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Abstract— We prove that the number of Pareto-optimal so-
lutions in any multiobjective binary optimization problem with
a finite number of linear objective functions is polynomial in
the model of smoothed analysis. This resolves a conjecture of
René Beier [5]. Moreover, we give polynomial bounds on all
finite moments of the number of Pareto-optimal solutions, which
yields the first non-trivial concentration bound for this quantity.
Using our new technique, we give a complete characterization of
polynomial smoothed complexity for binary optimization problems,
which strengthens an earlier result due to Beier and Vöcking [8].
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1. INTRODUCTION

The decisions faced by economic entities are often very
complex and involve several, usually conflicting, objectives.
This has led to a tremendous amount of research in the
area of multiobjective optimization, considering constrained
optimization problems with several objective functions of
the following form:

minimize w1(x) , . . . , minimize wd(x)
subject to x in the feasible region S.

A well-established heuristic approach for dealing with
such problems is to generate the set of Pareto-optimal
solutions. These are the solutions that are not dominated
by other solutions, that is to say, a solution is Pareto-
optimal if there does not exist another solution that is
simultaneously better in all criteria. In practice, often the
set of Pareto-optimal solutions, or Pareto set for short, is
generated in order to filter out unreasonable trade-offs. Then
some possibly human-assisted post-processing is applied to
make a choice among the Pareto-optimal solutions.

Clearly this approach is only feasible if few solutions
are Pareto-optimal. Otherwise, generating the Pareto set
is too costly and it provides not enough guidance to the
decision-maker. In many applications, it has been observed
that typically the Pareto set is indeed small. A theoretical
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explanation for this is, however, still lacking. This is mostly
due to the fact that, in the worst case, almost every problem
with more than one objective can have an exponentially large
Pareto set. So in order to find a rigorous explanation for the
practical observations, one has to deviate from the classical
worst-case perspective.

That is why we study multiobjective optimization prob-
lems in the framework of smoothed analysis. This frame-
work, originally introduced to explain the practical success
of the simplex method [21], is based on a semi-random input
model, in which an adversary specifies an arbitrary input that
is subsequently slightly perturbed at random. This model
can be viewed as a worst-case analysis with a less pow-
erful adversary; the small amount of randomness rules out
pathological worst-case instances that are rarely observed
in practice but dominate the worst-case analysis. After its
invention in 2001, smoothed analysis has been successfully
applied in a variety of different contexts, e.g., to explain the
practical success of local search methods [3], [13], heuristics
for the knapsack problem [7], online algorithms [4], and
clustering [2].

1.1. Multiobjective Binary Optimization & Beier’s Conjec-
ture

We consider a very broad class of multiobjective opti-
mization problems, namely those that can be formulated as
binary optimization problems with linear objective functions.
To be precise, we study problems whose instances have the
following form: there are an arbitrary set S ⊆ {0, 1}n of fea-
sible solutions and d linear objective functions wi : S → R
of the form wi(x) = wi1x1 + · · · + winxn, which are to
be minimized over S. As the set S can encode arbitrary
combinatorial structures, our model covers a wide variety
of optimization problems from mathematical programming,
network design, and scheduling. For a given graph, the set
S can encode, for example, (the incidence vectors of) all
spanning trees, paths between two nodes, or Hamiltonian
cycles. Hence, well-studied problems like the multiobjec-
tive spanning tree, shortest path, and traveling salesperson
problem can naturally be formulated in our model.

As mentioned above, if the coefficients in the objective
functions can be chosen by an adversary, then for almost



every problem with more than one objective, the size of the
Pareto set is exponential. But what happens if the adversary
is less powerful and the coefficients are subject to a small
amount of random noise? Let us assume, for example, that
independent Gaussians with mean 0 and small standard
deviation are added to the adversarial coefficients. In practice
this randomness can stem, for example, from measurement
errors or numerical imprecision. For the bicriteria case, it
has been shown that the expected number of Pareto-optimal
solutions is polynomial in this smoothed model, no matter
how the set S and the adversarial coefficients are chosen [7].

In his Ph.D. thesis, René Beier conjectures that this result
extends to multiobjective optimization [5]: for any constant
number of linear objective functions, the number of Pareto-
optimal solutions is bounded by a polynomial in the model
of smoothed analysis.

1.2. Our Contribution

In this paper, we resolve Beier’s conjecture affirmatively.
Our proof is based on a structural property of optimization
problems that we dubbed generalized loser gap and that
measures how many Pareto-optimal solutions can have sim-
ilar objective values. Roughly speaking, we show that in
semi-random instances of optimization problems, with high
probability only a constant number of Pareto-optimal solu-
tions can have objective values that are very close to each
other. This implies that in expectation only a polynomial
number of Pareto-optimal solutions fit into the hypercube
[−1, 1]d.

Our new technique shows not only that the expected num-
ber of Pareto-optimal solutions is polynomially bounded,
but also that every constant moment is bounded by a
polynomial. This is important because many heuristics for
generating the Pareto set have (at least for more than two
objectives) a running time that depends quadratically on
the number of Pareto-optimal solutions (cf., for example,
[18] for the multiobjective knapsack problem or [9] for
the multiobjective shortest path problem). The bound on
the constant moments implies that these algorithms have
expected polynomial running time, which does not follow
from a mere bound on the expected number. Additionally,
it also gives the first non-trivial concentration bound on the
number of Pareto-optimal solutions for bi- and multiobjec-
tive optimization problems, showing that deviations from
the expected value are much more unlikely than a simple
application of Markov’s inequality would suggest.

Finally, using our new techniques, we give a complete
characterization of polynomial smoothed complexity for the
family of binary optimization problems. This strengthens an
earlier result of Beier and Vöcking [8]. They show that a
single-criterion binary optimization problem has polynomial
smoothed complexity if and only if it can be solved in
randomized pseudo-polynomial time in the worst case. It
is, for example, well-known that the knapsack problem can

be solved in time polynomial in the input size and the largest
profit. Hence, Beier and Vöcking’s characterization implies
that it has polynomial smoothed complexity if the profits
are perturbed. On the other hand, the traveling salesperson
problem is strongly NP-hard, which implies according to the
characterization that it does not have polynomial smoothed
complexity if the edge lengths are perturbed, unless ZPP =
NP.

