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Abstract. It is well-known that local search heuristics for the Maximum-
Cut problem can take an exponential number of steps to find a local
optimum, even though they usually stabilize quickly in experiments. To
explain this discrepancy we have recently analyzed the simple local search
algorithm FLIP in the framework of smoothed analysis, in which inputs
are subject to a small amount of random noise. We have shown that in
this framework the number of iterations is quasi-polynomial, i.e., it is
polynomially bounded in nlogn and φ, where n denotes the number of
nodes and φ is a parameter of the perturbation.
In this paper we consider the special case in which the nodes are points
in a d-dimensional space and the edge weights are given by the squared
Euclidean distances between these points. We prove that in this case for
any constant dimension d the smoothed number of iterations of FLIP
is polynomially bounded in n and 1/σ, where σ denotes the standard
deviation of the Gaussian noise. Squared Euclidean distances are often
used in clustering problems and our result can also be seen as an upper
bound on the smoothed number of iterations of local search for min-sum
2-clustering.

1 Introduction

Clustering is nowadays ubiquitous in computer science. Despite intensive re-
search on sophisticated algorithms, simple local search methods are often the
most successful and versatile algorithms in practice. These algorithms are based
on a simple principle: start with some feasible clustering and perform local im-
provements until a local optimum is found. Usually local search methods do not
work well in the worst case because in most cases there are rather contrived
instances on which they perform poorly.

Motivated by this striking discrepancy between theory and practice, we have
recently analyzed the simple local search algorithm FLIP for the Maximum-Cut
Problem in the framework of smoothed analysis, which can be considered as a
less pessimistic variant of worst-case analysis in which the adversarial input is
subject to a small amount of random noise [5]. We continue this line of research
and consider the special case of the Maximum-Cut Problem in which the nodes
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are points in a d-dimensional space and the edge weights are given by the squared
Euclidean distances between these points. We assume that the input is a finite
set X ⊆ Rd of points that is to be partitioned into two parts X1 and X2 such that

the weight
∑
x∈X1

∑
y∈X2

∥∥x−y∥∥2 becomes maximal, where
∥∥x−y∥∥ denotes the

Euclidean distance between x and y. The FLIP algorithm starts with an arbitrary
cut (X1, X2) and iteratively increases the weight of the cut by moving one vertex
from X1 to X2 or vice versa, as long as such an improvement is possible. Squared
Euclidean distances are common in many clustering applications.

In the model we consider, an adversary specifies an arbitrary set X ⊆ [0, 1]d

of n = |X| points. Then each point is randomly perturbed by adding a Gaussian
vector of standard deviation σ to it. The parameter σ determines how powerful
the adversary is. In the limit for σ → 0 the adversary is as powerful as in
a classical worst-case analysis, whereas for large σ smoothed analysis almost
coincides with average-case analysis. Note that the restriction to [0, 1]d is merely
a scaling issue and entails no loss of generality.

For a given instance of the Maximum-Cut Problem we define the number of
steps of the FLIP algorithm on that instance to be the largest number of local
improvements the FLIP algorithm can make for any choice of the initial cut and
any pivot rule determining the local improvement that is chosen if multiple are
possible. Formally, this can be described as the longest path in the transition
graph of the FLIP algorithm. We are interested in the smoothed number of steps
of the FLIP algorithm. This quantity depends on the number n of nodes and the
standard deviation σ and it is defined as the largest expected number of steps
the adversary can achieve by his choice of the point set X.

Theorem 1. For any constant dimension d ≥ 2, the smoothed number of steps
of the FLIP algorithm for squared Euclidean distances is bounded from above by
a polynomial in n and 1/σ. The degree of this polynomial depends linearly on d.

This result significantly improves upon the exponential worst-case running
time of the FLIP algorithm and the quasi-polynomial bound on the smoothed
number of steps for general instances. The theorem shows that for squared Eu-
clidean distances worst-case instances are fragile and unlikely to occur in the
presence of a small amount of random noise.

