if one chooses the order such that x} and z? cancel out and
such that z3 > z!, we have XU“1 € {0,2z} — 222, 22} — 223,222 — 223} and
Xf'i’2 € {0, —2:621 + Qxi , —Qxi + in , —Zx? + Qxf} Hence, also in this case, the pair
of resulting linear combinations belongs either to class A or B.

It remains to consider pairs of type 2 b). For these pairs, we can write Ay as

i — ] -

d
Do =) Jaj — x|+ |2f — o] - |u} —af| -

Assume that the pair of linear combinations (X il xoi2

77) is linearly dependent

for the fixed order ¢;. Observe that this can only happen if X 1 does not contain
3:;1 and if X 2 does not contain xf As we have already seen for pairs of type 2 a),
the former can only happen if either z3 > z? and 1:2 >z} or if z3 < ar:4 and
x < x The latter can only happen if either af > :c and 333 > af or if a; < a;
and CC? § xl.

If one chooses the order such that x} and z? cancel out and such that x} > 23,
one can verify by a case distinction that XU“1 € {0, —2:1:1 +2332 —2331 +2:c3 —2x2+
223} and Xf”’2 € {0, 2z} — 222,22} — 223, 222 — 223}. Hence, under the assumption
that the linear combinations Xf ol and Xf 2 are linearly dependent, the pair of
resulting linear combinations belongs either to class A or B. If one chooses the
order such that z} and x9 cancel out and such that x? > z!, one can verify by
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a case distinction that X7' € {0,2x! — 222,22} — 223,222 — 243} and X7° €
{0, —21711 + 29:12, —25611 + 23:?, —23:12 + 23;?} Hence, also in this case, the pair of

resulting linear combinations belongs either to class A or B. O

Expected Number of 2-Changes

Based on Lemmas and we are now able to prove part a) of Theo-
rem [1.5.2)

Proof of Theorem a). Let T denote the random variable that describes the
length of the longest path in the transition graph. If T" > ¢, then there must
exist a sequence S1,...,5; of t consecutive 2-changes in the transition graph. We
start by identifying a set of linked pairs of type 1 and 2 in this sequence. Due to
Lemma we know that we can find at least ¢/6 — Tn(n — 1)/24 such pairs.
Let AY . denote the smallest improvement made by any pair of improving 2-Opt
steps of type 1 or 2. For ¢ > 2n?, we have t/6 — Tn(n — 1)/24 > t/48 and hence
due to Lemma

8 12
Pr[T > 1] < Pr [A;‘nin < 485”} -0 <min{”tf 1})

Since T' cannot exceed (n!), this implies the following bound on the expected
number of 2-changes:

E[T] < 2n* + i 0<min{’if2,1}>—0(n4.¢).

t=2n2+41
This concludes the proof of part a) of the theorem. O

Chandra, Karloff, and Tovey [CKT99] show that for every metric that is in-
duced by a norm on R?, and for any set of n points in the unit hypercube [0, 1]¢,
the optimal tour visiting all n points has length O(n(¢=1/4). Furthermore, every
insertion heuristic finds an O(logn)-approximation [RSI77]. Hence, if one starts
with a solution computed by an insertion heuristic, the initial tour has length
O(nl4=1/d . 1ogn). Using this observation yields part a) of Theorem m

Proof of Theorem b). Since the initial tour has length O(n(*=1/?.logn), we

obtain for an appropriate constant ¢ and ¢t > 2n?,

PriT >t <Pr|A},;, <

8—2/d 102, . 42
_O<min{n i(;g n-¢ ,1})

n! 8—2/d 1520y . 42
E[T] < 2n? + Z O(min{n log'n-¢ ,1}) =0m* Y. logn - ¢) .

t2
t=2n2+1

c-nld=D/d Jog n]
min — t

This yields

O]



114 Chapter 4 — Local Optima

4.3.2 FEuclidean Instances

In this section, we analyze the expected number of 2-changes on ¢-perturbed
Euclidean instances. The analysis is similar to the analysis of Manhattan instances
in the previous section, only Lemma needs to be replaced by its equivalent
version for the Lo metric.

Lemma 4.3.5. For ¢-perturbed Lo instances, the probability that there exists a
pair of type 1 or type 2 in which both 2-changes are improvements by at most
e < 1/2 is bounded by O(nS - ¢° -2 -log?(1/€)) + O(n® - ¢* - £3/2 - 1og(1/¢)).

The bound that this lemma provides is slightly weaker than its L1 counterpart,
and hence also the bound on the expected running time is slightly worse for Lo
instances. The crucial step to prove Lemma [4.3.5|is to gain a better understanding
of the random variable that describes the improvement of a single fixed 2-change.
In the next section, we analyze this random variable under several conditions, e.g.,
under the condition that the length of one of the involved edges is fixed. With
the help of these results, pairs of linked 2-changes can easily be analyzed. Let us
mention that our analysis of a single 2-change yields a bound of O(n” -log?(n) - ¢*)
for the expected number of 2-changes. For Euclidean instances in which all points
are distributed uniformly at random over the unit square, this bound already
improves the best previously known bound of O(n'? - logn).

Analysis of a Single 2-Change

We analyze a 2-change in which the edges {O,Q1} and {P,Q2} are exchanged
with the edges {O,Q2} and {P,Q1} for some vertices O, P, Q1, and Q2. In the
input model we consider, each of these points has a probability distribution over
the unit hypercube according to which it is chosen. In this section, we consider
a simplified random experiment in which O is chosen to be the origin and P, Q1,
and ()2 are chosen independently and uniformly at random from a d-dimensional
hyperball with radius v/d centered at the origin. In the next section, we argue
that the analysis of this simplified random experiment helps to analyze the actual
random experiment that occurs in the probabilistic input model.

Due to the rotational symmetry of the simplified model, we assume without
loss of generality that P lies at position (0,T") for some 7' > 0. For i € [2], Let
Z; denote the difference d(O, Q;) — d(P,Q;). Then the improvement A of the 2-
change can be expressed as Z1 —Zs. The random variables Z; and Zs are identically
distributed, and they are independent if T" is fixed. We denote by fzi7—; r—, the
density of Z; and Z; under the conditions that d(O, Q1) = r and d(O,Q2) = r,
respectively, and T = 7.

Lemma 4.3.6. For 7,7 € (0,V/d], and z € (—7, min{r, 2r — 1}),

2 .
()< IV= ifr=m,

J2/7=7.R=r
) - 2 .
e YTET

For z ¢ [—7,min{7,2r — 7}], the density fzp—r p=r(2) is 0.
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Figure 4.3.3: The random variable Z is defined as r — d(P, Q).

Proof. We denote by Z the random variable d(O,Q) — d(P, @), where @ is a
point chosen uniformly at random from a d-dimensional hyperball with radius vd
centered at the origin. In the following, we assume that the plane spanned by the
points O, P, and @ is fixed arbitrarily, and we consider the random experiment
conditioned on the event that @ lies in this plane. To make the calculations
simpler, we use polar coordinates to describe the location of (). Since the radius
d(0,Q) = r is given, the point @ is completely determined by the angle o between
the y-axis and the line between O and @ (see Figure . Hence, the random
variable Z can be written as

Z=r—\/r2+72— 27 cosa .

It is easy to see that Z can only take values in the interval [—7, min{7,2r — 7}],
and hence the density fz7—; r—,(2) is 0 outside this interval.

Since @ is chosen uniformly at random, the angle « is chosen uniformly at
random from the interval [0,27). For symmetry reasons, we can assume that o
is chosen uniformly from the interval [0, 7). When « is restricted to the interval
[0, 7), then there exists a unique inverse function mapping Z to «, namely

a(z) = arccos T4 2 — 22
N 2rT
The density fz7—; p—, can be expressed as
d 1 d
f217=7r=r(2) = fa(a(2)) - @a(z) = ga(z) ;

where f, denotes the density of ¢, i.e., the uniform density over [0, 7). For |z| < 1,
the derivative of the arc cosine is

1
V1i—a2

(arccos(x))’ = —

Hence, the derivative of a(z) equals

A —1 _ 2(z—r)
T \/1 _ (PH2er—z2)? VAr27T2 — 49222 — 4rr2z 4+ dr2® — 7R 4 27222 — 4
4reT

In order to prove the lemma, we distinguish between the cases r > 7 and r < 7.
First case: r > 7.
In this case, it suffices to show

A% —Ar?2? —drr?r 4 dr2d — 1t 427222 — 2 > (2 — )2 (72 = 2?)
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which is implied by
4272 —4r?2? —drrPr 4 A — Tt 2722 2(z — 7")2(7'2 — 22)
=232 -2 -t A (P -2 A = (P -2 >0 .

Second case: r < T.
In this case, it suffices to show

A —4r?2? — e+ dr2d — Tt 421222 — 2 > 22— )2 (T4 2)(2r — T — 2)
which is equivalent to

(=2r + 2+ 1) (T 4+ 2)(2> 4+ 212 — 2rz + 2r — 72 = 277) > 0
= 22422 —2rz+ 2% =12 —21r <0 ,

which follows from

224272 — 2rz + 29 — 72 — 277
=22 4+ 2z(t—7r) + 22 — 72— 27rp
<@2r—7) 2 4+202r —7) (1 —7) +2r? — 72 = 277
=2(r* —7%) <0 . O

Based on Lemma, the density of the random variable A = Z; — Z5 under
the conditions Ry := d(0, Q1) = r1, Ry :=d(0,Q2) =12, and T :=d(O,P) =7
can be computed as the convolution (cf. Appendix [B.1)) of the density fz7—- r—,
with itself.

Lemma 4.3.7. Let 7,r1,72 € (0, \/&], and let Z1 and Zy be independent ran-
dom variables drawn according to the densities fzip—r r—p, and fzir—7 r=r,, TE-
spectively. For every 6 € (0,1/2] and a sufficiently large constant k, the density
FAIT=r,Ri=r1,Ra=r> () Of the random variable A = Zy — Z3 is bounded from above
by

§-1n<5*1 if T <ry, 7 <ro,
\/7%- (Ino~'+Inf2(r —rg) =8| ' + k) ifri<Tra<T,
\/le-lné_l ifri <17 <79,
\/’:72-(ln6_1+1n|2(7'—r2)—5|_1—|—/-i) ifro <7 <.

The simple but somewhat tedious calculation that yields Lemma is de-
ferred to Appendix In order to prove Lemma we need bounds on
the densities of the random variables A, Z1, and Z5 under certain conditions. We
summarize these bounds in the following lemma.

Lemma 4.3.8. Let 7,7 € (0,v/d], § € (0,1/2], and let x denote a sufficiently large
constant.

a) For i € [2], the density of A under the condition R; = r is bounded by

falR=r(6) < —=-Ind6~" .

