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Abstract. Complete-linkage clustering is a very popular method for
computing hierarchical clusterings in practice, which is not fully under-
stood theoretically. Given a finite set P ⊆ Rd of points, the complete-
linkage method starts with each point from P in a cluster of its own
and then iteratively merges two clusters from the current clustering that
have the smallest diameter when merged into a single cluster.
We study the problem of partitioning P into k clusters such that the
largest diameter of the clusters is minimized and we prove that the
complete-linkage method computes an O(1)-approximation for this prob-
lem for any metric that is induced by a norm, assuming that the dimen-
sion d is a constant. This improves the best previously known bound
of O(log k) due to Ackermann et al. (Algorithmica, 2014). Our improved
bound also carries over to the k-center and the discrete k-center problem.

1 Introduction

In a typical clustering problem, the goal is to partition a given set of objects
into clusters such that similar objects belong to the same cluster while dissimilar
objects belong to different clusters. Clustering is ubiquitous in computer science
with applications ranging from biology to information retrieval and data com-
pression. In applications where the number of clusters is not known a priori,
hierarchical clusterings are of particular appeal. A hierarchical clustering of a
set P of n objects is a sequence C1, C2, . . . , Cn, where Ci is a clustering of P into i
non-empty clusters and Ci+1 is a refinement of Ci. Besides the advantage that the
number of clusters does not have to be specified in advance, hierarchical cluster-
ings are also appealing because they help to understand the hereditary properties
of the data and they provide information at different levels of granularity.

In practice, agglomerative methods are very popular for computing hierarchi-
cal clusterings. An agglomerative clustering method starts with the clustering Cn,
in which every object belongs to its own cluster. Then it iteratively merges the
two clusters from the current clustering Ci+1 with the smallest distance to obtain
the next clustering Ci. Depending on how the distance between two clusters is
defined, different agglomerative methods can be obtained. A common variant

? This research was supported by ERC Starting Grant 306465 (BeyondWorstCase).



2 Anna Großwendt and Heiko Röglin

is the complete-linkage method in which the distance between two clusters A
and B is defined as the diameter or the (discrete) radius of A ∪ B, assuming
some distance measure on the objects from P is given.

The complete-linkage method is very popular and successful in a wide variety
of applications. To name just a few of many recent examples, Rieck et al. [7] have
used it for automatic malware detection, Ghaemmaghami et al. [6] have used it
to design a speaker attribution system, and Cole et al. [2] use it as part of
the Ribosomal Database Project. Yet the complete-linkage method is not fully
understood in theory and there is still a considerable gap between the known
upper and lower bounds for its approximation guarantee.

1.1 Problem Definitions and Algorithms

Let P ⊆ Rd denote a finite set of points and let dist : Rd × Rd → R≥0 denote
some metric on Rd. A k-clustering C of P is a partition of P into k non-empty
sets C1, . . . , Ck. We consider three different ways to measure the quality of the
k-clustering C, which lead to three different optimization problems.

– diameter k-clustering problem: Find a k-clustering C with minimum
diameter. The diameter diam(C) of C is given by the maximal diameter
maxi diam(Ci) of one of its clusters, where the diameter of a set C ⊆ P is
defined as diam(C) := maxx,y∈C dist(x, y).

– k-center problem: Find a k-clustering C with minimum radius. The ra-
dius rad(C) of C is given by the maximal radius maxi rad(Ci) of one of
its clusters, where the radius of a set C ⊆ P is defined as rad(C) :=
miny∈Rd maxx∈C dist(x, y).

– discrete k-center problem: Find a k-clustering C with minimum discrete
radius. The discrete radius drad(C) of C is given by the maximal discrete
radius maxi drad(Ci) of one of its clusters, where the discrete radius of a
set C ⊆ P is defined as drad(C) := miny∈C maxx∈C dist(x, y).

The complete-linkage method CL starts with the |P |-clustering C|P | in which
every point from P is in its own cluster. Then, for i = |P | − 1, |P | − 2, . . . , 1,
it merges two clusters from Ci+1 to obtain Ci. Regardless of the choice of which
clusters are merged, this yields a hierarchical clustering C1, . . . , C|P |. Which clus-
ters are merged in an iteration depends on the optimization problem we consider.
For the diameter k-clustering problem, the complete-linkage method chooses two
clusters A and B from Ci+1 such that diam(A ∪ B) is minimized. Similarly, for
the k-center problem and the discrete k-center problem it chooses two clusters A
and B from Ci+1 such that rad(A∪B) or drad(A∪B) is minimized, respectively.
Hence, every objective function gives rise to a different variant of the complete-
linkage method. When it is not clear from the context which variant is meant,
we will use the notation CLdrad, CLrad, and CLdiam to make the variant clear.