We view Theorem 1 as a further step towards understanding the behavior of
local search heuristics on semi-random inputs. Its proof is considerably differ-
ent from our previous analysis for general graphs and also from the smoothed
analysis of other local search heuristics in the literature. We believe that the
technique used to prove Theorem 1, which we summarize in Section 2, might
also be interesting for analyzing local search algorithms for other problems. In
that sense, we view Theorem 1 also as a proof of concept of our new technique.

1.1 Related Work

Smoothed analysis has originally been introduced by Spielman and Teng to
explain why the simplex method solves linear programs efficiently in practice
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despite its exponential worst-case running time [13]. Since then it has gained a
lot of attention and it has been used to analyze a wide variety of optimization
problems and algorithms (see, e.g., the surveys [8, 14]).

For many optimization problems, local search heuristics are prime exam-
ples of algorithms with exponential worst-case running time that work well and
efficiently in practice. Consequently, there has been a considerable amount of
research on the smoothed analysis of local search. Englert et al. [4] and Manthey
and Veenstra [9] have analyzed the smoothed running time of the popular 2-Opt
heuristic for the traveling salesman problem. Arthur and Vassilvitskii initiated
the smoothed analysis of the k-means method [2] that culminated in a proof
that the smoothed running time of the k-means method is polynomial [1].

Both the worst-case and the smoothed running time of the FLIP algorithm
for the Maximum-Cut Problem have been studied. It is known that the prob-
lem of computing a locally optimal cut is PLS-complete [11] even for graphs of
maximum degree five [3]. This means that, unless PLS ⊆ P, there is no efficient
algorithm to compute partitions that are locally optimal and it also implies that
there are instances on which there exist initial cuts from which any sequence of
local improvements to a local optimum has exponential length. Admittedly, these
lower bounds do not carry over immediately to squared Euclidean distances but
there is also no sub-exponential worst-case upper bound known for this case.

Elsässer and Tscheuschner [3] were the first who analyzed the smoothed run-
ning time of the FLIP algorithm and showed that it is polynomially bounded if
the graph G has at most logarithmic degree. Later we [5] analyzed the smoothed
running time of the FLIP algorithm for general graphs and we proved a quasi-
polynomial bound, i.e., a bound that is polynomial in nlogn. While it would also
be worthwhile to study the quality of locally optimal cuts in the framework of
smoothed analysis, this line of research has not been pursued yet. It is well-
known that even in the worst case any locally optimal cut is a 2-approximation
of a maximum cut (see, e.g., [7]).

Schulman [12] studied the min-sum 2-clustering problem for squared Eu-
clidean distances. In this problem, the input also consists of a finite set of
points X ⊆ Rd and the goal is to find a partition of X into two classes X1

and X2 such that the sum of the edge weights inside the two classes (i.e.,∑
x,y∈X1

∥∥x−y∥∥2 +
∑
x,y∈X2

∥∥x−y∥∥2) becomes minimal. This problem is equiv-
alent to the Maximum-Cut Problem with squared Euclidean distances (not in
terms of approximation though) and hence the FLIP algorithm can also be seen
as a local search algorithm for min-sum 2-clustering. Schulman gives an algo-
rithm that solves the problem optimally in time O(nd+1). The bound proven in
Theorem 1 does not improve upon the running time of Schulman’s algorithm for
computing the optimal cut. However, the worst-case running time of the FLIP
algorithm might be much worse than that.

Sankar, Spielman and Teng [10] analyzed the condition number of randomly
perturbed matrices and proved that it is unlikely that a matrix whose entries
are independent Gaussians has a large condition number. We will use this as one
crucial ingredient of our analysis of the FLIP algorithm.
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2 Outline of our Analysis

The analysis of the FLIP algorithm for squared Euclidean distances differs signif-
icantly from our previous analysis for general graphs and also from the smoothed
analysis of other local search heuristics in the literature. Theorem 1 as well as all
results in the literature are based on finding a lower bound for the improvement
made by any local improvement or any sequence of consecutive local improve-
ments of a certain length. Since X ⊆ [0, 1]d, the value of any cut is bounded
polynomially in n with high probability. Hence, proving that in any local im-
provement or in any sequence of poly(n) consecutive local improvements the
value of the cut increases by at least ε := 1/poly(n) with high probability suf-
fices for proving that the expected number of local improvements is polynomially
bounded. We will call an improvement of at least ε significant in the following.