W
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b) The density of A under the condition T = T is bounded by
Fapr—r(0) < = ot
-

c) The density of A is bounded by

fa(d) <k-Ins ' .

d) For i € [2], the density of Z; under the condition T = T is bounded by

K
fzr=-(2) < T

if |z| < 7. Since Z; takes only values in the interval [—, 7], the conditional
density fz,r=.(2) is 0 for z & [-7,7].

Lemma follows from Lemmas and by integrating over all values
of the unconditioned distances. The proof can be found in Appendix

Simplified Random Experiments

In the previous section we did not analyze the random experiment that really takes
place. Instead of choosing the points according to the given density functions, we
simplified their distributions by placing point O in the origin and by giving the
other points P, 1, and ()2 uniform distributions centered around the origin. In
our input model, however, each of these points is described by a density function
over the unit hypercube. We consider the probability of the event A € [0,¢] in
both the original input model as well as in the simplified random experiment. In
the following, we denote this event by £. We claim that the simplified random
experiment that we analyze is only slightly dominated by the original random
experiment, in the sense that the probability of the event £ in the simplified
random experiment is smaller by at most some factor depending on ¢.

In order to compare the probabilities in the original and in the simplified
random experiment, consider the original experiment and assume that the point
O lies at position = € [0,1]%. Then one can identify a region R, C R3? with the
property that the event £ occurs if and only if the random vector (P, Q1,Q2) lies
in R,. No matter of how the position x of O is chosen, this region always has
the same shape, only its position is shifted. Let V = sup ¢ 1j¢ Vol(Rz N [0, 1]39).
Then the probability of £ can be bounded from above by ¢? - V in the original
random experiment. Since A is invariant under translating O, P, 1, and Q2 by
the same vector, we obtain

Vol (RZ N [0, 1]3d) = Vol (Rga N ([—21,1 — 1] X -+ X [~24,1 — 24])?)

< Vol (Rod nl-1, 1]3d)

Hence, V < V' := Vol(Rge N [~1,1]3%). Since the hyperball centered around the
origin with radius v/d contains the hypercube -1, 1]d completely, the probability of
£ in the simplified random experiment can be bounded from below by V' /V;(+/d)?,
where V;(v/d) denotes the volume of a d-dimensional hyperball with radius v/d.
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Since this hyperball is contained in a hypercube with side length 2v/d, its volume
can be bounded from above by (4d)d/ 2. Hence, the probability of £ in the simplified
random experiment is smaller by at most a factor of ¢(4d)*#? compared to the
original random experiment.

Taking into account this factor and using Lemma ¢) and a union bound
over all possible 2-changes yields the following lemma about the improvement of
a single 2-change.

Lemma 4.3.9. The probability that there exists an improving 2-change whose
improvement is at most € < 1/2 is bounded from above by O(n* - ¢3 - & - log(1/¢)).

Using similar arguments as in the proof of Theorem yields the following
upper bound on the expected number of 2-changes.

Theorem 4.3.10. Starting with an arbitrary tour, the expected number of steps
performed by 2-Opt on ¢-perturbed Buclidean instances is O(n” -log? (n) - ¢°).

Pairs of Type 1. In order to improve upon Theorem [£.3.10] we consider pairs of
linked 2-changes as in the analysis of ¢-perturbed Manhattan instances. Since our
analysis of pairs of linked 2-changes is based on the analysis of a single 2-change
that we presented in the previous section, we also have to consider simplified
random experiments when analyzing pairs of 2-changes. For a fixed pair of type 1,
we assume that point v3 is chosen to be the origin and the other points vy, v,
v4, vs, and vg are chosen uniformly at random from a hyperball with radius vd
centered at v3. Let £ denote the event that both Ay and As lie in the interval
[0,¢], for some given . With the same arguments as above, one can see that the
probability of £ in the simplified random experiment is smaller compared to the
original experiment by at most a factor of ((4d)%2¢)".

Pairs of Type 2. For a fixed pair of type 2, we consider the simplified random
experiment in which vs is placed in the origin and the other points v, v3, v4, and
vs are chosen uniformly at random from a hyperball with radius v/d centered at
v9. In this case, the probability in the simplified random experiment is smaller by
at most a factor of ((4d)%2¢)*.

Analysis of Pairs of Linked 2-Changes

Finally, we can prove Lemma |4.3.5

Proof of Lemmal[{.3.5. We start by considering pairs of type 1. We consider the
simplified random experiment in which v3 is chosen to be the origin and the other
points are drawn uniformly at random from a hyperball with radius v/d centered
at vs. If the position of the point vy is fixed, then the events A; € [0,¢] and
Ay € [0,¢] are independent as only the vertices v; and v3 appear in both the first
and the second step. In fact, because the densities of the points vo, v4, v5, and
vg are rotationally symmetric, the concrete position of vy is not important in our
simplified random experiment anymore, but only the distance R between v; and
v3 is of interest.
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For i € [2], we determine the conditional probability of the event A; € [0, €] un-
der the condition that the distance d(vy, v3) is fixed with the help of Lemma a)
and obtain

Pr(Ai € [0.6]| d(vs,02) =11 = [ fayn—r(0)ds

< / QLAWY
“Jo VT

3
§7’; ce-In(1/e) . (4.3.2)
Since for fixed distance d(vy,v3) the random variables A; and Ay are independent,
we obtain
ot

Pr[Al,AQ € [0,5” d(vlav?)) = T] < r

g2 In%(1/¢) . (4.3.3)

For 7 € [0,V/d], the density fd(v1,v) Of the random variable d(vy,v3) in the sim-
plified random experiment is 741/ d¥?=1. Combining this observation with the

bound given in (4.3.3)) yields

Vd 92 . pd—2

PriA;, Ay € [0,¢] < /

e Wi (1/e)dr =0 (¢* n’(1/e))
0

There are O(n®) different pairs of type 1, hence a union bound over all of them
concludes the first part of the proof when taking into account the factor ((4d)%2¢)5
that results from considering the simplified random experiment.

It remains to consider pairs of type 2. We consider the simplified random
experiment in which wve is chosen to be the origin and the other points are drawn
uniformly at random from a hyperball with radius v/d centered at vy. In contrast
to pairs of type 1, pairs of type 2 exhibit larger dependencies as only 5 different
vertices are involved in these pairs. Fix one pair of type 2. The two 2-changes
share the whole triangle consisting of vy, v9, and v3. In the second step, there is
only one new vertex, namely vs. Hence, there is not enough randomness contained
in a pair of type 2 such that A; and A, are nearly independent as for pairs of
type 1.

We start by considering pairs of type 2 a). First, we analyze the probability
that A; lies in the interval [0,e]. After that, we analyze the probability that As
lies in the interval [0, ¢] under the condition that the points v1, ve, v3, and vy have
already been chosen. In the analysis of the second step we cannot make use of
the fact that the distances d(vi,v3) and d(ve,v3) are random variables anymore
since we exploited their randomness already in the analysis of the first step. The
only distances whose randomness we can exploit are the distances d(vi,vs) and
d(v2,vs5). We pessimistically assume that the distances d(v1, v3) and d(ve, v3) have
been chosen by an adversary. This means the adversary can determine an interval
of length ¢ in which the random variable d(va, vs) — d(v1, v5) must lie in order for
A to lie in [0, €].

Analogously to , the probability of the event A; € [0, €] under the con-
dition d(vy,v2) = r can be bounded by

PrlA; € [0,]| d(vr,v9) = 1] < f’/’; ce-In(1/e) . (4.3.4)
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Due to Lemma d), the conditional density of the random variable Z =
d(vg,v5) — d(v1,v5) under the condition d(vy,vy) = r can be bounded by

K
J21d(0100)=r(2) £ 55—

r? — 22
for |z] <.

The intervals the adversary can specify which have the highest probability of Z
falling into them are [—r, —r +¢] and [r — e, r]. Hence, the conditional probability
of the event Ay € [0, ] under the condition d(vi,v2) = r and for fixed points v
and vy is bounded from above by

T r ’
/ Hdzgff./ 1 g RVE
max{r—e,—r} m \/’F max{r—e,—r} \/T — ‘Z| \/77

for a sufficiently large constant x’. Combining this inequality with (4.3.4) yields

3Kk 39
Pr[A, A € [0,¢e]| d(vi,v2) =7] < — € -In(1/e) .

In order to get rid of the condition d(v1,v2) = r, we integrate over all possible
values the random variable d(vy, v2) can take, yielding

Vd 3kl . pd=2

PrA;, Ay € [0,¢]] < / 32 In(1/e)dr = O (53/2 : ln(l/e))

A
Applying a union bound over all O(n®) possible pairs of type 2 a) concludes the
proof when one takes into account the factor ((4d)%?¢)* due to considering the
simplified random experiment.

For pairs of type 2 b), the situation looks somewhat similar. We analyze
the first step and in the second step, we can only exploit the randomness of the
distances d(va,v5) and d(vs,vs). Due to Lemma b) and similar to ,
the probability of the event A; € [0,¢] under the condition d(ve,v3) = 7 can be
bounded by

PrlA; € [0,¢]| d(v,v5) = 7] < 37” ce-n(1/e) . (4.3.5)

The remaining analysis of pairs of type 2 b) can be carried out completely analo-
gously to the analysis of pairs of type 2 a). O

The Expected Number of 2-Changes

Based on Lemmas [4.3.3 and [4.3.5] we are now able to prove part b) of Theo-
rem [.3.21

Proof of Theorem b). We use the same notations as in the proof of part a)
of the theorem. For t > 2n?, we have t/6 — 7Tn(n — 1)/24 > t/48 and hence due to

Lemma

Pr(T >t] <Pr Ay <

min

=0 (min{W’l}> L0 (min{n13/2 .tlé)/gZ(t) - ¢4’1}>

48v/dn
t
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This implies that the expected length E[T] of the longest path in the transition
graph is bounded from above by

n! 2
2n? + Z 0] (min {W, 1})

t=2n241

n! 13/2 4
+ Y O(min{n ;;g(t) ¢,1})

t=2n241

Splitting the sums at ¢t = n? - log(ng) - ¢*2 and t = n'3/3 . log?3(ng) - ¢%/3,
respectively, yields

E[T]=0 (n4 -log(ng) - ¢5/2> +0 <n13/3 1og?3(ng) - ¢8/3>
This concludes the proof of part b) of the theorem. O

Using the same observations as in the proof of Theorem a) also yields
part b).

Proof of Theorem b). Estimating the length of the initial tour by O(n(@=1)/d.
logn) instead of O(n) improves the upper bound on the expected number of 2-
changes by a factor of ©(n'/?/logn) compared to Theorem b). This obser-
vation yields the bound claimed in Theorem b). O

4.3.3 General Graphs

In this section, we analyze the expected number of 2-changes on ¢-perturbed
graphs. Observe that such graphs contain more randomness than ¢-perturbed
Manhattan or Euclidean instances because each edge length is a random variable
that is independent of the other edge lengths. It is easy to obtain a polynomial
bound on the expected number of local improvements by just estimating the small-
est improvement made by any of the 2-changes. For Manhattan and Euclidean
instances we improved this simple bound by considering pairs of linked 2-changes.
For ¢-perturbed graphs we pursue the same approach but due to the larger amount
of randomness, we are now able to consider not only pairs of linked steps but longer
sequences of linked steps.