1.2 Related Work

Let P ⊆ Rd and a metric dist on P be given and let Odrad
k , Orad

k , and Odiam
k

be optimal k-clusterings of P for the discrete k-center problem, the k-center
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problem, and the diameter k-clustering problem, respectively. For each of these
three problems, it is easy to find examples where no hierarchical clustering C =
(C1, . . . , C|P |) exists such that Ck is an optimal k-clustering for every k. We say
that a hierarchical clustering C is an α-approximate hierarchical clustering for the
diameter k-clustering problem if diam(Ck) ≤ α · diam(Odiam

k ) holds for every k.
In general, we allow α to be a function of k and d. We define α-approximate
hierarchical clusterings analogously for the (discrete) k-center problem.

Dasgupta and Long [3] gave an efficient algorithm that computes 8-approxi-
mate hierarchical clusterings for the diameter k-clustering and the k-center prob-
lem, thereby giving a constructive proof of the existence of such hierarchical
clusterings. Their result holds true for arbitrary metrics on Rd and it can even
be improved to an expected approximation factor of 2e ≈ 5.44 by a randomized
algorithm. They also studied the performance of the complete-linkage method
and presented an artificial metric on R2 for which its approximation factor is
only Ω(log k) for the diameter k-clustering and the k-center problem. Ackermann
et al. [1] showed for the diameter k-clustering and the discrete k-center problem a
lower bound of Ω( p

√
log k) for the `p-metric for every p ∈ N, assuming d = Ω(k).

Ackermann et al. [1] also showed that the complete-linkage method yields
an O(log k)-approximation for any metric that is induced by a norm, assuming
that d is a constant. Here the constant in the big O notation depends on the
dimension d. For the discrete k-center problem the dependence on d is only
linear and additive. For the k-center problem the dependence is multiplicative
and exponential in d, while for the diameter k-clustering problem it is even
multiplicative and doubly exponential in d. The analysis of Ackermann et al.
proceeds in two phases. The first phase ends when 2k clusters are left and the
second phase consists of the last k merge operations. In the first phase a factor
depending only on d but not on k is incurred. To make this precise, let Cdrad2k , Crad2k ,
and Cdiam2k denote the 2k-clusterings computed by the corresponding variants
of CL. Ackermann et al. prove that for each objective X ∈ {drad, rad,diam}
there exists a function κX such that

X(CX2k) ≤ κX(d) ·X(OX
k ). (1)

The function κdrad is linear in d, the function κrad is exponential in d, and the
function κdiam is doubly exponential in d. The factor O(log k) is only incurred in
the last k merge operations. Let Cdradk , Cradk , and Cdiamk denote the k-clusterings
computed by the corresponding variants of CL. Ackermann et al. show that for
each objective X ∈ {drad, rad,diam}, it holds

X(CXk ) ≤ O(log k) ·X(CX2k),

where the constant in the big O notation depends again on the dimension d.
Additionally, Ackermann et al. [1] studied the case d = 1 separately and proved
that the complete-linkage method computes 3-approximate hierarchical cluster-
ings for the diameter k-clustering problem and the k-center problem for d = 1.

The approximability of non-hierarchical clustering problems is well under-
stood. Feder and Greene [5] proved that for the Euclidean metric the k-center
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problem and the diameter k-clustering problem cannot be approximated better
than a factor of 1.822 and 1.969, respectively. For the `1 and the `∞-metric
they prove a lower bound of 2 for the approximability of both problems. On the
positive side, they also provide a 2-approximation algorithm for any `p-metric.

A naive implementation of the complete-linkage method has a running time
of O(|P |3). Defays gave an implementation with running time O(|P |2) [4].

1.3 Our Results

Our main result is a proof that the complete-linkage method yields an O(1)-
approximation for the (discrete) k-center problem and the diameter k-clustering
problem for any metric on Rd that is induced by a norm, assuming that d is a
constant. This does not contradict the lower bound of Ackermann et al. because
this lower bound assumes that the dimension depends linearly on k. In light of
our result, the dependence of this lower bound on k is somewhat misleading and
it could also be expressed as Ω( p

√
log d).