We call a configuration (i.e., a partition of X into X1 and X2) bad if it
admits an insignificant local improvement. Any fixed configuration is bad only
with probability at most poly(nε/σ). With this observation in mind one could try
to use a union bound over all possible configurations to bound the probability
that there exists a bad configuration. However, since there is an exponential
number of configurations, this does not work. In fact, one can even prove that
with high probability there do exist bad configurations. We will improve the
union bound by not fixing the configuration of all points from X but only some
of them, i.e., we will only make a union bound over a small subset of the points.
To illustrate this, let us give two examples from the literature.

– An observation that has been exploited by Elsässer and Tscheuschner [3] is
that it suffices to fix the flipping vertex and the neighborhood of this vertex
in the union bound. For graphs of logarithmic maximum degree, this yields
a polynomial bound on the smoothed number of local improvements.

– Another observation that has been used in a much more general form in [5]
is the following: Any sequence of constantly many consecutive local improve-
ments that starts and ends with the same vertex flipping yields a significant
improvement with high probability. We showed that in order to bound the
probability that there exists a sequence of this type in which all improve-
ments are insignificant it suffices to use a union bound over all sequences of
this type (there are only polynomially many because they are of constant
length). One does, however, not need to specify in the union bound the
configuration of the vertices that are not involved in the sequence.

The two examples above have in common that the union bound fixes only the
configuration of some of the vertices (which we call active). The configuration of
the other vertices (which we call passive) is not fixed in the union bound. In the
examples the active points were chosen such that knowing their configuration
suffices to compute the probability that the considered step or sequence of steps
is bad. In our analysis we also fix only the configuration of some active vertices.
The difference is that the passive vertices are not irrelevant because their con-
figuration has a very essential impact on the improvements made by the flips in
the considered sequences.
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Let us go into more detail. Remember that we consider complete graphs in
which each vertex is a point in Rd and the weights of the edges are given by the
squared Euclidean distance. Our goal is to show that in this setting with high
probability there is no sequence in which 9d+ 16 different vertices move making
only insignificant local improvements. Observe that the length of such a sequence
is at most 29d+16 as otherwise one configuration would repeat. We apply a union
bound over all such sequences. We call all vertices that flip in the considered
sequence active and apply another union bound over all configurations of the
active points. With only the information about the sequence and the configura-
tion of the active points, it is not possible to determine linear combinations of
the edge weights that describe the improvements made in the sequence because
the configuration of the passive points is unknown.

Assume that the passive points P are partitioned into the sets P1 and P2.
One crucial observation for our analysis is that in the case of squared Euclidean
distances it suffices to know |P1| and the value cP :=

∑
x∈P1

x −
∑
x∈P2

x in
order to determine the improvements made by the active points. This value is
unknown if the configuration of the passive points (i.e., the partition (P1, P2))
is unknown and we have to assume that cP ∈ Rd is chosen adversarially. We
prove that there is a point capxP ∈ Rd such that the first flips of the first d + 1
active points can only all be small improvements if cP is chosen very close to capxP

(Phase 1). The point capxP can be computed as the solution of a system of linear
equations whose coefficients are determined by the considered sequence and the
active points alone. In particular, capxP does not depend on the passive points.

In fact, if cP is chosen to be capxP , then the improvement of each of the steps
is exactly equal to zero. The coefficients in this system of linear equations are
normally distributed. Hence we can use the result of Sankar et al. [10] to argue
that the condition number is not too large with high probability. From this it
follows that cP has to be chosen close to capxP in order to guarantee that each step
makes only an insignificant improvement. In order to decrease the probability
that the condition number is too large, we repeat Phase 1 nine times, i.e., we
consider the first flips of the first 9(d+ 1) active points.

The adversary who determines the position of cP has no choice but to
choose cP close to capxP if he wants to achieve that each of the first 29d+9 steps
in the sequence is an insignificant improvement. We then substitute cP by capxP

in the formulas describing the improvements of steps. This results in formulas
which do not depend on the passive points anymore and by our assumption that
cP is close to capxP these formulas are good approximations for the improvements
of the last seven active points (Phase 2). We use these formulas to argue that it
is unlikely that all of them take values in (0, ε) without having to use a union
bound over the configuration of the passive points. (This approach is remotely
inspired by the analysis of the k-means method where approximate centers of
clusters are used [1].)