We know that every sequence of steps that contains k distinct 2-changes short-
ens the tour by at least AK) = Agi)n + -t AEII;)H, where Affl)in denotes the i-th
smallest improvement. This observation alone, however, does not suffice to im-
prove the simple bound substantially. Instead we show that one can identify in
every long enough sequence of consecutive 2-changes, subsequences that are linked,
where a sequence Si,..., Sk of 2-changes is called linked if for every i € [k — 1],
there exists an edge that is added to the tour in step S; and removed from the tour
in step S;+1. We analyze the smallest improvement of a linked sequence that con-
sists of k distinct 2-Opt steps. Obviously, this improvement must be at least A®*)
as in the worst-case, the linked sequence consists of the k£ smallest improvements.
Intuitively, one can hope that it is much larger than A®*) because it is unlikely
that the k smallest improvements form a sequence of linked steps. We show that
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Figure 4.3.4: [Illustration of the notations used in Definitions [4.3.11] }4.3.12

and Every node in the DAG corresponds to an edge involved in one of the 2-
changes. An arc from a node u to a node v indicates that in one of the 2-changes, the
edge corresponding to node u is removed from the tour and the edge corresponding
to node v is added to the tour. Hence, every arc is associated with one 2-change.

this is indeed the case and use this result to prove the desired upper bound on the
expected number of 2-changes.

We introduce the notion of witness sequences, i.e., linked sequences of 2-changes
that satisfy some additional technical properties. We show that the smallest total
improvement made by a witness sequence yields an upper bound on the running
time. That is, whenever the 2-Opt heuristic needs many local improvement steps
to find a locally optimal solution, there must be a witness sequence whose total
improvement is small. Furthermore, our probabilistic analysis reveals that it is
unlikely that there exists a witness sequence whose total improvement is small.
Together, these results yield the desired bound on the expected number of 2-
changes.

Definition of Witness Sequences

In this section, we give a formal definition of the notion of a k-witness sequence. As
mentioned above, a witness sequence Si, ..., Sk has to be linked, i.e., for i € [k—1],
there must exist an edge that is added to the tour in step .5; and removed from the
tour in step S;41. Let m denote the number of edges in the graph. Then there are
at most 4¥~1.m**1 such linked sequences as there are at most m? different choices
for S7, and once 5; is fixed, there are at most 4m different choices for S;4;. For a
fixed 2-change, the probability that it is an improvement by at most € is bounded
by 4. We would like to show an upper bound of (¢¢)¥ on the probability that
each step in the witness sequence Sy, ..., S is an improvement by at most €. For
general linked sequences, this is not true as the steps can be dependent in various
ways. Hence, we need to introduce further restrictions on witness sequences.

In the following definitions, we assume that a linked sequence Si,...,Sk of
2-changes is given. For i € [k], in step S; the edges e;—1 and f;_; are removed
from the tour and the edges e; and g; are added to the tour, i.e., for i € [k — 1], ¢;
denotes an edge added to the tour in step S5; and removed from the tour in step
Si11. These definitions are illustrated in Figure

Definition 4.3.11 (witness sequences of type 1). If for every i € [k], the edge
e; does not occur in any step S; with j <14, then Si,...,Sy is called a k-witness
sequence of type 1.
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Intuitively, witness sequences of type 1 possess enough randomness as every
step introduces an edge that has not been seen before. Based on this observation,
we prove in Lemmathe desired bound of (¢)* on the probability that every
step is an improvement by at most ¢ for these sequences.

Definition 4.3.12 (witness sequences of type 2). Assume that for every i € [k],
the edge e; does not occur in any step S; with j < i. If both endpoints of fi,_1 occur
in steps S; with j < k, then S1,..., Sy is called a k-witness sequence of type 2.

Also for witness sequences of type 2, we obtain the desired bound of (e¢)*
on the probability that every step is an improvement by at most €. Due to the
additional restriction on f_1, there are less than 4*~1mF*+! witness sequences of
type 2. As the two endpoints of f;_1; must be chosen among those vertices that
occur in steps S; with j < k, there are only O(k?) choices for the last step Sj. This
implies that the number of k-witness sequences of type 2 can be upper bounded
by O(4%k*m*).

Definition 4.3.13 (witness sequences of type 3). Assume that for everyi € [k—1],
the edge e; does not occur in any step S; with j <i. If the edges ey, and gy occur
in steps S; with j <k and if fr.—1 does not occur in any step S; with j < k, then
S1,...,Sk is called a k-witness sequence of type 3.

Also witness sequences of type 3 possess enough randomness to bound the
probability that every step is an improvement by at most € by (¢¢)* as also the
last step introduces a new edge, namely fr_1.

Improvement made by Witness Sequences

In this section, we analyze the probability that there exists a k-witness sequence
in which every step is an improvement by at most ¢.

Lemma 4.3.14. The probability that there exists a k-witness sequence in which
every step is an improvement by at most €

a) is bounded from above by 4*1mF+1(ep)* for k-witness sequences of type 1.
b) is bounded from above by k*4*~1mF(cp)* for k-witness sequences of type 2.

¢) is bounded from above by k*4*mF(cp)F for k-witness sequences of type 3.

Proof. We use a union bound to estimate the probability that there exists a witness
sequence in which every step is a small improvement.

a) We consider k-witness sequences of type 1 first. As already mentioned in
the previous section, the number of such sequences is bounded by 4*~ImF+1 ag
there are at most m? choices for the first step Si, and once S; is fixed, there are at
most 4m choices for step S;11. The number 4m follows since if S; is fixed, there
are two choices for the edge added to the tour in step S; and removed from the
tour in step S;11, there are at most m choices for the other edge removed in step
Si+1, and once these edges are determined, there are two possible 2-Opt steps in
which these edges are removed from the tour.

Now fix an arbitrary k-witness sequence Sq, ..., S of type 1. We use the same
notations as in Figure to denote the edges involved in this sequence. In the
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first step, the edges eg and fy are replaced by the edges e; and g;. We assume
that the lengths of the edges eg, fy, and g; are determined by an adversary. The
improvement of step S1 can be expressed as a simple linear combination of the
lengths of the involved edges. Hence, for fixed lengths of ey, fo, and g1, the event
that S is an improvement by at most € corresponds to the event that the length
d(e1) of e; lies in some fixed interval of length . Since the density of d(e;) is
bounded by ¢, the probability that d(e;) takes a value in the given interval is
bounded by €¢. Now consider a step S; and assume that arbitrary lengths for the
edges e; and f; with j < 7 and for g; with j < i are chosen. Since the edge e;
is not involved in any step S; with j < ¢, its length is not determined. Hence,
analogously to the first step, the probability that step S; is an improvement by at
most ¢ is bounded by £¢ independent of the improvements of the steps S; with
§ <. Applying this argument to every step S; yields the desired bound of (£¢)*.

b) In witness sequences of type 2, there are at most m? choices for step 5.
Analogously to witness sequences of type 1, the number of possible choices for 5;
with 1 < 7 < k—11is at most 4m. The number of different vertices involved in steps
S; with j < k is at most 4 + 2(k — 2) = 2k as the first step introduces four new
vertices and every other step at most 2. Since the endpoints of the edge fr_1 must
be chosen among those vertices that have been involved in the steps S; with j < k,
there are at most 4k2 possible choices for step S,_;. This implies that the number
of different k-witness sequences of type 2 is bounded by 4 - k24— 2mF = k24k—1mkF,

For a fixed witness sequence of type 2, applying the same arguments as for
witness sequences of type 1, yields a probability of at most (¢¢)* that every step
is an improvement by at most €.

¢) The number of different edges involved in the steps S; with ¢ < k is at most
4+ 3(k —2) < 3k. Hence, the number of k-witness sequences of type 3 is bounded
by 9k24—2mF < k24*mP. Furthermore, similar to witness sequences of type 1,
we can bound the probability that a fixed k-witness sequence of type 3 consists
only of improvements by at most € by (4)* since the last step introduces an edge
which does not occur in the steps S; with ¢ < k, namely fr_1. O

Definition 4.3.15. In the following, we use the term k-witness sequence to denote
a k-witness sequence of type 1 or an i-witness sequence of type 2 or 3 with i < k.
We call a k-witness sequence improving if every 2-change in the sequence is an

improvement. Moreover, by Avfs we denote the smallest total improvement made
by any improving k-witness sequence.

Due to Lemma it is unlikely that there exists an improving witness
sequence whose total improvement is small.

Corollary 4.3.16. For k € N and 0 < ¢ < (4m*-D/(k=2)4)=1

Pr [Affs) < 5] < 64k>(meo)? .
Proof. Due to Lemma and the fact that witness sequences of type 2 or 3

must consist of at least two steps, applying a union bound yields the following
bound on the probability that there exists an improving k-witness sequence whose
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total improvement is at most :

k k
(B) < 2| <gk—1, k+1(-4\k 2 qi—1, i( \i 20 i N
Pr[AWS_e} <A T (e9) —1—12_;@4 m'(e¢) —&—;2 4'm'(e¢)
k .
L L G L) Z(4m5¢)” .
=2

Since 4me¢p < 1, we can bound the sum by
Pr [A‘(fs) < s} < 4P (ep)F 4 283 (4meg)? |

which implies the corollary because for e < (4m®*—1/k=2)3)=1 the second term
in the sum is at least as large as first one. O

Finding Witness Sequences

In the previous section, we have shown an upper bound on the probability that
there exists an improving k-witness sequence whose total improvement is small. In
this section, we show that in every long enough sequence of consecutive 2-changes,
one can identify a certain number of disjoint k-witness sequences. This way, we
obtain a lower bound on the improvement made by any long enough sequence of
consecutive 2-changes in terms of Avfs).

Lemma 4.3.17. Let k € N, and let Sy,...,5; denote a sequence of consecutive 2-
changes performed by the 2-Opt heuristic with t > ndkT1. The sequence Si, ..., S;

shortens the tour by at least t/4%+3 . Avfs).