In order to obtain our result, we improve the second phase of the analysis of
Ackermann et al. [1] and we prove that for each objective X ∈ {drad, rad,diam},

X(CXk ) ≤ O(1) ·X(CX2k).

The constant in the big O notation depends neither on d nor on k. It is 37, 19, and
17 for the discrete k-center problem, the k-center problem, and the diameter k-
clustering problem, respectively. Together with (1) this yields the desired bound
for the approximation factor.

In our analysis we introduce the concept of clustering intersection graphs.
Given an `-clustering C1, . . . , C` computed by the complete-linkage method and
an optimal k-clustering O1, . . . , Ok, the clustering intersection graph contains
a node for each cluster Cj and a hyperedge for every optimal cluster Oi. The
hyperedge corresponding to Oi contains all clusters Cj with Oi∩Cj 6= ∅. We then
observe that merge operations of the complete-linkage method correspond to
the contraction of two nodes in the clustering intersection graph. We obtain our
results by carefully exploiting the structural properties of clustering intersection
graphs.

In Section 2 we introduce formally the concept of clustering intersection
graphs and prove some elementary properties. In Section 3 we combine our
analysis with the result of Ackermann et al. about the first phase to prove
that the complete-linkage method yields an O(1)-approximation. Due to space
constraints, proofs of statements marked by (?) are deferred to the full version
of this paper.

2 Clustering Intersection Graphs

Our analysis is based on studying the clustering intersection graph induced
by CL at certain points of time. Before we introduce the concept of cluster-
ing intersection graphs formally, we will define these points of time. Let P ⊆ Rd
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be arbitrary and let Ok denote some arbitrary optimal k-clustering of P (w.r.t.
the chosen objective function diameter or (discrete) radius). By scaling our point
set we may assume that the objective value of Ok equals 1. We define t≤x to be
the last step before some cluster of size larger than x (w.r.t. the chosen objective
function) is obtained and denote the clustering of CL at time t≤x by Ax. The
following lemma is crucial for our analysis.

Lemma 1 (?). Let x > 0. In Ax there do not exist two clusters a1 and a2 such
that

diam(a1)+ dist(a1, a2) + diam(a2) ≤ x, for CLdiam,

rad(a1)+ dist(a1, a2) + 2 rad(a2) ≤ x, for CLrad,

drad(a1)+ dist(a1, a2) + 2 drad(a2) ≤ x, for CLdrad,

where dist(a1, a2) is defined as the minimum distance between two points p1 ∈ a1
and p2 ∈ a2.

This implies that if we have at t≤x two clusters a1, a2 ∈ Ax and some cluster
o ∈ Ok with a1 ∩ o 6= ∅ and a2 ∩ o 6= ∅, then depending on the objective function
at t≤2x+1 or t≤3x+1 either a1 or a2 or both were merged.

2.1 Definition and Fundamental Properties

The fact that we can guarantee for certain pairs of clusters that one of it is
merged at a certain point of time motivates us to define a clustering intersection
graph (which is in general a hypergraph) with the clusters from Ax as vertices,
where two vertices are neighbored if and only if there exists a cluster o ∈ Ok

with which both have a non-empty intersection.

Definition 2. Let Ok be an optimal k-clustering of some finite point set P ⊆
Rd. Let Ax be the clustering of P computed by CL at time t≤x. We define the
clustering intersection graph (CI-graph) Gx(Ax,Ok) at point of time t≤x as a
graph with vertex set Ax. A set of vertices N = {v1, . . . , v`} forms a hyperedge
if there exists some cluster o ∈ Ok such that for each cluster vi we have that
vi ∩ o 6= ∅ and furthermore there does not exist a cluster v 6∈ N with v ∩ o 6= ∅.