In our analysis we crucially use that the edge weights are given by squared
Euclidean distances because for other distance measures the necessary informa-
tion about the configuration of the passive points is not captured solely by cP .
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3 Preliminaries and Notation

In this section we state some lemmas that we will use later to prove Theorem 1
and we introduce some notation. Throughout the paper, ε denotes the threshold
value between an insignificant and a significant step. Due to space limitations, all
formal proofs are deferred to the full version. Proof ideas for the most important
lemmas are given in this version.

Lemma 2. Let Dmax := σ
√

2n + 1 and let X be a set of n Gaussian ran-
dom vectors in Rd with mean values in [0, 1]n and standard deviation σ. Then
Pr
[
X 6⊆ [−Dmax, Dmax]d

]
≤ d/2n.

Up to our proof of the main result in Section 7, we assume without further
mention that X ⊆ [−Dmax, Dmax]d and σ ≤ 1/

√
2n, which implies Dmax ≤ 2.

Furthermore, we assume n ≥ d, which is without loss of generality because d is
a constant.

Lemma 3. The weight of any cut is between 0 and φmax := 16dn2.

One crucial ingredient of our analysis is the following result.

Lemma 4 (Sankar, Spielman, Teng [10]). Let Ā ∈ Rd×d with
∥∥Ā∥∥

2
≤
√
d

be arbitrary. Let A be obtained from Ā by adding to each entry an indepen-
dent Gaussian with mean 0 and standard deviation σ. Then for all δ ≥ 1,

Pr [κ(A) ≥ δ] ≤ 14.1d(1+
√

2 ln(δ)/9d)

δσ , where κ(A) :=
∥∥A∥∥

2

∥∥A−1∥∥
2

denotes the
condition number of A.

The following lemma follows from elementary probability theory.

Lemma 5. Let k ∈ N and λ1, . . . , λk ∈ Z with
∑k
i=1 λi 6= 0. Let u, v1, . . . , vk ∈

Rd and let z denote a d-dimensional Gaussian random vector with mean µ ∈ Rd
and standard deviation σ. Then for every τ ∈ R and δ > 0,

Pr
[
u · z +

∑k
i=1 λi ·

∥∥z − vi∥∥2 ∈ [τ, τ + δ]
]
≤
√
δ
σ .

For a point z ∈ Rd and a finite set B ⊆ Rd we write Φ(z,B) =
∑
x∈B

∥∥z−x∥∥2.
Furthermore we denote by cm(B) = 1

|B|
∑
x∈B x the center of mass of B and we

use the notation Ψ(B) = Φ(cm(B) , B).

4 Improvement of a Double Movement

Let us consider the improvement of a single step in which a point z ∈ X switches
sides. If we denote by Xz

1 ⊆ X all points on the same side as z before the
movement (not including z itself) and by Xz

2 ⊆ X all points on the other side
then the improvement of the step can be written as

Φ(z,Xz
1 )− Φ(z,Xz

2 )

= |Xz
1 | ·
∥∥z − cm(Xz

1 )
∥∥2 + Ψ(Xz

1 )−
(
|Xz

2 | ·
∥∥z − cm(Xz

2 )
∥∥2 + Ψ(Xz

2 )
)
,

(1)

where the equation follows from the following lemma.
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Lemma 6 ([6]). For any z ∈ Rd and any finite set X ⊆ Rd it holds

Φ(z,X) = |X| ·
∥∥z − cm(X)

∥∥2 + Ψ(X).