Basically, we have to show that one can find ¢/4*+3 disjoint k-witness se-
quences in the given sequence of consecutive 2-changes. Therefore, we first in-
troduce a so-called witness DAG (directed acyclic graph) which represents the
sequence S1,...,.S5; of 2-changes. In order to not confuse the constructed witness
DAG W with the input graph G, we use the terms nodes and arcs when referring
to the DAG W and the terms vertices and edges when referring to G. Nodes of W
correspond to edges of G combined with a time stamp. The construction is started
by adding the edges of the initial tour as nodes into W. These nodes get the time
stamps 1,...,n in an arbitrary order. Then the sequence Si,...,S; is processed
step by step. Assume that the steps Si,...S;_1 have already been processed and
that step S; is to be processed next. Furthermore, assume that in step S; the
edges e;—1 and f;—1 are exchanged with the edges e; and g;. Since the edges e;_1
and f;_1 are contained in the tour after the steps Si,...,.5;_1, there are nodes in
W corresponding to these edges. Let u; and uy denote the nodes with the most
recent time stamps corresponding to e; 1 and f;_1, respectively. We create two
new nodes u3 and u4 corresponding to the edges e; and g;, each with time stamp
n + i¢. Finally, four new arcs are added to W, namely the arcs (ui,us), (u1,uq),
(ug,us), and (ug,us). We refer to these four arcs as twin arcs. Observe that each
node in W has indegree and outdegree at most 2. We call the resulting DAG W
a t-witness DAG.

By the height of a node u, we denote the length of a shortest path from u to a
leaf of W. After the witness DAG has been completely constructed, we associate
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Figure 4.3.5: Construction of a path in the witness DAG: The path has been

constructed up to step .S; and now it has to be decided whether to continue it along
!/

e; or e;.

with each node uw with height at least & a sub-DAG of W. The sub-DAG W,
associated with such a node w is the induced sub-DAG of those nodes of W that
can be reached from u by traversing at most k arcs. The following two lemmas

imply Lemma

Lemma 4.3.18. For every sub-DAG W, the 2-changes represented by the arcs
(k)

i Wy and their twin arcs yield a total improvement of at least Avf .

Lemma 4.3.19. For t > nd**l, every t-witness DAG contains at least t/4*+2
nodes u whose corresponding sub-DAGs W, are pairwise disjoint.

Proof of Lemma[{.3.18 Assume that a sub-DAG W,, with root u is given. Since
node u has height &, one can identify 2°~! distinct sequences of linked 2-changes of
length k in the sub-DAG W,,. In the following, we show that at least one of these
sequences is a k-witness sequence or a sequence whose total improvement is as large
as the total improvement of one of the k-witness sequences. We give a recursive
algorithm Sequ that constructs such a sequence step by step. It is initialized with
the sequence which consists only of the first step Sy that is represented by the two
outgoing arcs of the root u and their twin arcs.

Assume that Sequ is called with a sequence of steps S1,...,5; that has been
constructed so far. Given this sequence, it has to decide if the sequence is continued
with a step S;4+1 such that S; and S;4; are linked or if the construction is stopped
since a k-witness sequence is found. In Figure we summarize the notations
that we use in the following. In step S; for j <i—1 and j =i+ 1, the edges e;_1
and f;_1 are exchanged with the edges e; and g;. In step S;, the edges e;_1 and
fi—1 are exchanged with the edges e; and e, and in step Sj, |, the edges ¢; and f;
are exchanged with the edges €/ 41 and gi, ;. We denote by E; all edges that are
involved in steps S; with j < ¢. Similarly, by F;_; we denote all edges that are
involved in steps S; with j <i — 1.

Our construction ensures that whenever algorithm Sequ is called with a se-
quence S1,...,.S; as input, then at least one of the edges that is added to the tour
in step S; is not contained in F;_j. In the following, assume without loss of gen-
erality that e; ¢ E;_1. When we call the algorithm recursively with the sequence
S1,...,8:+1 or with the sequence 51,... ,Si,SZ(H, then either the recursive call
never gives back a return value since a witness sequence is found in the recursive
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call, which immediately stops the construction, or a 2-change S is returned. When-
ever a 2-change S is returned, the meaning is as follows: There exists a sequence
of linked 2-changes in the sub-DAG W, starting with S;1 or S; ;, respectively,
whose net effect equals the 2-change S. That is, after all steps in the sequence
have been performed, the same two edges as in S are removed from the tour, the
same two edges are added to the tour, and all other edges either stay in or out of
the tour. In this case, we can virtually replace step S;;1 or Sj,, respectively, by
the new step S.

When Sequ is called with the sequence Si,...,.5;, then it first identifies the
steps Siy1 and Sj,; based on the last step S;. If i = k, then Si,...,S5; is a
k-witness sequence of type 1, and Sequ stops. Otherwise, the following steps are
performed, where we assume that whenever Sequ has identified a witness sequence,
it immediately stops the construction.

1. TYPE 2 SEQUENCE: If f;_ € E;_4, then Sp,...,5; is a witness sequence of
type 2 because we assumed e; ¢ E;_1.

2. CONTINUATION: If e;41 ¢ E; or g;+1 ¢ E;, then call Sequ recursively with
Sequ(S1,...,Si41). If e; ¢ E;_1 and (€], ¢ E; or g; ., ¢ E;), then call Sequ
recursively with Sequ(St, ..., S, Si, ).

If in one of the recursive calls a step S is returned, which happens only in
case 3 (c), then replace the corresponding step S;1 or S’ 41 virtually by the
returned step. That is, in the following steps of the algorithm, assume that
Siy1 or Si,; equals step S. The algorithm ensures that the edges that are
added to the tour in the new step S are always chosen from the set E;.

3. No CONTINUATION I: €} € E;_; and €;41,0i+1 € E; and fi—1 ¢ E;_y

(a) If fi; ¢ E;, then S1,...,S;11 is a witness sequence of type 3.

(b) If €iy1,9i+1 € Fi—1, then S1,...,.5; is a witness sequence of type 2 since
one endpoint of f;_; equals one endpoint of e, and the other one equals
one endpoint of either e;11 or g;y1.

(c) If fi € E; and (e;41 € E; \ Ei—1 or git+1 € E; \ E;_1), then one can
assume w.l.o.g. that g;11 = fi_1 and e;4; € E;_ since e;1; # €} and
gi+1 7 €} (eit1 and gi+1 share one endpoint with e;; eg does not share
an endpoint with e;.) In this case, return the step S = (e;—1, fi) —
(€it+1,€;). Observe that e;41,€; € E;_1, as desired.

4. No CONTINUATION II: €] ¢ E; 1 and e;j11,9iy1,€j,1, 941 € B and fi_1 ¢
E;

(a) If €i11,9iv1, €11, 941 € Ei—1, then Si,...,S; is a witness sequence of
type 2.

(b) If f; ¢ E;, then Sy,...,S;41 is a witness sequence of type 3.

c) If f/ ¢ E;, then Sy,...,S5;,S!, | is a witness sequence of type 3.

7 i+1

(d) If fl,le € FE; and (6i+1 € E; \ Ei_jor g4 € E; \ Eifl) and (6;4_1 €
E;\Ei_1 or gi,; € E;\ E;_1), then as in case 3 (c), assume w.l.o.g.
gi+1 = i1 = fic1and ejq1,€j € E; 1. In this case, it must be f; # €]
and f; # e; as otherwise step S; would be reversed in step Sj;1 or S} ;.
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Hence, f;, f/ € E;i_1, and Si,...,S; is a witness sequence of type 2 since
one endpoint of f;_1 equals one endpoint of f; and the other endpoint
equals one endpoint of f/.

(e) If Heit1,€i 1, 9it1, 9541} N (Ei \ Ei—1)| = 1, we can assume w.l.o.g. that
€i+1,9i+1,€,1 € Ei1 and gi,; = fi_1. As in the previous case, it
must f; € E;_1. For the step S = (e;—1, f{) — (es,€j,,), the sequence
Si,...,8i—1,5 is a witness sequence of type 2 as f/ € E;_;. Observe
that the original sequence Si,...,S; together with the step S} 41 yields
the same net effect and hence the same improvement as the sequence
S1,...,8i-1,S.

Observe that basically Sequ just constructs a path through the DAG starting at
node u. When a path corresponding to the sequence Si,...,.5; of 2-changes has
been constructed, Sequ decides to either stop the construction since a witness
sequence has been found, or, if possible, to continue the path with an arc corre-
sponding to a step Sj;1 or Sj, ;. In some situations, it can happen that Sequ has
not found a witness sequence yet but cannot continue the construction. In such
cases, step 5; is pruned and Sequ reconsiders the path S1,...,S5;_1. Based on the
pruned step S; it can then either decide that a witness sequence has been found,
that also S;_; has to be pruned, or it can decide to continue the path with S/
instead of S;.

This concludes the proof as the presented algorithm always identifies a k-
witness sequence whose total improvement is at most as large as the improvement
made by the steps in the sub-DAG W,,. O

Proof of Lemma[{.3.19. A t-witness DAG W consists of n+2t nodes and n of these
nodes are leaves. Since the indegree and the outdegree of every node is bounded by
2, there are at most n2* nodes in W whose height is less than k. Hence, there are
at least n + 2t — n2F > ¢ nodes in W with an associated sub-DAG. We construct
a set of disjoint sub-DAGs in a greedy fashion: We take an arbitrary sub-DAG
W, and add it to the set of disjoint sub-DAGs that we construct. After that, we
remove all nodes, arcs, and twin arcs of W, from the DAG W. We repeat these
steps until no sub-DAG W, is left in W.

In order to see that the constructed set consists of at least ¢/4%+2 disjoint sub-
DAGs, observe that each sub-DAG consists of at most 2571 —1 nodes as its height
is k. Hence, it contains at most 2¥ — 1 pairs of twin arcs, and there are at most
2k+2 _ 4 arcs that belong to the sub-DAG or that have a twin arc belonging to
the sub-DAG. Furthermore, observe that each of these arcs can be contained in at
most 2% — 1 sub-DAGs. Hence, every sub-DAG W, can only be non-disjoint from
at most 22¥+2 = 4*+1 other sub-DAGs. Thus, the number of disjoint sub-DAGs
must be at least [t/4*+1] > ¢/4%*+2 where the last inequality follows because we
assumed t > ndF+1, O

The Expected Number of 2-Changes

Now we can prove Theorem [1.3.2

Proof of Theorem ¢). We combine Corollary 4.3.16| and Lemma [4.3.17| to
obtain an upper bound on the probability that the length T of the longest path
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in the transition graph exceeds t. For t > nd**! the tour is shortened by the
sequence of 2-changes by at least ¢/4%+2 . AW Hence, for t > n4F+1,

k2
Pr([T > {] <Pr[ AR <n] — Pr [A(’“) < ”4}

4k+2 WS ws — t

For t > 45+3 . n . ¢ - m*—1/(k=2) " combining the previous inequality with Corol-
lary [4.3.16] yields

4542 . m . 2
Pr(T > 1] < 64k° <T;m¢)

Hence, we can bound the expected number of 2-changes by

‘ B2 om0\
E[T] < 4" . gm0/ Y " min {64k;3 (W) ,1}

t=1

Splitting the sum at t = k3/2 . 45t2 . . m - ¢ yields
E[T] = O <k3/2 k(=D (k=2) ¢>

Setting k = y/logm yields the theorem. O

4.4 Expected Approximation Ratio

In this section, we consider the expected approximation ratio of the solution found
by 2-Opt on ¢-perturbed L,, instances. Chandra, Karloff, and Tovey [CKT99] show
that if one has a set of n points in the unit hypercube [0,1]¢ and the distances
are measured according to a metric that is induced by a norm, then every locally
optimal solution has length at most ¢ - n(@1/4 for an appropriate constant ¢
depending on the dimension d and the metric. Hence, it follows for every L,
metric that 2-Opt yields a tour of length at most O(n(d_l)/ 4) on ¢-perturbed L,
instances. This implies that, in order to bound the expected approximation ratio
of 2-Opt on these instances, we just need to upper bound the expected value of
1/Opt, where Opt denotes the length of the shortest tour.