In general, the CI-graph is a hypergraph with exactly k edges and |Ax| ver-
tices. If a statement holds for arbitrary points of time or the point of time is clear
from context we omit the index x and just write G. Note that for each cluster
a ∈ Ax each point p ∈ a in the cluster is contained in some optimal cluster o.
Thus, the CI-graph does not contain isolated vertices where isolated means that
the vertex has no incident edge. We call a vertex ` a leaf if ` is incident to exactly
one edge e and moreover ` is not the only vertex incident to e. Moreover an edge
e is called a loop if e is only incident to one vertex. We define the degree of a
vertex v to be number of non-loop edges that contain v plus twice the number
of loops that consist of v. The CI-graph has the crucial property that merging
two clusters in Ax corresponds to contracting the corresponding vertices in the
CI-graph.
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Clusters constructed by CL
Optimal Clusters

Fig. 1. Example of a clustering instance with an optimal clustering and a clustering
computed by CL (left side) and the corresponding CI-graph (right side). Note that the
figure is only schematic and does not depict the actual clustering computed by CL on
the given instance.

Lemma 3. There is a homomorphism between pairs of clusterings (O,A) where
O and A are both clusterings of a finite point set P ⊆ Rd and the set of CI-
graphs with respect to the operations merging two clusters in A and contracting
two vertices in the corresponding CI-graph.

Assume that two clusters a1 and a2 are merged in a step of CL. Then all
clusters o ∈ O that have a nonempty intersection with a1 or a2 clearly have a
nonempty intersection with a1 ∪ a2. Let G and G′ denote the CI-graph before
and after this merge operation, respectively. Then it is easy to see that G′ is
obtained from G by contracting the two vertices v1 and v2 corresponding to a1
and a2. The vertex that results from this contraction is incident to each edge
that was incident to v1 or v2 before.

To prove that the approximation factor of CL is at most x, it is sufficient
to show that at time t≤x the CI-graph Gx contains at least as many edges
as vertices. Clearly this is equivalent to |Ax| ≤ k, which means that CL has
terminated.

2.2 The One-Dimensional Case

One can prove that CL yields a constant approximation factor for all finite
point sets P ⊆ R, all metrics dist : R × R → R≥0 and all k ∈ N analyzing the
structure of the CI-graph after certain time periods showing that at t≤3 (or t≤5)
the number of vertices is smaller or equal to the number of edges. The result is
known for the diameter k-clustering problem and the k-center problem [1]. Our
result also holds for the discrete k-center problem. For a detailed proof see the
full version of our paper.

Theorem 4 (?). For d = 1 and arbitrary k,
CLdiam computes a 3-approximation for the diameter k-clustering problem,
CLrad computes a 5-approximation for the k-center problem,
CLdrad computes a 5-approximation for the discrete k-center problem.
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2.3 Completion of the CI-Graph

In the one-dimensional case one has the crucial property that all vertices of a
CI-graph can be arranged in increasing order on a line such that only neighbored
vertices on the line may be contracted. Additionally, it follows from Lemma 1
that at least one vertex of every neighbored pair must be contracted until a
certain time step. This implies that each edge is incident to at most 3 vertices
at t≤1, which is essential in the proof of Theorem 4. This property is not true
anymore in higher dimensions.

Given a CI-graph G, we construct a weighted multi-graph Γ (G), which we
call the completion of G. The graph Γ (G) has the same vertex set as the CI-
graph G. For every hyperedge {v1, . . . , v`} in G, we introduce a clique with edge
weights 1 in Γ (G). For each pair of vertices v and w from the same connected
component that are not adjacent we add an edge (v, w) to Γ (G). If p denotes the
length of the shortest v-w-path in G then the weight of the edge (v, w) in Γ (G)
is set to p + (p − 1)x for the objective function diam and p + (p − 1)2x for
the objective functions rad and drad. This construction ensures the following
important property: the weight of every edge (v, w) in Γ (G) is an upper bound
for the distance of the corresponding clusters (remember that the distance of
two clusters is defined as the smallest distance between any pair of points from
these clusters).

Lemma 5 (?). Assume that the shortest v-w-path in a CI-graph G has length p.
Then the smallest distance between two points in v and w is at most p+(p−1)x
for the objective function diam and p+ (p− 1)2x for the objective functions rad
and drad.

For the analysis of CL we choose a subgraph H of Γ (G). Unfortunately,
Lemma 3 cannot be applied to H since H is no CI-graph but we state a weaker
version, which is still strong enough for our analysis.