Since the occurrence of Ψ(Xz
1 ) and Ψ(Xz

2 ) in (1) is problematic for our analy-
sis, we will eliminate these terms by considering two consecutive steps and adding
or subtracting their respective improvements. To be more precise consider two
consecutive steps in which the points y and z switch sides (in this order) and
let Xz

1 and Xz
2 be defined as above with the only exception that y is contained

in neither of them. If y and z are on different sides before they move, then it
is easy to see from (1) that the terms Ψ(Xz

1 ) and Ψ(Xz
2 ) cancel out if one adds

the improvements of the two steps. If y and z are on the same side before they
move, then similarly one can see that the terms Ψ(Xz

1 ) and Ψ(Xz
2 ) cancel out if

one subtracts the improvements of the two steps. In both cases we denote the
resulting term ξ(z) (it is only indexed by z and not by y because we define y to
be the unique point that moves before z in the considered sequence of steps). If
both steps yield an improvement in (0, ε] then ξ(z) lies in [−ε, 2ε].

The following definition makes the reasoning above more formal. For reasons
that will become clear later, we assume that the sets Xz

1 and Xz
2 are both

partitioned into two parts, which we call passive and active.

Definition 7. For a given sequence of steps and an arbitrary point z ∈ X that
moves during this sequence at least once but not in the first step, let p(z) be the
point from X that moves last before the first move of z. For any ε > 0, any such
point z ∈ X and the set P ⊆ X \ {z, p(z)} of passive points that do not move
during the considered sequence, we define the following variables and functions,
where y = p(z).

– Az := (X \ P ) \ {y, z} is the set of active points.
– Xz

1 is the set of points that are on the same side as z directly before the first
movement of z, excluding y and z. Furthermore, let Xz

2 := (X \Xz
1 ) \ {y, z}

be the set of points that are on the other side, excluding y and z.
– We partition Xz

1 and Xz
2 into active and passive points: Az1 := Az ∩ Xz

1 ,
Az2 := Az ∩Xz

2 , P z1 := P ∩Xz
1 , P z2 := P ∩Xz

2 .
– π(z) is 1 if y and z jump in different directions; otherwise it is −1.
– ξ(z) is defined as the improvement of the z-movement plus π(z) times the

improvement of the y-movement.

In the next lemma we break the term ξ(z) into two parts. One part, called b(z),
depends only on the active points and |P z1 | and |P z2 | but not on the positions
of the passive points. All information about the the passive points is subsumed
in the other part. It is important for our analysis that all information needed
about the passive points is the value cP (z) as defined in the following lemma.

Lemma 8. Let y := p(z),

b(z) :=(|P z1 | − |P z2 |) · (
∥∥z∥∥2 − ∥∥y∥∥2) + Φ(z,Az1)− Φ(z,Az2)

− Φ(y,Az1) + Φ(y,Az2)−

{
0 if π(z) = 1,

2
∥∥z − y∥∥2 if π(z) = −1,
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and cP (z) :=
∑
x∈P z

1
x−

∑
x∈P z

2
x. Then ξ(z) = 2cP (z) · (y − z) + b(z).

Lemma 9. If the movements of p(z) and z both yield an improvement of at
most ε > 0, then |ξ(z)| ≤ 2ε.

5 Phase 1

In Phase 1 we consider a sequence of length at most 2d+1 in which d+1 different
points z0, . . . , zd move. Then the points z0, . . . , zd are active and all other points
are passive. Assume in this section that an arbitrary such sequence is fixed and
that the initial configuration of z0, . . . , zd is also fixed. We will later apply a
union bound over all choices for such a sequence and the initial configuration
of z0, . . . , zd. Let P1 ∈ {1, 2} be the side on which z1 is at the beginning of
the sequence, and let P2 be the other side. We define P := X \ {z0, . . . , zd}
and cP := cP (z1). We assume that the cardinalities

∣∣P z11

∣∣ and
∣∣P z12

∣∣ are fixed.
We will later also apply a union bound over all choices for these cardinalities.

If any of the movements in the considered sequence yields a significant im-
provement then we are done. Otherwise we will prove that we have obtained
enough information to deduce approximately the position of cP . In order to
see this, observe that by Lemma 8 the first movement of each zi with i ≥ 1
determines the following equation:

ξ(zi) = 2cP (zi) · (p(zi)− zi) + b(zi).