However, Beier and Vöcking’s characterization uses a
weaker notion of polynomial smoothed complexity than
originally proposed in [21]. Instead of showing that the
expected running time in the smoothed model is polynomial,
their theorem states only that with reasonable probability the
running time is polynomial. We present a new algorithmic
scheme to extend the characterization to the original notion
of polynomial smoothed complexity. In particular, this im-
plies that every problem that can be solved in randomized
pseudo-polynomial time in the worst case can be solved
in expected polynomial time on smoothed instances. This
shows that, unlike in average-case complexity theory, the
notion of expected polynomial running time is surprisingly
robust against changes of the machine model in the model
of smoothed analysis.

1.3. Related Work

There exists a vast body of literature that focuses on
multiobjective optimization. In particular, many algorithms
for generating the Pareto set of various optimization prob-
lems such as the (bounded) knapsack problem [15], [18],
the multi-criteria shortest path problem [9], [14], [20], and
the multi-criteria network flow problem [11], [17] have been
proposed. Since for all these problems the number of Pareto-
optimal solutions can be exponential (see, e.g., [12]), none of
these algorithms runs in polynomial time in the worst case.
In practice, however, generating the Pareto set is tractable
in many situations. For instance, Müller-Hannemann and
Weihe [16] study experimentally the number of Pareto-
optimal solutions in multi-criteria shortest path problems.
They consider examples that arise from computing the set
of best train connections (in view of travel time, fare,
and number of train changes) and conclude that in this
application scenario generating the complete Pareto set is
tractable even for large instances.

The special case of our model for two objective functions
has been studied by Beier and Vöcking [7]. They show that
the expected number of Pareto-optimal solutions is bounded
from above by O(n4φ) and from below by Ω(n2), where φ is
a parameter measuring the amount of randomness, which we
will define formally in the next section. Later their analysis
has been extended to integer optimization problems and
the upper bound on the expected number of Pareto-optimal
solutions has been improved to O(n2φ) [6]. Ackermann
et al. [1] consider bicriteria optimization problems with
two semi-random objective functions. They show that it is



unlikely that there exist two Pareto-optimal solutions that
have almost the same value in one of the objectives.

Another way of coping with Pareto sets of exponential
size is to compute approximate Pareto sets. A solution x is
ε-dominated by another solution x′ if wi(x′)/wi(x) ≤ 1+ε
for all i ∈ {1, . . . , d}. A set Pε is an ε-approximation
of a Pareto set P if for any solution x ∈ P , there is a
solution x′ ∈ Pε that ε-dominates it. Papadimitriou and
Yannakakis [19] show that for any Pareto set P , there is an ε-
approximation of P with polynomially (in the input size and
1/ε) many points. They also give sufficient and necessary
conditions for the existence of an FPTAS for computing
approximate Pareto sets of multi-criteria optimization prob-
lems. Vassilvitskii and Yannakakis [22] and Diakonikolas
and Yannakakis [10] show how to compute ε-approximate
Pareto sets of small size.

In the following section, we will introduce the model
that we study formally and in its full generality. Then, in
Section 3, we will explain our techniques and introduce
the notion of generalized loser gap. In Sections 4 and 5,
we apply the generalized loser gap to bound the smoothed
number of Pareto-optimal solutions and their moments. In
the subsequent sections, we discuss some extensions and
applications of our results.

2. MODEL AND NOTATIONS

Let us begin with some notation: For n ∈ N, we denote
by [n] the set {1, . . . , n}. For a vector x ∈ Rn and i ∈ [n],
we denote by xi the i-th component of x. Furthermore for
I ⊆ [n], we denote by xI the |I|-dimensional subvector
obtained from x by removing all components that do not
belong to I . We denote by log the logarithm to base 2.

We consider instances of d-dimensional combinatorial
optimization problems that can be written in the following
form: There is an arbitrary set S ⊆ Zn of feasible solutions,
where Z ⊆ Z denotes an arbitrary finite set of integers.
That is, the feasible region is defined to be a set of n-
dimensional integer vectors with entries from Z. For most
of the paper, we consider the binary case Z = {0, 1} to keep
the presentation simple. Only at the end in Section 6.3, we
discuss extensions of our results to the general integer case.
Furthermore, there are d objective functions wi : S → R that
associate d values with each feasible solution. For i ∈ [d]
and x ∈ S, we will refer to wi(x) as the i-th weight of
solution x, and for the sake of simplicity, we assume that all
weights are to be minimized, even though this assumption is
not important for our analysis. While wd can be an arbitrary
function that assigns a unique value to each solution in S , we
assume that w1, . . . , wd−1 are linear functions of the form
wi(x) = wi1x1 + · · ·+winxn. Slightly abusing notation, we
will use wi not only to refer to the function wi : S → R but
also to the vector (wi1, . . . , w

i
n) of coefficients.

We say that a solution x ∈ S dominates another solution
y ∈ S if, for every i ∈ [d], wi(x) ≤ wi(y), and for one i ∈

[d], wi(x) < wi(y). A solution x ∈ S that is not dominated
by any other solution is called Pareto-optimal, and we denote
by P ⊆ S the set of Pareto-optimal solutions.

In the semi-random input model that we study, the set S
of feasible solutions and the last objective function wd are
chosen by an adversary. The coefficients wij for i ∈ [d− 1]
and j ∈ [n] are random variables drawn independently
according to densities f ij : [−1, 1] → [0, φ] for some pa-
rameter φ ≥ 1. Instead of determining these coefficients
exactly, the adversary can only choose the density functions
f ij . This gives him slightly more power than the two-
step model in which he first chooses coefficients that are
subsequently perturbed at random. Intuitively, the parameter
φ measures the degree of randomness. The larger φ is,
the more concentrated the distributions of the coefficients
can be. For instance, the adversary can choose for each
coefficient an interval of length 1/φ in which it is uniformly
distributed. This shows that if φ approaches infinity, the
semi-random model approaches the worst-case model. On
the other hand, if φ is constant, then our model is close to a
uniform average-case analysis. We will state all our bounds
in terms of the number of variables n and the maximal
density φ.