Lemma 6 (?). Let Gx = Gx(Ax,Ok) be a CI-graph of a clustering (Ax,Ok) at
point of time t≤x. Let Hx be a subgraph of Γ (Gx) with V (Hx) = V (Gx). Now
consider Gx′ = Gx′(Ax′ ,Ok) for some point of time t≤x′ with x′ > x. Let Hx′

be the graph that arises from Hx by performing the same contractions that are
made between Gx and Gx′ . Then V (Gx′) = V (Hx′) and moreover the weight
of any edge (v, w) in Hx′ is an upper bound for the distance of the clusters
corresponding to v and w.

2.4 Analysis of H at Different Time Steps

The analysis of CL proceeds as follows. Let Gx be the CI-graph for a fixed point
of time t≤x. Assume that there exists a special subgraph Hx of Γ (Gx) satisfying
the properties

i) V (Hx) = V (Gx),
ii) |E(Hx)| ≤ k,
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iii) and no vertex in Hx is isolated (i.e., every vertex in Hx has at least one
incident edge).

We will prove that at a certain point of time tc, depending on the maximum
edge weight in Hx, we have that |V (Hc)| ≤ |E(Hc)|. Because of property i) and
Lemma 6 we conclude V (Hc) = V (Gc). Together with property ii) we obtain
|V (Gc)| = |V (Hc)| ≤ |E(Hc)| = |E(Hx)| ≤ k and thus CL terminated. In the
following we denote Hx′ by H if the point of time is clear from context or if a
statement holds for all Hx′ with x′ ≥ x.

First note that H is a multi-graph. Multi-graphs have the crucial property
that a connected component has at least as many edges as vertices if and only
if a cycle exists (where a loop is considered as a special case of a cycle).

Definition 7. We call a connected component of H active if the component is
a tree. Otherwise we call it inactive.

Observation 8. If Hx′ has no active connected component, then CL has ter-
minated at t≤x′ .

Leaves of H and their neighbors have a key role in the analysis of the algo-
rithm. We will show that between certain time steps either a leaf or its unique
neighbor is merged. Define dn as an upper bound for the distance between the
clusters corresponding to any pair of adjacent vertices v1 and v2 in Hx. Be-
cause of Lemma 6 we have that dn is smaller or equal to the maximum edge
weight in H at any point of time. We use that fact later when choosing the
subgraph Hx. We analyze time steps t≤x+i(dn+x) for the diameter k-clustering
problem and t≤x+i(dn+2x) for the k-center and discrete k-center problem ac-
cording to Lemma 1 and denote them by ti. In accordance to that, we define
xi = x + i(dn + x) for CLdiam and xi = x + i(dn + 2x) for CLrad and CLdrad,
respectively.

Definition 9. We call a vertex p ∈ H in an active connected component of Ha
leaf-parent if p is the neighbor of some leaf and has at least degree 2.

At the beginning of our analysis at t≤x there does not necessarily exist a
leaf-parent in each active component. This follows because the smallest possible
active component consists of two connected vertices and is the only possibility
of an active component without a leaf-parent (remember that in H there exist
no isolated vertices by property iii); any connected component that consists of a
single vertex must contain a loop and is hence inactive). Analogous to dimension
one we show that at point of time t1 for each active connected component by
CL either one vertex was merged with a vertex from another component but
thereby some vertex with degree 2 is built or two vertices from one component
were merged. The latter means that a cycle was built and the component is no
longer active. The following lemma ensures that at a certain point of time there
exists a leaf-parent in each active component.
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Lemma 10 (?). Each active component C of H containing a vertex v of degree 2
contains at least one leaf-parent p. In particular Hx1

contains at least one leaf-
parent in each active component.

The proof of Lemma 10 gives a hint that we have in general at least two leaf-
parents in each component while components with exactly one leaf-parent are
of a special form. We will use this structure later on to prove that if each active
component contains at least 2 leaf-parents the algorithm terminates. Therefore
we need some statement counting the number of remaining contractions de-
pending on the number of leaf-parents. First, we need some statement how often
contraction steps are performed in each component.

Lemma 11 (?). Let ` be some leaf in Hxi
at an arbitrary point of time ti with

i ≥ 0. Then the leaf ` is also contained in Hx0
and it is not contracted between t0

and ti. Moreover between two steps of time ti and ti+1 where i ∈ N0 we have that
for each leaf ` either the leaf ` or its corresponding leaf-parent p` is contracted.