Lemma 4.4.1. Let p € NU{oo}. For ¢-perturbed L, instances with n points,

1 VP
" [opJ =0 (nwlw)

Proof. Let v1,...,v, € R? denote the points of the ¢-perturbed instance. We
partition the unit hypercube into k = [n¢]| smaller hypercubes with volume 1/k
each and analyze how many of these smaller hypercubes contain at least one of
the points. Assume that X of these hypercubes contain a point, then the optimal
tour must have length at least X/(3?v/k). In order to see this, we construct a
set P C {v1,...,v,} of points as follows: Consider the points v1,...,v, one after
another, and insert a point v; into P if P does not contain a point in the same
hypercube as v; or in one of its 3¢ — 1 neighboring hypercubes yet. Due to the
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triangle inequality, the optimal tour on P is at most as long as the optimal tour on
V1,...,0Un. Furthermore, P contains at least X/ 3¢ points and every edge between
two points from P has length at least 1//k since P does not contain two points
in the same or in two neighboring hypercubes.

Hence, it remains to analyze the random variable X. For each hypercube ¢ with
1 < i <k, we define a random variables X; which takes value 0 if hypercube i is
empty and value 1 if hypercube i contains at least one point. The density functions
that specify the locations of the points induce for each pair of hypercube i and
point j a probability p] such that point j falls into hypercube i with probability p].
Hence, one can think of throwing n balls into k£ bins in a setting where each ball
has its own probability distribution over the bins. Due to the bounded density,
we have p! < ¢/k. For each hypercube i, let M; denote the probability mass
associated with the hypercube, that is

We can write the expected value of the random variable X; as
E[Xi]zPr[Xizl]:l—ﬁu_pﬂf)>1_ M
= n

as, under the constraint Zj(l — pf) =n — M;, the term Hj(l — pf) is maximized

if all p{ are equal. Due to linearity of expectation, the expected value of X is

Observe that ), M; = n. Thus, the sum ), (1 — M;/n) becomes maximal if the
M;’s are chosen as unbalanced as possible. Hence, we assume that [k/¢] of the
M;’s take their maximal value of n¢/k and the other M;’s are zero. This yields,
for sufficiently large n,

BLX] >k - ;[ﬂ (1-2) = (- [3])
(1—2<1‘ni1>n> 25

Hence, we obtain the following bound on the expected length of the optimal tour

>

E[X] n pld=1)/d
E[Opt] > —= > > . :
34Vk ~ 530k 5316 +1
We still need to determine the expected value of the random variable 1/Opt.

Therefore, we first show that X is sharply concentrated around its mean value.
The random variable X is the sum of n 0-1-random variables. If these random
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variables were independent, we could simply use a Chernoff bound to bound the
probability that X takes a value that is smaller than its mean value. The X;’s
are negatively associated, in the sense that whenever we already know that some
of the X;’s are zero, then the probability of the event that another X; also takes
the value zero becomes smaller. Hence, intuitively, the dependencies can only
help to bound the probability that X takes a value smaller than its mean value.
Dubhashi and Ranjan [DROS8| formalize this intuition by introduction the notion
of negative dependence and by showing that in the case of negative dependent
random variables, one can still apply a Chernoff bound. This yields

Pr [X < ﬁ] < e /10
10

Thus, as 1/X < 1 with certainty, for sufficiently large n,

10

1 11
— < — 7”/40 - —
E[ ]_(1 e 0 —

+€7n/40 < I
n

Altogether, this implies

1
Opt
If one combines Lemma with the result of Chandra, Karloff, and Tovey

that every locally optimal solution has length O(n(d_l)/ 4), one obtains Theo-

rem [[L3.41

3 sl

X d-1)/d

o) :

4.5 Smoothed Analysis

In Spielman and Teng’s smoothed analysis of the Simplex algorithm, the adversary
specifies an arbitrary linear program which is perturbed by adding an independent
Gaussian random variable to each number in the constraints. Our probabilistic
analysis of 2-Opt can also be seen as a smoothed analysis in which an adversary can
choose the distributions for the points over the unit hypercube. The adversary is
restricted to distributions that can be represented by densities that are bounded by
¢. Our model cannot handle Gaussian perturbations directly because the support
of Gaussian random variables is not bounded.

Assume that every point vi,...,v, is described by a density whose support
is restricted to the hypercube [—a,a]d for some o > 1. Then after appropriate
scaling and translating, we can assume that all supports are restricted to the unit
hypercube [0,1]¢. Thereby, the maximal density ¢ increases by at most a factor
of (2a)d. Hence, after appropriate scaling and translating, Theorems
and can still be applied if one takes into account the increased densities.

One possibility to cope with Gaussian perturbations is to consider truncated
Gaussian perturbations. In such a perturbation model, the coordinates of each
point are initially chosen from [0,1]? and then perturbed by adding Gaussian
random variables with some standard deviation o to them that are conditioned to
lie in [, a] for some o > 1. The maximal density of such truncated Gaussian
random variables for ¢ < 1 is bounded from above by

1/(ov2m)
1—o0-exp(—a?/(202?)) °
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After such a truncated perturbation, all points lie in the hypercube [—a, 1 + 9.
Hence, one can apply Theorems [1.3.2] |1.3.3], and [1.3.4] with

_ (2a + 1) o (ad
. (0V2m — o2Vamexp(—a2/(20%)))7 X <0d>

It is not necessary to truncate the Gaussian random variables if the standard
deviation is small enough. For o < min{a/+/2(n+ 1)Inn+2Ind, 1}, the prob-
ability that one of the Gaussian random variables has an absolute value larger
than o > 1 is bounded from above by n~". In this case, even if one does not
truncate the random variables, Theorems [1.3.2] [1.3.3] and [1.3.4] can be applied
with ¢ = O(a?/c?). To see this, it suffices to observe that the worst-case bound
for the number of 2-changes is (n!) and the worst-case approximation ratio is
O(logn) |[CKT99]. Multiplying these values with the failure probability of n™"
constitutes less than 1 to the expected values. In particular, this implies that

the expected length of the longest path in the transition graph is bounded by
O(poly(n,1/0)).




CHAPTER 5

Conclusions and Open Problems

In a standard combinatorial optimization problem, a decision-maker has to opti-
mize an objective function over a set of feasible solutions. Even though this model
is very appealing from a theoretical point of view, decision-making in practice
is often more complex for various reasons such as the presence of selfish agents
and multiple objectives. Additional difficulties arise because many combinatorial
optimization problems are intractable if P # NP. In order to cope with these
difficulties, several solution concepts have been introduced, including Nash equi-
libria, Pareto-optimal solutions, and local optima, which we have considered in
this thesis. In particular for the last two mentioned solution concepts, previous
analyses left a wide gap between theoretical and practical results, the reason being
that the theoretical results are overly pessimistic as they are based on the typical
worst-case perspective of theoretical computer science. We have narrowed the gap
between theory and practice by considering Pareto-optimal solutions and local op-
tima in the probabilistic framework of smoothed analysis, which combines features
of typical worst-case and average-case analyses. Now that we can partly explain
the good behavior in practice, an interesting direction for future research is the
question whether the insights gained from the theoretical analyses can be used to
further improve the behavior of the considered heuristics in practice.

We believe that another very interesting and challenging direction for future
research is the combination of smoothed analysis and algorithmic game theory. We
have shown that computing a pure Nash equilibrium is PLS-complete for various
classes of congestion games and that coordination in two-sided markets is necessary
since the random better and best response dynamics can take an exponential
number of steps to reach an equilibrium. These are, however, worst-case results
based on carefully designed instances. Due to preliminary experimental results
(see also [PS06]), we believe that in typical instances, the best response dynamics
reaches a pure Nash equilibrium quickly in congestion games as well as in two-sided
markets. There has been a significant amount of research on properties of Nash
equilibria such as the price of anarchy (see, e.g., [CK05]) and the price of stability
(see, e.g., JADK™04]). These properties have also been studied almost exclusively
from a worst-case perspective. Studying them in an appropriate probabilistic
model might yield new insights.

In the following, we summarize some concrete open questions concerning the
considered solutions concepts.
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5.1 Nash Equilibria

We have shown that computing a pure Nash equilibrium in threshold congestion
games is PLS-complete. The strategy spaces in such congestion games are ex-
tremely simple as each player has just two options: she can either allocate her
private resource or a fixed subset of resources. Let k denote the cardinality of
the latter subset (without loss of generality, we can assume that this cardinality
is the same for every player). In our reductions, k has to grow linearly with the
number of players. It is an open question how large k has to be chosen in order
to prove PLS-completeness. Since we have shown that finding a Nash equilibrium
in threshold congestion games is PLS-complete by a reduction from Max-Cut, this
question is closely related to the minimal node degree for which Max-Cut is PLS-
complete. To the best of our knowledge, there is still a considerable gap between
the known results: On the one hand, the degree of the vertices in the Max-Cut in-
stances constructed in the PLS-completeness proof in [JPYS88| grows linearly with
the number of vertices. On the other hand, Poljak [Pol95] gives a polynomial time
algorithm to find a locally optimal partition for cubic graphs.

In our model of congestion games with priorities, players displace other players
with lower priorities. As we have already mentioned in the introduction, this is
only reasonable if players control streams of jobs rather than single ones. Hence,
we believe that finding and analyzing different models in which jobs are only slowed
down by jobs with higher priorities, that is, models in which they incur a large
but finite delay, might yield new insights into scheduling scenarios in which each
player has only one job that is to be processed.

It might also yield new insights to study other solution concepts than Nash
equilibria. For example, in many situations that can be modeled as congestion
games or two-sided matching markets, it is unreasonable to assume that every
player has complete knowledge about the current state and the other players’ be-
havior and preferences. In such situations, one might, for instance, study Bayesian
Nash equilibria and consider questions similar to the ones that we have considered
for Nash equilibria.