The densities are defined on [−1, 1]. This is not a severe
restriction as all distributions with a bounded domain are
covered by this model as they can be shifted and scaled.
Notice, however, that scaling a larger domain to [−1, 1]
increases the maximum density φ. Furthermore, our model
also covers distributions with exponentially decaying tails
like Gaussians and exponential distributions because such
distributions take with probability exponentially close to
one only values from a bounded domain of polynomial
size. For Gaussian distributions, the maximal density φ is,
for example, proportional to the reciprocal of the standard
deviation σ.

We denote by qd the number of Pareto-optimal solutions
and our goal is to bound the expected value of qcd for c ≥ 1
from above. We assume that the set S, the objective function
wd, and the densities f ij are chosen by an adversary so as
to maximize the expected value of qcd.

3. GENERALIZED LOSER GAP

For single-criterion optimization problems, Beier and
Vöcking [8] introduced the notions of winner gap and loser
gap. These are structural properties that measure how robust
instances of optimization problems are against small changes
of the coefficients in the objective function or in one of
the constraints. Beier et al. [6] observe that the loser gap is
closely related to the number of Pareto-optimal solutions and
obtain, based on this observation, improved bounds for the
expected number of Pareto-optimal solutions. In this section,
we present a more general notion of loser gap that allows
us to derive not only polynomial bounds for the expected



number of Pareto-optimal solutions but also for all constant
moments of their distribution.

3.1. Loser Gap

In order to define the loser gap, let us consider a bicriteria
optimization problem with an arbitrary set S ⊆ {0, 1}n of
feasible solutions, an arbitrary weight function w2, and a
linear weight function w1. We transform this into a single-
criterion problem by putting a constraint on w1, leading to
the following problem: find a solution x ∈ S that mini-
mizes the second weight w2(x) under the linear constraint
w1(x) = w1

1x1 + · · ·+w1
nxn ≤ t for some threshold t ∈ R.

We will refer to the optimal solution to this problem as the
winner, denoted by x?. Moreover, we call a solution x ∈ S
a loser if it has a smaller second weight than the winner,
that is, w2(x) < w2(x?). By definition of the winner x?, all
losers must have a first weight of more than t, that is, they
are cut off by the linear constraint. We denote by L the set
of all losers. If there does not exist a solution with a first
weight of at most t, then L is defined to be S. Now the loser
gap Λ(t) is defined to be the distance of the loser set from
the threshold t, that is, Λ(t) = min{w1(x) | x ∈ L} − t.

Intuitively, the loser gap measures how robust the in-
stance is with respect to small changes of the coefficients
w1

1, . . . , w
1
n. This is exploited in [8] in the following way:

If, for b ∈ N, we round down each coefficient w1
i after

the b-th bit after the binary point, then we obtain a new
set of coefficients w̃1

i with w̃1
i ∈ [w1

i − 2b, w1
i ]. Let x̃?

denote the solution x ∈ S that minimizes the second weight
w2(x) under the constraint w̃1

1x1 + · · · + w̃1
nxn ≤ t. As

we round the coefficients down, the optimal solution x?

is also feasible with respect to the rounded coefficients. It
can, however, happen that an initially unfeasible solution
x ∈ S with w1(x) > t becomes feasible due to the
rounding. But observe that as long as all losers in L stay
infeasible, the optimal solution does not change, that is, if
w̃1

1x1 + · · · + w̃1
nxn > t for all x ∈ L, then x? = x̃?.

As every coefficient is changed by the rounding by at most
2−b, the first weight of every solution is changed by at
most n2−b by the rounding. Hence, if the loser gap Λ(t) is
larger than n2−b, then rounding does not change the optimal
solution. In that case, one can compute the optimal solution
x? by rounding all coefficients and solving the rounded
instance, which, depending on b and the problem, can be
much more efficient than solving the original unrounded
instance directly.

Now what has this to do with Pareto-optimal solu-
tions? The crucial observation is that the loser x̂ =
argmin{w1(x) | x ∈ L} with the smallest first weight is
a Pareto-optimal solution, and, even more important, there
cannot be a Pareto-optimal solution with a first weight
strictly between t and the weight w1(x̂) of the minimal
loser. Assume for contradiction that there is a Pareto-optimal
solution x with a first weight between t and w1(x̂). As

x is not dominated by the winner x?, it must have a
second weight smaller than w2(x?), which renders it a loser.
However, this contradicts the choice of x̂ as the loser with
the smallest first weight. Hence, if the loser gap Λ(t) is
at least ε, then no Pareto-optimal solution can have a first
weight in (t, t+ε). Beier et al. [6] essentially prove that for
every t and ε ≥ 0, the probability of Λ(t) ≤ ε is bounded
from above by εnφ, which shows that it is, for every fixed
value t, unlikely to have a Pareto-optimal solution with a
first weight close to t.

Beier et al. [6] count the Pareto-optimal solutions roughly
as follows: First, they divide the interval [−n, n], which con-
tains the first weight of every solution x ∈ S, into a certain
number T of subintervals of length 2n/T . For i ∈ [T ], let tTi
denote the i-th threshold, that is, tTi = −n+2(i−1)n/T . If
the interval length 2n/T is so small that none of the intervals
contains the first weights of two different solutions from
S, then the number of Pareto-optimal solutions equals the
number of intervals [tTi , t

T
i+1] that contain a Pareto-optimal

solution. Hence, disregarding some minor technicalities and
using the bound on the loser gap stated above, the expected
number of Pareto-optimal solutions can be bounded from
above by

lim
T→∞

T∑
i=1

Pr
[
∃x ∈ P : w1(x) ∈ [tTi , t

T
i+1]

]
=

lim
T→∞

T∑
i=1

Pr
[
Λ(tTi ) ≤ 2n

T

]
≤ lim
T→∞

T∑
i=1

2n2φ

T
= O(n2φ).