We denote the number of leaf-parents of H at time ti for a connected compo-
nent C by n`p(C). Since in each active component the number of leaf-parents is
at most the number of leaves, we may conclude that the algorithm performs at

least n`p/2 contractions between ti and ti+1 where n`p =
r∑

i=1

n`p(Ci) is the sum

over the number of leaf-parents in the active connected components. Now we
count the number of leaf-parents contained in one active connected component.
The idea is that if each active component contains at least two leaf-parents then
we have at least as many contractions as active components and can conclude
that the algorithm will terminate. Therefore we show that at a certain point of
time every active component must contain at least two leaf-parents. First we
will show that if the number of leaf-parents in an active component is at least
two, then after contraction the number of leaf-parents does not decrease below
two.

Lemma 12 (?). Assume that two vertices v1 and v2 from two different compo-
nents C1 and C2 that contain each at least one leaf-parent are contracted in H. If
the resulting component C = C1 ∪C2 is active then C has at least as many leaf-
parents as the maximum of C1 and C2, i.e., n`p(C) ≥ max{n`p(C1), n`p(C2)}.

We may conclude that the only possibility to obtain an active component
containing just one leaf-parent is that we contract vertices from two different
components which contain only one leaf-parent. In particular for two such com-
ponents C1 and C2 we have to contract the leaf-parents p1 and p2. If another
vertex and therefore a leaf of C1 is contracted another component C1 ∪C2 with
at least two leaf-parents is built.

Lemma 13 (?). For CLdiam each active component contains at least 2 leaf-
parents at point of time t3. For CLrad each active component contains at least 2
leaf-parents at t2. For CLdrad each active component contains at least 2 leaf-
parents at t6.
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It remains to prove that CL terminates if each component contains at least
two leaf-parents.

Lemma 14 (?). If at ti each active component of Hxi contains at least two
leaf-parents then CL has terminated at ti+1.

3 Approximation Factor of CL in the Case d ≥ 2

In this section we combine our analysis with the result of Ackermann et al. [1]
for the first phase of CL (i.e., the steps until 2k clusters are left) in order to
prove the main theorem. From the analysis of Ackermann et al. it follows that
there is a function κ such that for x = κ(d) the CI-graph Gx contains at most 2k
vertices. We will analyze the last k steps of CL more carefully. We consider the
completion Γ (Gx) of Gx and assume that it is connected. This is not necessarily
the case but we will see later that this assumption is without loss of generality
because our analysis can be applied to each connected component separately. In
fact, the result of Ackermann et al. implies that for each connected component
of Gx the number of vertices is at most twice the number of edges.

3.1 CI-Graphs with at most 2k Vertices

Let Hx be a subgraph of Γ (Gx) with k edges and at most 2k vertices such
that Hx fulfills the properties i)-iii). The goal is to find such a subgraph Hx

whose maximum edge weight is small. Note that properties i), ii), and iii) imply
|V (Gx)| = |V (Hx)| ≤ 2|E(Hx)| ≤ 2k = 2|E(Gx)|, which means |V (Gx)| ≤
2|E(Gx)| is a necessary property of Gx to find a subgraph Hx.

We will prove that we can always find a subgraph Hx of Gx that satisfies
properties i)-iii) and has the following additional property iv): for each edge e′ =
(v, w) ∈ E(Hx) the vertices v and w have distance at most 2 in Gx, i.e., either
there is an edge e ∈ E(Gx) with {v, w} ⊆ e or there are two edges ev ∈ E(Gx)
and ew ∈ E(Gx) with v ∈ ev, w ∈ ew, and v ∩ w 6= ∅.

Using this we will prove that CL terminates at time t≤O(x) if for each con-
nected component C of the CI-graph Gx we have that |V (C)| ≤ 2|E(C)|.

In order to find a subgraph Hx of Γ (Gx) that satisfies properties i)-iv) we
let T be a spanning tree of Γ (Gx) that uses only edges of weight 1. Such a
spanning tree is guaranteed to exist because we assumed Gx to be connected.
Such a spanning tree satisfies all properties except for ii) because the number of
edges in T is |V (Gx)| − 1 and |V (Gx)| can only be bounded by 2k.

However, any perfect matching in the spanning tree T is a subgraph H that
satisfies the properties i)-iv). If T does not contain a perfect matching, we show
how to find a perfect 2-matching (according to the following definition).