5.2 Pareto-Optimal Solutions

We have proven the first bounds on the expected number of Pareto-optimal so-
lutions in bicriteria integer optimization problems. These results can be seen as
an explanation why, in practice, enumerating the Pareto set is often feasible even
for large-scale instances of many optimization problems. In particular, our results
imply that if an algorithm for a bicriteria problem has a worst-case running time
of O(poly(n) - q), where n denotes the input size and ¢ the number of Pareto-
optimal solutions, then its expected running time on semi-random instances is
polynomial. However, if the worst-case running time grows superlinearly with the
number of Pareto-optimal solutions (e.g., ©(poly(n) - ¢%)), then our bound on the
expected number of Pareto-optimal solutions does not imply expected polynomial
running time. An interesting question is whether also the variance is polynomially
bounded. In the affirmative case, this would imply that also algorithms whose
running times depend quadratically on the number of Pareto-optimal solutions
have an expected polynomial running time.
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In practice, often problems with more than two criteria occur. We conjecture
that also for these problems, the expected number of Pareto-optimal solutions is
polynomially bounded, where the degree of the polynomial grows with the number
of criteria. We believe that bounding the expected number of Pareto-optimal
solutions for multi-criteria optimization problems is a challenging open problem.

5.3 Local Optima

We have shown several new results on the running time and the approximation
ratio of the 2-Opt heuristic. However, there is still a variety of open problems
regarding this algorithm. Our lower bounds only show that there exist families of
instances on which 2-Opt takes an exponential number of steps if it uses a partic-
ular pivot rule. It would be interesting to analyze the diameter of the transition
graph and to either present instances on which every pivot rule needs an exponen-
tial number of steps or to prove that there is always an improvement sequence of
polynomial length to a locally optimal solution. Also the worst number of local
improvements for some natural pivot rules like, e.g., the one that always makes the
largest possible improvement or the one that always chooses a random improving
2-change, is not known yet. Furthermore, the complexity of computing locally
optimal solutions is open. The only result in this regard is due to Krentel [Kre89|
who shows that it is PLS-complete to compute a local optimum for the metric TSP
for k-Opt for some constant k. It is not known whether his construction can be
embedded into the Euclidean metric and whether it is PLS-complete to compute
locally optimal solutions for 2-Opt. Fischer and Torenvliet [E'T95] show, however,
that for the general TSP, it is PSPACE-hard to compute a local optimum for 2-Opt
that is reachable from a given initial tour.

The obvious open question concerning the probabilistic analysis is how the gap
between experiments and theory can be narrowed further. In order to tackle this
question, new methods seem to be necessary. Our approach, which is solely based
on analyzing the smallest improvement made by a sequence of linked 2-changes,
seems to yield too pessimistic bounds. Another interesting area to explore is the
expected approximation ratio of 2-Opt. In experiments, approximation ratios close
to 1 are observed. For instances that are chosen uniformly at random, the bound
on the expected approximation ratio is a constant but unfortunately a large one.
It seems to be a very challenging problem to improve this constant to a value that
matches the experimental results.

Besides 2-Opt, there are also other local search algorithms that are successful
for the traveling salesperson problem. In particular, the Lin-Kernighan heuris-
tic [LKT73] is one of the most successful local search algorithm for the symmetric
TSP. It is a variant of k-Opt in which k is not fixed and it can roughly be described
as follows: Each local modification starts by removing one edge {a,b} from the
current tour, which results in a Hamiltonian path with the two endpoints a and
b. Then an edge {b,c} is added, which forms a cycle; there is a unique edge {c, d}
incident to ¢ whose removal breaks the cycle, producing a new Hamiltonian path
with endpoints a and d. This operation is called a rotation. Now either a new
Hamiltonian cycle can be obtained by adding the edge {a,d} to the tour or an-
other rotation can be performed. There are a lot of different variants and heuristic
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improvements of this basic scheme, but little is known theoretically. Papadim-
itriou [Pap92] shows for a variant of the Lin-Kernighan heuristic that computing
a local optimum is PLS-complete, which is a sharp contrast to the experimental
results. Since the Lin-Kernighan heuristic is widely used in practice, a theoretical
explanation for its good behavior in practice is of great interest. Our analysis of
2-Opt relies crucially on the fact that there is only a polynomial number of differ-
ent 2-changes. For the Lin-Kernighan heuristic, however, the number of different
local improvements is exponential. Hence, it is an interesting question whether
nonetheless the smallest possible improvement is polynomially large or whether
different methods yield a polynomial upper bound on the expected running time
of the Lin-Kernighan heuristic.

Another interesting question concerning the analysis of local search algorithms
is raised by Arthur and Vassilvitskii [AVO6b]. They consider the k-means algo-
rithm, a well-known clustering algorithm, and they show that its expected running
time is polynomially bounded in n* and ¢~ for semi-random inputs with n points
that are perturbed by adding Gaussian random vectors with standard deviation o.
Experiments suggest, however, that the degree of the polynomial does not depend
on the number k of clusters. A theoretical explanation of this behavior is of great
interest because the k-means algorithm is widely used in practice.



APPENDIX A

Some Facts about Matroids

In this chapter, we briefly introduce matroids and we summarize the properties
that we used in Sections and For a detailed introduction to matroids,
we refer the reader to Schrijver’s book [Sch03].

A pair (R,Z) is called a matroid if R is a finite set and Z C 2% is a nonempty
collection of subsets of R satisfying

()ifXeZandY C X, thenY €7,
(i) if X,Y € Z and |Y| < |X|, then there exists an z € X with Y U {z} € Z.

Given a matroid (R,Z), we call a set X C R independent if X € Z, and dependent
otherwise. A basis of a matroid (R,Z) is an inclusion-maximal set X € Z. It is a
well-known property of matroids that every basis has the same cardinality, which
is called the rank of the matroid. A matroid is called weighted if a weight function
w: R — N is given. Usually one is interested in finding a basis of maximal or
minimal weight, where the weight of a subset is defined as the sum of the weights
of its elements.

In the following, we list some examples of matroids. Some of these exam-
ples are rather uninteresting from an optimization point of view but they lead to
rich combinatorial structures when various players with possibly different strategy
spaces are involved in a congestion game or two-sided market.

o Let R be a finite set and let & € N. If the set Z contains all subsets of R
with cardinality at most k, then (R,Z) is a uniform matroid.

e Let Rq,...,R; bedisjoint finite sets, let R = R1U---UR;, and let kq,...,k; €
N. We define that a set X C R belongs to Z if X NR; < k; for every
i € {1,...,1}. The resulting set system (R,Z) is a partition matroid.

e Assume that F is the set of edges of some graph G = (V, E) and let Z denote
the set of all subsets of edges that do not contain a cycle. The set system
(E,T) is a graphical matroid.

e Let A be an m x n matrix. Let R = {1,...,n} and let Z be the collection
of all those subsets I of R such that the columns of A with index in [ are
linearly independent. Then the set system (R,Z) is a linear matroid.

In Section we claim that in any state of a matroid two-sided market,
there exists a lazy best response. This follows from the following lemma.
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Lemma A.1. Let a matroid (R,Z) with weights w: R — N be given and let
B € . There exists a basis B* of mazrimum weight and a sequence B, ..., B
of independent sets with B1 = B, By = B*, and such that |Bjy+1 \ B;| = 1 and
w(Bit1) > w(B;) forallie{l,...,1—1}.

Proof. In order to prove the lemma, set By = B. If B is a basis of maximum
weight, then we are done. Otherwise, the following lemma implies the existence of
an independent set By with |Bs \ Bi| = 1 and w(B2) > w(By).

Lemma A.2. (Corollary 39.12b in [Sch03]) Let a matroid (R,Z) with weights
w: R — N be given. An independent set B € T is of mazimum weight if and only
if there exists no independent set B* € T with |B* \ B| =1 and w(B*) > w(B).

We can iterate this argument until a basis of maximum weight is reached,
yielding a sequence By, ..., B; of independent sets with the desired properties. [

In the proof of Theorem [2:3.7], we made use of the following lemma.

Lemma A.3. Let (R,T) be a matroid with weights w: R — N and let B be a basis
of minimum weight. If the weight of a single resource v € B is increased such that
B is no longer of minimum weight, then, in order to obtain a basis of minimum
weight, it suffices to exchange r with a resource ' € R of minimum weight such

that BU{r'} \ {r} is a basis.

Proof. In order to prove the lemma, we use the following matroid property.

Lemma A.4. (Corollary 39.12a in [Sch03]). Let (R,TI) be a matroid, and let
I,J €T with |I| = |J| be independent sets. The bipartite graph G(IAJ) = (V, E)
withV-=I\J)U(J\I) and E={{i,j}|ieI\Jje J\I,TU{j}\{i} €I}
contains a perfect matching.

Let B’ be a basis of minimum weight w.r.t. the increased weight of r. Let P be
a perfect matching of the graph G(BAB’) and denote by e the edge from P that
contains r. For every edge {i,j} € P\ {e}, it holds w(i) < w(j) as, otherwise, if
w(i) > w(j), the basis BU {j} \ {i} would have smaller weight than B.

Now denote by 7’ the resource that is matched with r, i.e., the resource such
that e = {r,r'} € P. As w(i) < w(j) for every {i,j} € P\ {e}, the weight of
B\ {r} is bounded from above by the weight of B’ \ {r'}. By the definition of
the matching P, BU {r'} \ {r} is a basis. By our arguments above, the weight of
this basis is bounded from above by the weight of B’. Hence, this basis is optimal
w.r.t. the increased weight of r. O

In the proofs of Theorem [2.2.11]and [2.3.7], we made use of two standard matroid
operations: deletion and contraction. We describe these operation briefly and
refer the reader for more details to [Sch03]. Let M = (R,Z) denote a matroid
and let T C R be an arbitrary set. The set system M’ = (R \ T,Z') with
T'={X €I |XNT =0} is a matroid, the so-called restriction of M to R\ T.
We say that M’ is obtained from M by deleting the elements in 7.

Let M = (R,Z) denote a matroid, let 7' C R be arbitrary, and let B C T
denote an inclusion-maximal independent subset of T', that is, B € Z and BU{z} ¢
7 for all x € T'\ B. The set system (R\7,Z') withZ' = {X CR\T | XUB €T}
is a matroid, the so-called contraction M/T of M by T.




CHAPTER B

Some Probability Theory

B.1 Continuous Random Variables

In this section, we give a brief introduction to continuous random variables. We
do not give a formal treatment, which would include analytical difficulties such as
measurability questions, but our aim is to present an intuitive description of the
notions that are used in this thesis. For a formal treatment, we refer the reader
to the book by Feller [Fel91].