3.2. Generalized Loser Gap

In this section, we generalize the notion of loser gap. The
setup is exactly the same as in the previous section, but
instead of just looking at the loser x̂ that has the smallest
distance to the threshold t, we define for every u ∈ N, the
u-th loser gap Λ(t, u) as the distance of the first u solutions
in L from the threshold t, i.e., Λ(t, u) = min{s ∈ R |
there exist u different x ∈ L with w1(x) ≤ s} − t.

Naturally, for increasing values of u, the probability that
the u-th loser gap is small should decrease, but a priori it is
not clear how much we gain by considering more than one
loser. The following lemma answers this question.

Lemma 3.1. For every ε ≥ 0, z ∈ N, and t ∈ R,

Pr
[
Λ(t, 2z−1) ≤ ε

]
≤ 2z

2+znzφzεz−1.

Proof: Let u = 2z−1 and let x1, . . . , xu denote the
losers from L with the u smallest first weights. Then we
can write the u-th loser gap Λ(t, u) as maxi∈[u] w

1(xi)− t.
In Lemma 3.2 we prove that the vectors x?, x1, . . . , xu must
have rank at least z and that we can find a set I ⊆ [n] of
z indices such that the subvectors x?I , x

1
I , . . . , x

u
I have rank

z. We assume without loss of generality that the vectors
x?I , x

1
I , . . . , x

z−1
I have rank z and that xi = argmin{w1(x) |

x ∈ L, xI = xiI}. Then Λ(t, u) ≥ maxi∈[z−1] w
1(xi)− t.



For every set I ⊆ [n] of z indices and every set
Y = {y?, y1, . . . , yz−1} ⊆ {0, 1}z of linearly independent
vectors, we define a random indicator variable ΛI,Y ∈
{0, 1} below. These random variables have the property that
Λ(t, u) ≤ ε can only occur if ΛI,Y = 1 for at least one
pair of I and Y . We can thus analyze the random variables
ΛI,Y and conclude the desired result for Λ(t, u) by a union
bound.

For given I and Y , we first define x?I,Y to be the winner
among the solutions that coincide with y? in the indices
from I , that is, x?I,Y = argmin{w2(x) | x ∈ S, w1(x) ≤
t, xI = y?}. We define the corresponding set of losers as
L(I, Y ) = {x ∈ S | w2(x) < w2(x?I,Y )}. If no winner x?I,Y
exists, then L(I, Y ) is defined to be S. The first important
observation is that x?I,Y coincides with the true winner x?

if y? = x?I . Hence, in this case, also L(I, Y ) coincides with
the loser set L.

Now we define, for every i ∈ [z − 1], a loser xiI,Y =
argmin{w1(x) | x ∈ L(I, Y ), xI = yi} and the correspond-
ing indicator variable as

ΛI,Y =

{
1 if ∀i ∈ [z − 1] : w1(xiI,Y ) ∈ (t, t+ ε],
0 otherwise.

Also for the losers the crucial observation is that there is
a choice for I and Y such that xiI,Y coincides with xi for
every i ∈ [z − 1]. We just need to choose I so that the
vectors x?I , x

1
I , . . . , x

z−1
I have rank z, y? = x?I , and yi = xiI

for every i ∈ [z − 1]. As mentioned above, the existence of
such a choice is guaranteed by Lemma 3.2. The loser gap
Λ(t, u) is at most ε if and only if, for this choice of I and
Y , the random variable ΛI,Y takes the value 1.

Let us fix a set I and a set of vectors Y . To analyze the
random variable ΛI,Y , we let an adversary fix all random
variables w1

i with i /∈ I , that is, we use only the randomness
of the variables w1

i with i ∈ I . Once also the linear
combination w1

I · y? of these variables is fixed, the winner
x?I,Y and hence also the set L(I, Y ) are determined. This
implies that the identities of all solutions xiI,Y are fixed as
the (yet unrevealed) weights in w1

I affect the first weight of
all solutions x with xI = yi in the same way. Hence, after
the weights w1

i with i /∈ I and the linear combination w1
I ·y?

are fixed, there is a fixed interval (t(i), t(i) + ε] of length ε
that the linear combination w1

I · yi has to fall into in order
for w1(xiI,Y ) to be in (t, t+ ε].

Hence, letting an adversary fix all weights w1
i with i /∈ I

leaves us with a special case of the scenario analyzed in
Lemma 3.3, which yields the following bound:

Pr[ΛI,Y = 1] ≤ Pr
[
∀i ∈ [z − 1] : w1(xiI,Y ) ∈ (t, t+ ε]

]
= Pr

[
∀i ∈ [z − 1] : w1

I · yi ∈ (t(i), t(i) + ε]
]
≤ 2zφzεz−1,

where t(i) is fixed once w1
I · y? is fixed. Now we apply

a union bound over all possible choices of I and Y ,

yielding Pr[Λ(t, u) ≤ ε] ≤ Pr[∃I, Y : ΛI,Y = 1] ≤ 2z
2
nz ·

2zφzεz−1 ≤ 2z
2+znzφzεz−1.

Due to space limitations, the proofs of the following two
lemmas are deferred to the full version of this paper.

Lemma 3.2. For u ∈ N, let x1, . . . , xu be arbitrary distinct
vectors from {0, 1}n. Then the rank r of these vectors when
considered as elements of the usual vector space over Rn is
at least dlog ue. Furthermore, there exists a set I ⊆ [n] of
r indices such that the subvectors x1

I , . . . , x
u
I have rank r.

Lemma 3.3. Let X1, . . . , Xr be independent random vari-
ables, and let fi : [−1, 1] → [0, φ] denote the density
of Xi. Furthermore let a1, . . . , ar ∈ {0, 1}r be linearly
independent vectors. Let k ≤ r and assume that for every
i ∈ {r − k + 1, . . . , r} there is an arbitrary function
gi : Ri−1 → R given. Denote by F(ε) the event that for
every i ∈ {r − k + 1, . . . , r}, the random variable ai · X
takes a value in the interval [gi(a1 ·X, . . . , ai−1 ·X), gi(a1 ·
X, . . . , ai−1 ·X) + ε], where X = (X1, . . . , Xr). Then, for
every ε ≥ 0, Pr[F(ε)] ≤ (2r)r−kφrεk.