Let σi be +1 if the first movement of zi is in the same direction as the first
movement of z1, i.e., from P1 to P2, and −1 otherwise. Then cP (zi) = σi ·cP (z1)
holds for every i ≥ 1. Hence, ξ(zi) = 2σi(p(zi) − zi) · cP + b(zi). This implies
that the point cP satisfies the system ξ = 2McP + b of linear equations where

M :=

σ
1(p(z1)− z1)

...
σd(p(zd)− zd)

 , ξ :=

ξ(z
1)

...
ξ(zd)

 , and b :=

b(z
1)

...
b(zd)

 .

If the matrix M is invertible (which it is with probability 1), then cP = M−1(ξ−
b)/2. As argued above, we are interested in the case that all movements in
Phase 1 yield only a small improvement of at most ε for some ε > 0. In this case
each ξ(zi) satisfies |ξ(zi)| ≤ 2ε according to Lemma 9. We consider the approx-
imate solution capxP of the system of linear equations assuming that each ξ(zi)
is exactly zero: capxP = −M−1b/2. If the condition number of M is not too large
and each ξ(zi) is close to zero, then capxP is close to cP . Note that we can cal-
culate capxP without uncovering the points in P or knowing their configuration
because neither M nor b depends on the positions of the passive points.

Since the sequence of moves is fixed, also the matrix M is fixed. We will first
show (using Lemma 4) that it is well-conditioned with high probability.

Lemma 10. For every δ ≥ 1, Pr [κ(M) ≥ δ] ≤ 72d3

σ
√
δ

.
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In order for the distance between cP and capxP to be small we do not only need
that the matrix M is well-conditioned but also that the norm of the right-hand
side of the system of linear equations is not too small.

Lemma 11. Let δ∈ [0, 1]. If
∥∥ξ∥∥∞≤ 2φmax·δ then Pr

[∥∥b− ξ∥∥
2
≤δ
]
≤ 12d3/4n

√
δ

σ .

As the quotient κ(M)/
∥∥b−ξ∥∥ occurs in our analysis under a condition of the

form
∥∥ξ∥∥∞ ≤ 2δ, we define qδ :=

{
κ(M)/

∥∥b− ξ∥∥ if
∥∥ξ∥∥∞ ≤ 2δ,

0 otherwise.
The second

case in this definition is necessary because we will treat the event
∥∥ξ∥∥∞ > 2δ

separately and do not want it to have any effect on qδ.

Lemma 12. Let ε > 0. If
∥∥ξ∥∥∞ ≤ 2ε then

∥∥capxP − cP
∥∥ ≤ 4dnε · qε.

As we will bound the expected value of the smallest improvement of a se-
quence later on, we will need a bound for

∫∞
0

Pr
[
qφmax/t ≥ tc

]
dt for some con-

stant c < 1. It turns out that the bounds given in Lemma 10 and Lemma 11 are
not strong enough to make this integral finite. Therefore, we repeat Phase 1 nine
times with d + 1 different points each time such that the nine repetitions are
mutually independent. We consider active points from a repetition also as active
in the other repetitions such that they do not account for cP and capxP . Note
that we now need 9(d+ 1) active points Z = {z0i , . . . , zdi : i = 1, . . . , 9} in total.
Assume in the following that an arbitrary sequence of length at most 29(d+1)

with 9(d+ 1) active points is fixed and that also the initial configuration of the
active points is fixed. We will later apply a union bound over all choices. We get
nine approximations capxP for the same cP (possibly negated) and nine different

qδ for the quotient κ(M)∥∥b−ξ∥∥ . Let q∗δ be the minimum of these qδ and let i∗ be the

repetition in which this minimum is obtained.

Lemma 13.
∫∞
0

Pr
[
q∗φmax/t

≥ t7/15
]

dt ≤ O
(
d18n9

σ9

)
.

6 Phase 2

Assume in the following that an arbitrary sequence of length at most 29(d+1)+7

with 9(d+ 1) + 7 active points is fixed and that also the initial configuration of
the active points is fixed. We will later apply a union bound over all choices for
the sequence and the initial configuration of the active points. The longest prefix
of this sequence in which at most 9(d+1) points move forms the nine repetitions
of Phase 1, which we have analyzed in the previous section. Phase 2, which we
analyze in this section, starts with the first move of point number 9(d+ 1) + 1.
Hence, Phase 2 contains seven active points that do not move in Phase 1. Let
S = {s1, . . . , s`} denote the set of ` := 7 points that move in Phase 2 in this
order (i.e., Phase 2 starts with the first movement of s1).