A random variable X that takes only values from a countable set, say N, can be
described by its probability mass function f: N — R>q, which satisfies >, f(i) =
1. Given a natural number ¢ € N, the probability that X takes the value ¢ equals
the value f(7), i.e., Pr[X =] = f(i). Random variables whose possible outcomes
form an uncountable set, say R, cannot be described by a probability mass function
because it might be the case that the probability of the event X = a is 0 for every
a € R. Instead such random variables are described by a distribution function
F: R — [0,1], which has to be non-decreasing, right-continuous, and which has
to satisfy limy_,_oo F(x) = 0 and lim,_,o F(z) = 1. Given such a distribution
function, the probability of the event X € [a,b] is F'(b) — F(a) for every interval
[a,b]. If the distribution F' is continuous, we say that X is a continuous random
variable. Given a random variable X with distribution F', we say that a function
f: R — Ry is a density of X if for all a € R,

F(a) :/a f(z)dx . (B.1.1)

Similarly, one can also define distributions and densities for random wvectors that
take values in R%. Let F': R? — [0, 1] be a distribution and let f: RY — Rxq be a
density of a random vector X. Then for all a € R¢,

Pr[Xgoz]:F(a):/a1 .../ad flz1, .. zq)deg. .. dxy .

The continuous random variables occurring in this thesis are usually described
by density functions. An important consequence of that we use several
times implicitly is that if the density function of a random variable X is bounded
from above by some value ¢ > 0, then the probability that X takes a value in a
fixed interval of length ¢ is bounded from above by €¢. In the following, we list a
few important examples of continuous random variables.



140

Appendix B — Some Probability Theory

e A random variable is said to be uniformly distributed over some interval [a, b]

if it can be described by the density function f: R — R>o with

{bla if x € [a, b],

0 otherwise.

fz) =

A Gaussian or normal distribution with mean p and standard deviation o
can be described by the density function f: R — R>( with

F@) = ——exp (—(x‘”))

- oV2r 202

At some places, we use the notion of a d-dimensional Gaussian random
vector with mean p € R? and standard deviation o. In that cases, we mean
a d-dimensional random vector whose i-th entry is an independent Gaussian
random variable with mean p; and standard deviation o

The exponential distribution with rate parameter A can be described by the
density function f: R — R>¢ with

A-exp(—Azx) if x>0,
flx) = .
0 ifx <0.

Given two random variables X and Y with densities fx and fy, respectively,

it is sometimes important to compute the density fxiy of the random variable
X + Y. In this thesis, this problem occurs in Section This density can be
obtained as convolution of fx and fy, that is, for every a € R,

Fxav(a) = /_°° (@) frla—z)ds .

An important technique used in the proof of Lemma is a change of

variables. Let X = (Xi,...,Xy) denote a random vector whose entries have a
joint density f: RY — R>q, let ®: R? — R? denote a bijection, and let Y denote
the random vector ®(X). The following lemma states how the density of Y can
be computed from the density f of X and the bijection ®.

Lemma B.1.1. Let g denote the density of the random vector Y. For ally € RY,

o (P2 )| p )

9(y) =

-1
where <8¢8y(y)) denotes the Jacobian matrix of ®71, i.e.,

901 ' (v) 927 (y)
(aqu(y)) o
%y 9071 (1) 901 (y)

u1 e Y4
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B.2 Weighted Chernoff Bound

Typically, Chernoff bounds are formulated for sums of independent Bernoulli trials.
In this section, we derive a Chernoff bound for general discrete random variables.
The proof is based very closely on the one for sums of Bernoulli trials in [MUO5].
In fact, the only part which needs to be exchanged is an upper bound on the
moment generating function.

For a random variable X, let My (t) = E [¢"*] denote its moment generating
function. Assume that X is the sum of independent random variables X1, ..., X,
where each X; is a discrete random variable taking only values in [0,1]. Fix
an index ¢ and consider the random variable X;, and let p: W — R>q be its
distribution, where W C [0,1] is a countable set. We can write the moment
generating function of X; as follows:

MXi (t) =E [etxi]

<) pw) - (we' +1—w) | (B.2.1)

weW

where the last inequality follows from the convexity of the function f(x) = e'®

because
e = f(w) = fw 1+ (1= w)-0) S w- (1) + (1 —w)- F(O) =w-e +1—w
Inequality (B.2.1) yields

<1+Z (ef = 1)

weW
= 1B (- 1)
< exp (BIX]- (¢!~ 1)
where the last inequality follows from the fact that for any y € R, 1 +y < €.
Since the random variables Xi,..., X, are assumed to be independent, the

moment generating function of X is simply the product of the moment generating
functions of the X;’s. Hence, we obtain

= HMXi(t)
< Hexp (e — 1))
< exp (ZE (e — 1)>

=exp (E[X]- (¢ — 1))

Now we are ready to prove the following Chernoff bound.
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Theorem B.2.1. Let Xq,...,X, be independent discrete random wvariables with
values in [0,1]. Let X =>"7" | X; and p=E[X]. Then for every x > 0,

PrX > 4] < (%)x .

Proof. Applying Markov’s inequality yields for any § > 0 and ¢ > 0,

Pr(X > (1+6)u] = Pr [etX > et(1+5)u}
E [etX]

et(1+0)u

e(et_l)u

et+8)p -

<

<

For any § > 0, we can set ¢t = In(1+ d) > 0 to get

66 "
Pr[XZ(l—Fé)M]S(M)(I_M)) .

This yields the theorem since

Pr[XZt]:Pr[XZ <1+<z—1>) -u]

()

By appropriate scaling, we obtain the following variant of Theorem

Corollary B.2.2. Let X1,...,X,, be independent discrete random variables with
values in [0, z] for some z > 0. Let X = """ | X; and p = E[X]. Then for every
x>0,

Pr(iX >z] < (M)z/z .

T

By similar calculations, one obtains the following corollary.

Corollary B.2.3. Let X1,...,X, be independent discrete random variables with
values in [0,z] for some z > 0. Let X =3 1" | X; and p = E[X]. Then for every

x>0,
el_:u'/m . H>x/z

Pr[XSm]<< .
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B.3 Linear Combinations of Random Variables

Lemma B.3.1. Let X',..., X" be independent d-dimensional random row vec-
tors, and, fori € [n] and some ¢ > 1, let f;: [0,1]¢ — [0, ¢] denote the joint density
of the entries of X*. Furthermore, let X', ..., \¥ € Z™ be linearly independent row
vectors. Fori € [n] and a fized ¢ > 0, we denote by A; the event that \'- X takes a
value in the interval [0, €], where X denotes the vector X = (X',..., X™)Y. Under
these assumptions,

Pr

k
ﬂA,-] < (eg)* .
=1

Proof. The main tool for proving the lemma is a change of variables. Instead of
using the canonical basis of the dn-dimensional vector space R%, we use the given
linear combinations as basis vectors. To be more precise, the basis B that we use
consists of two parts: it contains the vectors A!, ..., \* and it is completed by some
vectors from the canonical basis {el, ..., ed”}, where e’ denotes the i-th canonical
row vector, i.e., eﬁ =1 and eé- = 0 for j # 4. That is, the basis B can be written as
(AL N e emdn=R)Y Cfor some injective function 7: [dn — k] — [dn].

Let ®: R¥ — R be defined by ®(x) = Az, where A denotes the (dn) x (dn)-
matrix

Al
N
67('(1)

eﬂ'(dn—k)

Since B is a basis of R, the function ® is a bijection. We define the vector
Y = (Y1,...,Y)T as Y = ®&(X), and for i € [n], we denote by Y the vector
(Yati—1)41,---» Yai). Let f: R — R denote the joint density of the entries of

n

the random vectors X',..., X", and let g: R™ — R denote the joint density

of the entries of the random vectors Y!, ..., Y™ Due to the independence of
the random vectors X' ..., X", we have f(z1,...,%q,) = fi(z1,...,24) - - -
fo(Tan—1)415- - Tdn). We can express the joint density g as

g(yl)' . '7ydn) = |d§t q)il(yla" . 7ydn) ’ : f((I)il(ylw . '7ydn)) )

where dety denotes the determinant of the Jacobian matrix of ®~1.

The matrix A is invertible as B is a basis of R, Hence, for y € R¥", &~1(y) =
A~y and the Jacobian matrix of ®~! equals A~!. Thus, detyg @~ ! = det A™! =
(det A)~L. Since all entries of A are integers, also its determinant must be an
integer, and since it has rank dn, we know that det A # 0. Hence, |det A| > 1 and
|det A=1| < 1. For y € R, we decompose ®~!(y) € R into n subvectors with
d entries each, i.e., 1 (y) = (27 (y),..., @, (y)) with ®;(y) € R? for i € [n].
This yields

g(y) = det A7 f(@7H () < ful@7' (W) - ful @ (W) -
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The probability we want to estimate can be written as

k = € o [ee]
Pr ﬂAi]:/ / / / 91, - Yan) Yan - - - dy1 -
i=1 y1=0 Ye=0 J ypy1=—00 Ydn=—00
(B.3.1)
Since all entries of the vectors X!,..., X™ take only values in the interval [0, 1]
and since for ¢ € {k + 1,...,dn}, the random variable Y; coincides with one of

these entries, (B.3.1]) simplifies to

k € 5 1 1
ﬂ-Az' =/ / / / 91, - Ydn) Wan - - - dyr -
i=1 y1=0 Y=0 Jyp41=0 Ydn=0

(B.3.2)

Without loss of generality, we assume that {i | #j € [dn —k]: 7(j) =i} C [dk],

i.e., only vectors e’ from the canonical basis with i < dk are replaced by the vectors

AL, ..., \F in the basis B. Furthermore, we can assume w.l.o.g. (i) =i, for ¢ > dk.
Under these assumptions, the density g can be upper bounded as follows:

Pr

91, - Yan) < O Frir Wakt1s - Yagern)) Jn(Wamn-1)+15 - Yan) - (B.3.3)
Putting together (B.3.2) and (B.3.3)) yields

k 1 1
ﬂAi] < (sgb)k-/ / Frer1Wak+15 - - -5 Yd(kt1))
i1 Ydk+1=0 Y,

d(k+1)=0

Pr

1 1
. / / fn(yd(n—l)+17 e Ydn) Wan - - - AYdk+1
Y Y.

d(n—1)+1=0 JYyan=0
= (e0)" ,

where the last equation follows because fii1,..., fn are density functions. O

B.4 Proofs of some Lemmas from Section [4.3.2

B.4.1 Proof of Lemma [4.3.7]

Let a,c € (0,C] for some C' > 0. In the following proof, we use the following two
identities:

[ 7=

and

2
dz:ln(g—l—a—l— a(a+c))+ln<c)

<In <3c+ 2a> +1In (2> <In(4C) +In <2>
2 c c

Proof of Lemma[{.3.7. The conditional density of A can be calculated as convo-
lution of the conditional densities of Z1 and Zs as follows:

TAIT=1,Ri=r1,Ro=r> (0) = / f21m=1,r=r1(2) - f2|T=r,R=ry (2 — 0) dz .
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In order to estimate this integral, we distinguish between several cases. In the
following, let k denote a sufficiently large constant.