4. BICRITERIA OPTIMIZATION

In this section, we consider problems with two objective
functions. Let us stress that it suffices if one of the objective
functions is perturbed. According to our model, w2 : S → R
can be an arbitrary function that assigns a unique adversarial
value to each solution. Only w1 needs to be linear with
perturbed coefficients. The proof of the following theorem is
based on the result on the generalized loser gap presented in
Lemma 3.1. We know that the first weight of every solution
lies in the interval [−n, n]. As in the previous analysis [6],
we divide this interval into a certain number of subintervals.
We then use the generalized loser gap to argue that each
of these subintervals can contain only a small number of
Pareto-optimal solutions.

Theorem 4.1. For every c ∈
[
1,
√

log(n2φ)
]

and every
sufficiently large value of n2φ,

E[qc2] ≤
(
n2φ

)c(1+ 5√
log(n2φ)

)
= (n2φ)c(1+o(1)).

In [7], a lower bound of Ω(n2) on the expected number of
Pareto-optimal solutions is proven. This immediately implies
a lower bound of Ω(n2c) on the expected value of qc2 for
every c ≥ 1. Hence, our upper bound in Theorem 4.1 almost
matches this lower bounds in terms of n, which gives rise
to the following concentration result.

Corollary 4.2. Let L :=
√

log(n2φ) For every c ∈
[1, L], every sufficiently large value of n2φ, and β ≥ 1,
Pr
[
qc2 ≥ β ·

(
n2φ

)c(1+5/L)
]
≤ β−L/c.

Proof: We apply Markov’s inequality to the L-th mo-
ment of q2: Pr

[
qL2 ≥ βL/c ·

(
n2φ

)L(1+5/L)
]
≤ β−L/c.



Proof of Theorem 4.1: As we assume that the weights
w1
i take only values in [−1, 1], the first weight of every

solution lies in the interval [−n, n]. We partition this interval
into T subintervals of length 2n/T for some T ∈ N to be
chosen later. For i ∈ [T ], let ti denote the i-th threshold, i.e.,
ti = −n+ 2(i− 1)n/T . Let x?i denote the solution from S
that minimizes the second weight w2(x) under the constraint
w1(x) ≤ ti. Let Li denote the set of losers as defined in
Section 3.2, that is, Li is the set of those solutions x ∈ S
with a smaller second weight than x?i . If there is no solution
with w1(x) ≤ ti, then we define Li to be S.

Observe that all solutions in Li must have a first weight
larger than ti. In particular, all Pareto-optimal solutions with
a first weight of more than ti must belong to the set Li
as they were otherwise dominated by x?i . Hence, in order
to obtain an upper bound on the number of Pareto-optimal
solutions, we can count for every i ∈ [T ], how many losers
from Li have a first weight between ti and ti+1, and add
up these counts. This implies that the number q2 of Pareto-
optimal solutions can only exceed a given number t1/c if
for one i ∈ [T ], the (t1/c/T )-th loser gap Λ(ti, t1/c/T ) is
at most 2n/T . For t, z ∈ N and T = t

1
c /2z−1, we obtain,

by Lemma 3.3,

Pr
[
q2 ≥ t

1
c

]
≤

T∑
i=1

Pr

[
Λ

(
ti,
t

1
c

T

)
≤ 2n

T

]

≤
T∑
i=1

Pr
[
Λ
(
ti, 2z−1

)
≤ 2n

T

]
≤ 22z2n2z−1φz

t
z−2
c

.

For z ≥ 18 and c ∈ [1, z − 3], we obtain

E[qc2] =
∞∑
t=1

Pr[qc2 ≥ t] ≤
∫ ∞
t=0

Pr[qc2 ≥ t] dt

≤
∫ ∞
t=0

min

{
1,

22z2n2z−1φz

t
z−2
c

}
dt

=
z − 2

z − 2− c
·
(

22z2n2z−1φz
) c
z−2

≤
(

23z−9 · n2+ 3
z−2 · φ1+ 2

z−2

)c
,

where we used that (z−2) ·24+ 8
z−2 ≤ 2z−9 for z ≥ 18, and

that for every a > 1 and b > 0,
∫∞
0

min
{

1, bta
}
dt = a·b1/a

a−1 .

We set z =
√

log(n2φ) + 3. Then, we have c ≤ z − 3, and
z ≥ 18 if n2φ is sufficiently large. For this choice of z, we
obtain

E[qc2] ≤
(

23
√

log(n2φ)
)c
·
(
n2φ

)c(1+ 2√
log(n2φ)

)

≤
(
n2φ

)c( 3√
log(n2φ)

)
·
(
n2φ

)c(1+ 2√
log(n2φ)

)
.

5. MULTIOBJECTIVE OPTIMIZATION

In this section, we analyze the number of Pareto-optimal
solutions in multiobjective optimization problems with one
adversarial objective function and d − 1 perturbed linear
objective functions. We obtain the following result.

Theorem 5.1. There are functions f : N→ N and g : N→
N such that for every number d of objectives and every
c ∈ [1,

√
log(n2φ)/f(d)],

E[qcd] ≤ (n2φ)
c

(
f(d)+

g(d)√
log(n2φ)

)
= (n2φ)c(f(d)+o(1)).

Unfortunately, the functions f and g grow very fast with d.
The bound for f following from our proof is f(d) = 2d−3d!,
the one for g grows even faster. The reason for this growth is
that we use an inductive argument bounding the moments of
qd based on a bound on the moments of qd−1. In each step
of this induction, we incur a constant factor in the exponent.
The following lemma is the main ingredient in the proof of
Theorem 5.1.