Definition 15. An α-matching in a graph G is a matching M in the complete
graph K|V (G)| with |V (G)| vertices such that for each matching edge (v, w) ∈M
the distance of v and w in G is at most α. Moreover we call an α-matching
perfect if M is a perfect matching in K|V (G)|.
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Lemma 16 (?). Each tree T with an even number |V (T )| of vertices has a
perfect 2-matching.

Construction of Hx We construct a graph Hx that satisfies the properties
i), ii), iii), and iv) as follows. First we compute an arbitrary spanning tree T
of Γ (Gx) that uses only edges of weight 1. If |V (Gx)| = |V (Hx)| is even, then
the graph Hx is chosen as a perfect 2-matching of T . Then the properties i),
iii), and iv) are satisfied by construction and property ii) is satisfied because
of |E(Hx)| = |V (Hx)|/2 ≤ k. If |V (Gx)| is odd, we choose some leaf v from
the spanning tree T . Then we find a perfect 2-matching M in T \ {v}. Since
|V (Gx)| ≤ 2|E(Gx)| we have that the matching contains at most |E(Gx)| − 1
edges. Thus we set Hx to M and may add the edge from T that is incident to v
to Hx such that property iii) becomes true.

Now we have a graph Hx fulfilling properties i), ii), iii), and iv). Property
iv) and Lemma 6 imply that dn ≤ 2 + x for the objective function diam and
dn ≤ 2 + 2x for the objective functions rad and drad. We conclude with the
following theorem.

Theorem 17 (?). Assume that the CI-graph Gx is connected and contains k
edges and at most 2k vertices at some point of time t≤x. Then CLdiam computes

a 9x+ 8 approximation for the diameter k-clustering problem. Moreover CLrad

computes a 13x+6 approximation for the k-center problem and CLdrad computes
a 25x+ 12 approximation for the discrete k-center problem.

3.2 Approximation Factor of CL

Now for each version of the algorithm CLdiam, CLrad, and CLdrad we combine
our analysis with the special result of [1] corresponding to each of the methods.
We state the following lemma from [1] deriving an upper bound for a point of
time x where |V (Gx)| ≤ 2k.

Lemma 18 ([1]). Let P ⊆ Rd be finite. Then, for all k ∈ N with 2k ≤ |P |, the
partition A of P into 2k clusters computed by CLdrad satisfies

max
a∈A

drad(a) < 20d · drad(Odrad
k ).

Combining this result with Theorem 17 yields the following theorem.

Theorem 19 (?). For d ∈ N and a finite point set P ⊆ Rd the algorithm
CLdrad computes an O(d)-approximation for the discrete k-center problem.

Lemma 20 ([1]). Let P ⊆ Rd be finite. Then, for all k ∈ N with 2k ≤ |P |, the
partition A of P into 2k clusters computed by CLrad satisfies

max
a∈A

rad(a) < 24d · e24d · rad(Orad
k ).

Combining this result with Theorem 17 yields the following theorem.
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Theorem 21. For d ∈ N and a finite point set P ⊆ Rd the algorithm CLrad

computes an eO(d)-approximation for the k-center problem.

Lemma 22 ([1]). Let P ⊆ Rd be finite. Then, for all k ∈ N with 2k ≤ |P |, the
partition A of P into 2k clusters computed by CLdiam satisfies

max
a∈A

diam(a) < 23(42d)
d

(28d+ 6) · diam(Odiam
k ).

Analogously to CLdrad and CLrad we can conclude the following theorem.

Theorem 23. For d ∈ N and a finite point set P ⊆ Rd the algorithm CLdiam

computes a 2O(d)d-approximation for the diameter k-clustering problem.

4 Conclusions

We have shown that the popular complete-linkage method computes O(1)-ap-
proximate hierarchical clusterings for the diameter k-clustering problem and
the (discrete) k-center problem, assuming that d is a constant. For this it was
sufficient to improve the second phase of the analysis by Ackermann et al. [1]
(i.e., the last k merge operations). We used their results about the first phase
to obtain our results. It is a very interesting question if the dependence on the
dimension can be improved in the first phase. If we express the known lower
bound of Ackermann et al. [1] in terms of d then it becomes Ω( p

√
log d). Hence,

in terms of d, there is still a huge gap between the known upper and lower
bounds. Another interesting question is whether the upper bound of O(log k)
holds also for metrics that are not induced by norms.
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