First case: 7 <ry and 7 < rs.
As Z; takes only values in the interval [—7, 7], we can assume 0 < § < min{1/2,27}
and

T

fA|T:T,R1:r17R2:r2(5) = / s fZ|T:T,R:r1(Z) ) fZ|T:'r,R:r2(Z —d)dz .
_7—+

Due to Lemma [4.3.6] we can estimate the densities of Z; and Zs by

For 6 € (0,min{1/2,27}|, we obtain the following upper bound on the density of
A:

fA|T:T7R1 =r1,Ra=mr2 (5)

by A TR,
T s \WT—2 THz)\VT—2+0 JVT+z-0

2T

dz +

:2 /27’—51 1 "
7 \Jo Vz(z+9) s V22T +0—2)

21—9 1 21—0 1
+/ dz + ——dz
0 V22T =0 —2) 0 Vz(z+96)
-~ (27 +21n(8vad) + 2 (2071 ) < = -Ino™
-

T

Second case: 1 <7 and ry < T.
Since Z; takes only values in the interval [—7,2r; — 7], we can assume 0 < § <
min{1/2,2r} and

min{2r; —7,2ro—7+40}

fA|T=T,R1=r1,R2=T2<5) _/ 5 fZ\Tzr,R:rl(Z)'fZ\Tzr,R=r2(2—5) dz .
77-4]’,

Due to Lemma [4.3.6] we can estimate the densities of Z; and Z3 by

2
2 < J Vs

—rR,=r;(2) < =
217 Ri=r,(2) \/(T—FZ)(QT'Z‘—T—Z) —— 2 ifr>r—T

ri(2r;—T—2)

2 1 1
<\/= +
TV \VT+z V2ri—T—2z

Case 2.1: § € (max{0,2(r; —r2)},2r].

ifz<r;—r
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We obtain the following upper bound on the density of A:

JAIT=7Ri=r1,Ra=r> (0)

2r1—7 1 1 1 1
—\/1"17[ T+6 (\/T+Z + \/2r1777z) (\/T+Z—6 + \/27“2—7'—z+(5) dz

2r1—0 1 2r1—0 1
= ——dz + dz
Vvrira \Jo Vz(z49) 0 z(2r1 — 0 — z)

2r1 1 2r1—0 1
dz + dz
s V2(2ra+6—2) 0 V2Q2(re —711) + 0+ 2)

2 -1 -
gm (27r +2In(8Vd) +1n (267 1) +1n (2(2(r2 — r1) +9) 1))
g\ﬁ% (Ino~" +In ((2(rg — 1) +0)7") + k)

Case 2.2: § € (0,max{0,2(r; —r2)}].
We obtain the following upper bound on the density of A:

fA\T—T Ri=r1,Re=r2 (5>

2ro—71+9 1 1 1 1
_\/7"17’ f T+4 (\/7'—}—2 + \/27“1—7'—2') (\/7+sz + \/2T2—7—2+5> dz

2rg 1 279
=— ——dz + dz
Vvrire \ Jo z(z 4 0) 0 z2(2r1 — 0 — 2)
2rg 2ro 1

dz + dz
Vz2(2ra + 6 — 2) 0 Vz2(2(r1i —r2) — 6+ 2) )

2 (27r +2In(8vd) +1n (2671) +In (2(2(r1 —712) — 5)—1))

172
K

VT1T2

IA

ﬁ

IN

(Ind™' +In((2(r1 —r2) = 8)7') + k)

Third case: r <71 <ro.
Since Z; takes only values in the interval [—7,2r; — 7] and Z3 takes only values in
the interval [—7, 7], we can assume 0 < 6 < min{1/2,2r;} and

2r1—T1

JAIT=7.R1=r1,Ry=rs (0) = / 5 27— r=r1(2) - f217=7,R=r, (2 — 6) dz .

For § € (0,min{1/2,2r;}], we obtain the following upper bound on the density of
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A:
fA|T—TRl —r1,Ro= r2(5)
=) (2 —)
< + dz
\/W s \/T+Z V2ri—1—2) \V7—2+6 VT+z-9
2rq 2r1—46 1
dz + dz
VT \/z27'+5—z 0 \/z (r—r1)+0+2)
2r1—40 2r1—40 1
——dz + dz
7z z+5 z2(2ry — 0 — 2)
< 2 (2w+21n<8ﬂ)+1n(25*1)+1n(2(2(7—n)+5)*1))
Tr1
K
< ‘lnét .
< nod

Fourth case: ro <71 <ry.
Since Z; takes only values in the interval [—7, 7] and Zy takes only values in the
interval [—7,2ry — 7], we can assume 0 < 6 < min{1/2,27} and

min{2ro—7+40,7}

fA|T:T,R1=r1,R2:r2<5) = / 5 fZ|T:T,R:r1 (2)- fZ\Tzf,R:rg(Z —0)dz .
_T_l’_

Case 4.1: § € (0,2(7 — r2)].
We obtain the following upper bound on the density of A:

fA|T:T Ri=r1,Ro=r2 (5)

2ro—1+0 1 1 1 1
/ ( + ) ( + ) dz
\/7'7’ T+6 VT—2z T+z VT+2—-80 V2ro—7—2+490
2) 2ro
= ——dz + dz
VTr2 \Jo z(z 4 9) 0 221 =6 — 2)

2ro

2ro 1 2rg 1

dz + d
VZ@2ro+6—2) : 0 V2(2(1—r9) =5 +2) Z>

= 72'7”2 (2r + 21n(8v/d) +1n (2671) +In (2027 = 72) = 9) 7))
< frz (In&~t +In (27 —12) —8) 1) + k)

Case 4.2: § € (2(1 —12), 27].



148 Appendix B — Some Probability Theory

We obtain the following upper bound on the density of A:

fA\T:T,Rlzm,RQ:rg (5)

< 2 /T ( 1 n 1 )( 1 n 1 >dz
VT2 ) s \WT =2 VT Hz VT+z—6 V2ro—T—2+90

9 27—§ 1 27—§ 1
= / dz + —dz
VT2 \Jo V22T —0 —2) 0 Vz(z +6)
21—§ 1 2T 1
+ dz + dz
0 \/2(2(7'2—7)+5+z) s /22re+d—2)
<2 (zﬂ +2In(8vd) +In (267Y) +In (2(2(ry — 7) + 5)*1))
TTo
< i (In 6 l4+n ((2(rg —7) + 5)_1) + K)
Tr2
Altogether, this yields the lemma. O

B.4.2 Proof of Lemma [4.3.8

First, we derive the following lemma, which gives bounds on the conditional density
of the random variable A when only one of the radii R; and R is given.

Lemma B.4.1. Let r1,79,7 € (0,3/d) and § € (0,1/2]. In the following, let
denote a sufficiently large constant.

a) The density of A under the conditions T =1 and Ry = ry is bounded by

E_.lnét ifr <,
fA|T:T,R1:7"1 (5) < {ﬁ

z ‘Ind! ifry > .

b) The density of A under the conditions T = 7 and Ry = ro is bounded by

A/TT2 ’

; (6) < o (Ind Y+ 2(r—r) =67 + k) ifra <,
R S ifro > .

Proof. a) We can write the density of A under the conditions T'= 7 and Ry = r;
as

Vd
fA|T:‘r,R1=r1 (5) = /0 fR2 (7”2) . fA\Tz‘I‘,Rl:thz:r2 (5) drs
vd .d-1
= /0 ﬁ  fAIT=7,Ry=r1,Ro=rs(0) dr2

where fr, denotes the density of the length Ry = d(O, Q2). We use Lemma m
to bound this integral. For r; < 7 and sufficiently large constants x’ and x”, we
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obtain

fA|T:T,R1:r1 (5)
T ,rdfl

</ T2 R

= Jo di21 \Jrr
vd ,.d—1

+/ "2 R ndtdry

da/2—1 ﬁ
/ / Vd

(In6~' +1n[2(r1 —72) — 8|7 + k) dry

For 7 < r; and a sufficiently large constant x/, we obtain analogously
Tg_l

T K
far=rri=r (0) < /0 4P s

vd .d-1
- T

(Ins™ + I |2(7 — 7o) — 8|7 + k) dre

b) We can write the density of A under the conditions T'= 7 and Ry = ry as

Vd pd—1
fA|T=T,R2=r2 (5) = /(; W ' fA|T=T,R1=r1,R2=T2 (5) d7’1 .

For r9 < 7 and sufficiently large constants x’ and k", we obtain

T ,.d-1
™ K -1 -1
fAT:T,RFTQ((S)g/O e (™ 2 — 1) o[ + ) d
- ﬂi' (In6™' +n|2(7 —r9) — 0| ' + &) d
i dd/2*1 \/772 n n T T2 K T1
W . K Vd L
< Ind™ In|2(r — —4|7'd
_\/772(11 +f~@)+\/172/0 n|2(ry —r2) = 6|7 dry
K
+ (Ind™ + I [2(7 — o) — 8| 7' + k)
Ner)
K,/// 1 1
< (Iné " +Wn|2(t—72) — 0| " +kK) .
NP

For 7 < ro and a sufficiently large constant «’, we obtain

T d—1 Vd .d-1
™ K -1 ™ K -1
fA\T:‘r,RQ:rg (0) < /0 24T . Y Ind" " dry +/T 2471 St Iné~ " dry
K

<2 .lnét. O
-

~

Now we are ready to prove Lemma [4.3.8
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Proof of Lemma[{.3.8 a) In order to prove part a), we integrate fajr—r g,—r(9)
over all values 7 that T can take:

Vd d-1
fA|R1:r(5):/0 dd/2 1 fA\T—TR1 T‘((S) dr

ropd=1 . Vd d-1 K .
S/o 7dd/2_1-;-ln(5 dT+/r 2021 ?T-lnd dr

!
< . ‘Inét

\/77

Furthermore, we integrate fa|r—r r,—r(0) over all values 7 that 1" can take:
Vd d-1
fA|R2:r(5) = /0 dd/2 1 fA\T 7,Ro= r((s) dr

r Td 1 K .
Vd d-1 o
+/ W-ﬁ(lnéfl—i—lnpﬁ—ﬂ—5]*1+/<c)d7'

< . ‘Ind!

\/;

b) For a sufficiently large constant &/,

Vd -1
Far=®) = [ S Fair—nmi 8 dr

T pd—l K . vd d-1 .

c) For a sufficiently large constant /',

Vd gl g 1 / 1
fa(d) /0 I Iné "dr <k -Ind

d) For sufficiently large constants £’ and ",

T d-1 9 vd pd-1 2
f2i7=7(2) = o dP N\ T2 —7 = 2) dr + _ di1 _ .2 dr
<\ dl/z/ \/7 \/7
- 7'—|-Z o V 2r—7—1 2 _ 22

7'+Z 7‘—22_ 7'722
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