Lemma 5.2. For d ≥ 3, let α ∈ (0, 1], A ≥ 1, and B ≥ 1 be
constants, and let L :=

√
log(n2φ). If for every c ∈ [1, αL]

and every sufficiently large n2φ, E
[
qcd−1

]
≤ (n2φ)c(A+B

L ),
then for every c ∈ [1, αL/(2d)] and every sufficiently large
n2φ,

E[qcd] ≤ ((n2φ)c)2dA+ 16d2A+4dB+13
αL .

Proof: The setup of the proof is similar to the bicri-
teria case. As in Theorem 4.1, we partition the interval
[−n, n] uniformly into a certain number T of subintervals
and consider each of these subintervals separately. For
i ∈ [T ], let again ti denote the i-th threshold, that is,
ti = −n + 2(i − 1)n/T . In the bicriteria case, the i-th
winner was defined to be the solution that minimizes the
second weight among all solutions with a first weight of
at most ti. The situation in the multiobjective case is more
complicated as there are d − 1 objectives besides the first
one and it is not immediately clear how to generalize the
notion of winner appropriately.

For each i ∈ [T ], we consider the set Si that consists
of the solutions x ∈ S with w1(x) ≤ ti. We define
Pi to be the set of solutions from Si that are Pareto-
optimal among Si with respect to the weights w2, . . . , wd.
The solutions in Pi take over the role of the winners in
the bicriteria case. We associate with every (d − 1)-tuple
x? = (x?,2, . . . , x?,d) ∈ (Pi ∪ {⊥})d−1 a region R(x?) ⊆
Rd−1 defined as R(x?) = {(a2, . . . , ad) ∈ Rd−1 | ∀j ∈
{2, . . . , d} : aj < wj(x?,j)}, where we assume wj(⊥) =∞
for every j ∈ [d]. If the weight vector (w2(x), . . . , wd(x))
of a solution x falls into the region R(x?), then x cannot be
dominated by any of the solutions x?,j . It can, however, be
the case that x is dominated by another solution from Pi.
We say that a tuple x? is interesting if there is no solution
x ∈ Pi such that the point (w2(x), . . . , wd(x)) dominates



(w2(x?,2), . . . , wd(x?,d)). For each interesting tuple x?, we
define a loser set L(x?) as L(x?) = {x ∈ S | ∀j ∈
{2, . . . , d} : wj(x) < wj(x?,j)}.

The following two claims are crucial: First, every Pareto-
optimal solution x ∈ P with w1(x) > ti is contained in the
loser set L(x?) for at least one interesting tuple x? ∈ (Pi ∪
{⊥})d−1. Second, for all interesting tuples x? ∈ (Pi ∪ {⊥
})d−1, all solutions in the loser set L(x?) have a first weight
larger than ti. These claims are proven in the full version of
this paper.

For i ∈ [T ], let ki denote the number of interesting tuples
x? ∈ (Pi ∪ {⊥})d−1. The following observation, which
is based on the two claims above, is the essential step in
our proof: The union Li of the loser sets L(x?) over all
interesting tuples x? ∈ (Pi ∪ {⊥})d−1 contains all Pareto-
optimal solutions from P with a first weight of more than
ti and it contains no solution with a first weight of at most
ti. As for the bicriteria case, we would like to show that
there cannot be many solutions in Li with a first weight
between ti and ti+1. For this, we define, for each u ∈ N
and each interesting tuple x? ∈ (Pi ∪ {⊥})d−1, the u-th
loser gap Λi(x?, u) as the distance of the first u losers in
L(x?) to the threshold ti, that is, Λi(x?, u) = min{s ∈ R |
there exist u different x ∈ L(x?) with w1(x) ≤ s}−ti. For
u ∈ R>0, we define Λi(x?, u) = Λi(x?, buc).

Now we can upper bound the number of Pareto-optimal
solutions as follows: For each interesting tuple x? ∈ (Pi∪{⊥
})d−1, we count the number of losers in L(x?) that have
a first weight between ti and ti+1 = ti + 2n/T . As, for
every i ∈ [T ], the union of the loser sets L(x?) over all
interesting tuples x? ∈ (Pi ∪ {⊥})d−1 contains all Pareto-
optimal solutions from P with a first weight of more than
ti, the sum of these counts is an upper bound on the number
of Pareto-optimal solutions in P . Hence, the number qd
of Pareto-optimal solutions in P can only exceed a given
number t1/c if for one i ∈ [T ], the number of Pareto-optimal
solutions with a first weight between ti and ti+1 exceeds
t1/c/T . This in turn can only happen if, for one i ∈ [T ] and
one interesting tuple x? ∈ (Pi∪{⊥})d−1, the (t1/c/(kiT ))-
th loser gap is at most 2n/T . Thus Pr

[
qd ≥ t1/c

]
is bounded

from above by
T∑
i=1

Pr
[
∃x? ∈ (Pi ∪ {⊥})d−1 : Λi

(
x?,

t1/c

kiT

)
≤ 2n

T

]
.

For S ∈ N, we can upper bound this term by
T∑
i=1

(
Pr[ki ≥ S] + Pr

[
∃x? ∈ (Pi ∪ {⊥})d−1 :

Λi

(
x?,

t1/c

ST

)
≤ 2n

T

])
. (1)

We cannot directly use Lemma 3.1 to bound the proba-
bility that the loser gap Λi is small as we have to take into
account that each loser set L(x?) is now defined by d − 1

instead of only one solution. While this requires only minor
changes, the main challenge we have to overcome is that the
set Pi is not fixed even when all weight functions except for
the first one are chosen. The following lemma shows that
these dependencies do not cause too much harm.

Lemma 5.3. For every z ∈ N, S ∈ N, and ε ≥
0, Pr

[
∃x? ∈ (Pi ∪ {⊥})d−1 : Λi (x?, 2z + 2− d) ≤ ε

]
is

bounded from above by

nz2z
2 (

Pr
[
(qd−1 + 1)d−1 ≥ S

]
+ S · (2z)d−1φzεz−d+1

)
.