We will apply the principle of deferred decisions in the following way: Except
from the analysis of the error event F1(δ) (Lemma 16) we assume in this section
that the positions of all 9d+ 9 active points Z of Phase 1 are already uncovered.
The points from S are passive in Phase 1 and hence, they belong to the set P .
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This implies, in particular, that cP (but not capxP ) depends on these points. The
set of passive points changes now with every new point that gets active. We define
the set of passive points during the first move of sj as P j := P \ {s1, . . . , sj}
and we assume that in addition to the active points from Phase 1 also the
points s1, . . . , sj−1 are uncovered when sj moves for the first time.

From now on, we mean with capxP the point calculated in repetition i∗ of
Phase 1 and we denote by ξ the corresponding vector from repetition i∗. Define
σ̂j like σi in Phase 1 but for the new points moving in Phase 2, i.e., σ̂j is 1 if
the first movement of sj is from P1 to P2 and −1 otherwise.

According to Lemma 8, we can write ξ(sj) = 2σ̂jcP j · (p(sj) − sj) + b(sj).
Due to its definition, the point cP j is just cP shifted by sj and the already
uncovered points s1, . . . , sj−1. Therefore, we get an approximation capxP j for cP j

by shifting capxP in the same (now deterministic up to the randomness of sj)
way as cP . As capxP j and cP j are near to each other with high probability under
the assumption that all steps in Phase 1 yield insignificant improvements, the
“approximate improvement” ξapx(sj) := 2σ̂jcapxP j ·(p(sj)−sj)+b(sj) is nearly the
same as ξ(sj) (Lemma 14). Thus,

∣∣ξ(sj)∣∣ can only be small if
∣∣ξapx(sj)

∣∣ is small.
But in the definition of ξapx(sj), the only randomness left is the position of the
point sj . Hence, we can derive a bound for the probability of an insignificant
improvement by analyzing a term in which only one random point is left. We do
this successively for s1, . . . , s`.

Lemma 14. Let 1 ≤ j ≤ ` and 0 ≤ ε ≤ 1. If
∥∥ξ∥∥∞ ≤ 2ε and

∣∣ξ(sj)∣∣ ≤ 2ε, then∣∣ξapx(sj)
∣∣ ≤ 74d3/2nq∗ε · ε. (Note that

∥∥ξ∥∥∞ ≤ 2ε does not imply anything for∣∣ξ(sj)∣∣ as ξ is the vector from Phase 1.)

As already mentioned, the only randomness left in the definition of ξapx(sj)
is the point sj . Hence, we can rewrite

∣∣ξ(sj)∣∣ in the following way, where C is
the set of all points of the form −capxP +

∑
v∈Z∪S αv · v with αv ∈ {−1, 0, 1}.

Lemma 15.
∣∣ξapx(sj)

∣∣ = νj ·
∥∥sj∥∥2 + 2sj · σ̂j · cj + τ j, where νj ∈ Z and τ j ∈ R

are known constants, and cj ∈ C has known coefficients αv.

We want to bound the probability that
∣∣ξapx(sj)

∣∣ is close to zero. If νj = 0,

we have to make sure that
∥∥cj∥∥ is not too small as otherwise the variance of

2sj · σ̂j · cj is very small. We cannot guarantee this for every j, but it is unlikely
to have three different j with small

∥∥cj∥∥.

Lemma 16. For δ ≥ 0, let F1(δ) be the event that there are three distinct points

x1, x2, x3 ∈ C with
∥∥xi∥∥ ≤ √δ/2 for i = 1, 2, 3. Then Pr [F1(δ)] ≤ O(1) ·

(√
δ
σ

)4
.

Hence, we know that for at least four different j it is unlikely that
∣∣ξapx(sj)

∣∣
is small. Now if we define ∆ := maxj

∣∣ξ(sj)∣∣ and ∆apx := maxj
∣∣ξapx(sj)

∣∣, we are
able to show that it is unlikely that ∆apx and thus ∆ is small.