Proof: The proof of Lemma 3.1 was only based on
the randomness of the first weight function w1. As the set
Pi is defined to be a set of Pareto-optimal solutions with
respect to the other d − 1 weights, one might think that
knowing the set of interesting tuples x? does not bias the first
weight. Remember, however, that Pi is defined only among
the solutions with a first weight of at most ti, and hence,
the first weight has an impact on the set Pi. Conversely, this
implies that the set of interesting tuples and the coefficients
in the first weight function are not independent, which we
have to take into account when analyzing the probability that
there exists an interesting tuple with a small loser gap.

Assume that there is an interesting tuple x? =
(x?,2, . . . , x?,d) ∈ (Pi ∪ {⊥})d−1 for which the loser
gap Λi

(
x?, 2z−1 + 2− d

)
is at most ε. For u = 2z−1 +

2 − d, let x1, . . . , xu denote the u losers from L(x?)
with the smallest first weights. Together with the winners
x?,2, . . . , x?,d, these solutions have rank at least z according
to Lemma 3.2. Let r ≤ d−1 denote the rank of the winners,
and assume without loss of generality that the vectors
x?,2, . . . , x?,d, x1, . . . , xz−d+1 have rank z′ = r+z−d+1.
Then Λi (x?, 2z + 2− d) ≥ maxj∈[z−d+1] w

1(xj) − ti and
we can find a subset I ⊆ [n] of z′ indices and a set Y =
{y?,2, . . . , y?,d, y1, . . . , yz−d+1} ⊆ {0, 1}z′ with the follow-
ing properties: for every j ∈ {2, . . . , d}, x?,jI = y?,j , and for
every j ∈ [z − d+ 1], xjI = yj and the vector yj is linearly
independent from the vectors y?,2, . . . , y?,d, y1, . . . , yj−1.

For each such choice of I and Y , we define define SI,Y
to be the set of all solutions x ∈ S with w1(x) ≤ ti and
xI = y?,j for one j ∈ {2, . . . , d}. We denote by PI,Y the
set of solutions from SI,Y that are Pareto-optimal among
SI,Y with respect to the weight functions w2, . . . , wd. Now
for every interesting tuple x? ∈ (PI,Y ∪ {⊥})d−1, where
interesting is defined analogously as for Pi, we define the
random indicator variable ΛI,Y (x?) ∈ {0, 1} as follows: For
j ∈ [z − d+ 1], let xjI,Y denote the loser from L(x?) with
the smallest first weight among all solutions x ∈ L(x?) with
xI = yj . The random variable ΛI,Y (x?) is now defined as{

1 if ∀j ∈ [z − d+ 1] : w1(xjI,Y ) ∈ (ti, ti + ε],
0 otherwise.

For fixed I and Y , let kI,Y denote the number of
interesting tuples in (PI,Y ∪ {⊥})d−1. For S ∈ N, we can



bound the probability of having an interesting tuple x? with
ΛI,Y (x?) = 1 by the sum of Pr[kI,Y ≥ S] and

Pr
[(
∃x?∈(PI,Y ∪ {⊥})d−1 : ΛI,Y (x?)=1

)
∧ (kI,Y ≤S)

]
.

In order to analyze the second probability, we use the
same arguments as in Lemma 3.3. For this, we first let an
adversary fix all weights w1

j with j /∈ I and all weights
wij for i > 1 and j ∈ [n]. arbitrarily. If additionally all
linear combinations w1

I · y?,j for j ∈ [d − 1] are fixed,
then the set of interesting tuples and kI,Y are fixed as well.
Hence, as in the proof of Lemma 3.3, we can first integrate
over all values the linear combinations w1

I · y?,j can take
and for which kI,Y ≤ S. Once the values for these linear
combinations are chosen, we have at most S interesting
tuples x? in (PI,Y ∪ {⊥})d−1 and each of them defines
a random variable ΛI,Y (x?). As in Lemma 3.3, this random
variable can only be 1 if every linear combination w1

I · yj ,
for j ∈ [z−d+1], takes a value in a fixed interval of length
ε. Hence, when taking into account that we have at most S
interesting tuples, a union bound combined with the same
reasoning as in Lemma 3.3 implies

Pr
[(
∃x?∈(PI,Y ∪ {⊥})d−1 : ΛI,Y (x?) = 1

)
∧ (kI,Y ≤ S)

]
≤ S · (2z)d−1φz

′
εz
′−d+1 ≤ S · (2z)d−1φzεz−d+1.

Let us now return to the assumption that there is an
interesting tuple x? = (x?,2, . . . , x?,d) ∈ (Pi ∪ {⊥})d−1

for which the loser gap Λi (x?, u) is at most ε. Lemma 3.2
guarantees that we can choose I and Y such that x? ∈
(PI,Y ∪ {⊥})d−1 and such that, for every j ∈ [z − d + 1],
the loser xj coincides with xjI,Y . Hence, there can only exist
an interesting tuple x? whose loser gap Λi(x?, u) is smaller
than ε if for one choice of I , Y , and x? ∈ (PI,Y ∪{⊥})d−1

the random variable ΛI,Y (x?) takes the value 1. Thus, a
union bound over all choices for I and Y implies

Pr
[
∃x? ∈ (Pi ∪ {⊥})d−1 : Λi (x?, 2z + 2− d) ≤ ε

]
≤

nz2z
2 (

Pr
[
(qd−1 + 1)d−1 ≥ S

]
+ S · (2z)d−1φzεz−d+1

)
.