Lemma 17. For any δ ≥ 0, Pr [∆apx ≤ δ] ≤ O
(√

δ
σ

)4
.

Corollary 18.
∫∞
0

Pr
[
∆apx ≤ t−8/15

]
dt ≤ O(σ−4).
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7 Bounding the Expected Number of Steps

With Lemma 13 and Corollary 18 we have all the ingredients that we need for
bounding the expected number of steps of the algorithm. We first outsource a
calculation which uses the aforementioned lemmata to yield a bound for the
probability of a small improvement by a fixed sequence. Then we are able to
show our main result.

Lemma 19.
∫∞
0

Pr
[
∆ ≤ 2φmax

t

]
dt ≤ O

(
d20.5·n12

σ9

)
.

Proof (Theorem 1). We first stick with our assumption σ ≤ 1/
√

2n. Let F be the
event that our point set X is not contained in [−Dmax, Dmax]d ⊆ [−2, 2]d. Let a
block be nine repetitions of Phase 1 followed by a repetition of Phase 2. Let us
derive a union bound over all possible choices of blocks: There are nO(d) choices
for the active points in Phase 1 and Phase 2. Furthermore, we need another
factor n for the choice of |P1|. Instead of fixing the whole sequence of steps, it
suffices for our purposes to fix the configuration of the active points before every
first move of a point, which results in another factor 2O(d2). Together this results
in a factor of 2O(d2) · nO(d).

Let T be the number of blocks that are processed during the FLIP algorithm.
Then

E [T ] =

∫ 2n

0

Pr [T ≥ t] dt ≤
∫ 2n

0

Pr [F ] + 2O(d2) · nO(d) ·Pr

[
∆ ≤ 2φmax

t

]
dt

≤ 2n · d
2n

+ 2O(d2)nO(d) d
20.5n12

σ9
≤ d+

2O(d2)nO(d)

σ9
≤ 2O(d2)nO(d)

σ9
.

As O(d) different points move in a block, the length of a block is at most 2O(d).

Hence, the total number of steps is bounded by 2O(d) · 2O(d2) · nO(d) · σ−9 =
2O(d2) · nO(d) · σ−9.

If σ > 1/
√

2n, we create an equivalent instance by scaling down the mean
values by the factor 1/(

√
2nσ) (i.e., the mean values remain in [0, 1]n) and setting

the standard deviation to σ′ = 1/
√

2n < σ. As these instances are equivalent,
we obtain the same expected number of iterations and thus also a bound of
2O(d2) · nO(d) · (

√
2n)9 ≤ 2O(d2) · nO(d) · σ−9. ut

8 Concluding Remarks

We proved the first polynomial upper bound on the smoothed number of steps
of the FLIP algorithm for the Maximum-Cut problem. Our upper bound ap-
plies only to squared Euclidean distances because it uses essentially the identity
given in Lemma 6, which is special to squared Euclidean distances. It might
be possible to extend our analysis to Bregman divergences because these also
satisfy Lemma 6. An immediate extension to general graphs does not seem to
be possible and it is still a very interesting open question if the result from [5]
for general graphs can be improved.
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Our result gives only a polynomial smoothed running time if the dimension
is constant because the degree of the polynomial grows linearly with d. We think
that it is conceivable to improve the smoothed running time to 2O(d) times a
polynomial in n and 1/σ whose degree is independent of d by a more careful
analysis of the condition number in Phase 1 that does not use the result by
Sankar et al. [10] as a black box. Generally, we hope that our work triggers further
improvements like, e.g., the first smoothed analysis of the k-means method by
Arthur and Vassilvitskii [2], which only gave a polynomial bound for constant k.

A version of the k-means method that works rather well in experiments
is Hartigan’s method [15]. Telgarsky and Vattani conjecture that the smoothed
running time of this algorithm is polynomial [15]. However, so far this conjecture
could not be proven and it seems rather challenging. As Hartigan’s method has
some similarities with the FLIP algorithm for the Maximum-Cut problem for
squared Euclidean distances, we believe that our new proof technique might also
be helpful for proving Telgarsky and Vattani’s conjecture.
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