The number ki of interesting tuples x? ∈ (Pi∪{⊥})d−1 is
bounded by (|Pi|+1)d−1 ≤ (2|Pi|)d−1. For S = t1/c

T (2z+2−d) ,
combining (1) with Lemma 5.3 yields the following upper
bound on Pr

[
qd ≥ t1/c

]
:

T∑
i=1

(
Pr
[
qd−1
d−1 ≥

S

2d−1

]
+ nz2z

2
(

Pr
[
qd−1
d−1 ≥

S

2d−1

]

+ S · (2z)d−1φz
(

2n
T

)z−d+1
))

≤ T · nz2z
2+1 · Pr

[
qd−1
d−1 ≥

t1/c

T2d−1(2z + 2− d)

]
+
t1/c · 2z2+zdn2z−d+1φz

T z−d+1(2z + 2− d)
. (2)

In order to estimate the probability of qd−1
d−1 being too

large, we use a simple concentration result that follows from
Markov’s inequality when applied to the (αL)-th moment of
qd−1:

Pr
[
qd−1
d−1 ≥ β(n2φ)(d−1)(A+B

L )
]
≤ β−

αL
d−1 . (3)

We set z = αL and, for some k ∈ (0, 1) to be chosen later,

T = t
1−k
c

2d−1(2z+2−d)(n2φ)
(d−1)(A+B

L ) , which yields combined

with (2) and (3) the following bound:

Pr
[
qd ≥ t1/c

]
≤ T · nz2z2+1

t
kz

c(d−1)

+
t1/c · 2z2+zdn2z−d+1φz

T z−d+1(2z + 2− d)

≤ 2nz+2φ

t
kz+(k−1)(d−1)

c(d−1)

+
(n2φ)zdA+dB+3

t
(1−k)(z−d+1)−1

c

.

For k = (αL+2d−2)/(2αL+2d−2), we obtain, for large
enough n2φ,

Pr
[
qd ≥ t1/c

]
≤ (n2φ)αL

t
αL

2c(d−1)

+
(n2φ)αLdA+dB+3

t
αL−2d

2c

.

Since we assume c ≤ αL/(2d) and d ≥ 3, both exponents of
t are larger than 1 for large enough n2φ. In the following, we
use that for every a > 1 and b > 0,

∫∞
0

min
{

1, bta
}
dt =

a·b1/a
a−1 . We obtain

E[qcd] ≤
∫ ∞
t=0

Pr
[
qd ≥ t1/c

]
dt

≤
∫ ∞
t=0

min
{

(n2φ)αL

t
αL

2c(d−1)

+
(n2φ)αLdA+dB+3

t
αL−2d

2c

, 1
}
dt

≤ d(n2φ)2c(d−1) + 2((n2φ)c)2dA+
8d2A+2dB+6)

αL−2d

≤ ((n2φ)c)2dA+ 16d2A+4dB+13
αL .

Now Theorem 5.1 follows easily by induction on d, using
Theorem 4.1 as a start and Lemma 5.2 as the induction step.

6. EXTENSIONS AND APPLICATIONS

6.1. Generalized Winner Gap

Another structural property that has proven useful in
previous analyses is the winner gap ∆. Let us consider
an arbitrary single-criterion optimization problem in which
a linear objective function w(x) = w1x1 + · · · + wnxn
is to be minimized over a feasible region S ⊆ {0, 1}n.
The winner gap is defined to be the distance between the
optimal solution and the second best solution in terms of
the objective function w. That is, if x?1 denotes the optimal
solution and x?2 denotes the second best solution, then
∆ = w(x?2)− w(x?1).

As for the loser gap, we define a generalization of the
winner gap that does not only take into account the second
best solution, but also the third best solution and so on.
We define the u-th winner gap ∆(u) to be the distance



between the optimal solution and the u-th best solution. That
is, if x?u denotes the solution from S with the u-th smallest
objective value w(x), then ∆(u) = w(x?u) − w(x?1).
Similar arguments as in the proof of Lemma 3.1 yield the
following lemma.

Lemma 6.1. For every ε ≥ 0 and z ∈ N,
Pr
[
∆(2z−1 + 1) ≤ ε

]
≤ 2z

2+znzφzεz−1.

6.2. Expected Polynomial Running Time
In this section, we prove the following result: any binary

optimization problem that can be solved in randomized
pseudo-polynomial time in the worst case can be solved
in expected polynomial time in the model of smoothed
analysis. This strengthens Beier and Vöcking’s characteri-
zation, which says that every such problems can be solved
with reasonable probability in polynomial time on smoothed
instances [8]. For the proof, we combine the adaptive round-
ing scheme proposed in [8] with our notion of generalized
winner and loser gap.

To keep the presentation simple, let us focus on single-
criterion problems that have a perturbed linear objective
function: We consider optimization problems Π in whose
instances a linear objective function w(x) = w1x1 + · · · +
wnxn is to be minimized over an arbitrary feasible region
S ⊆ {0, 1}n. The problem Π could, for example, be the
traveling salesperson problem and the coefficients wi could
be the edge lengths. We denote by Πu the version of
Π in which the coefficients wi are encoded in unary. If
Πu ∈ ZPP, then we say that Π can be solved in randomized
pseudo-polynomial time. With other words, if Πu ∈ ZPP,
then there exists a randomized algorithm for Π whose worst-
case expected running time is polynomial in the input size
N and the largest coefficient W = maxi |wi|.

Now we consider the smoothed version of Π in which the
coefficients wi are independent random variables distributed
according to densities fi : [−1, 1] → [0, φ]. Beier and
Vöcking show that if and only if Πu ∈ ZPP, there is
an algorithm A for the smoothed version of Π with the
following property: there is a polynomial p such that the
probability that the running time of A exceeds p(N,φ, 1/ε)
is bounded from above by ε for every input of size N , every
φ ≥ 1, and every ε ≥ 0.

One has to be a bit careful, when defining the running
time on smoothed instances, as the coefficients wi are
assumed to be continuous random variables, which means
that with probability 1 they do not have a finite encoding.
To circumvent this problem, Beier and Vöcking introduce
an oracle model, in which the bits after the binary point
of the coefficients wi are revealed from left to right by an
oracle. Each oracle query needs constant time and yields one
more bit of each coefficients wi. To avoid the somewhat
cumbersome oracle model, one can also assume that the
coefficients wi are discretized by rounding them after a
polynomial number, say n2, of bits.

We prove the following characterization theorem.

Theorem 6.2. A binary optimization problem Π can be
solved in expected polynomial time in the model of smoothed
analysis if and only if Πu ∈ ZPP.

Proof Sketch: As a first ingredient of the proof, we
use that if we can find the optimal solution of a binary opti-
mization problem with a linear objective function efficiently,
then we can also find the best z solutions, for any constant
z, efficiently. The proof of the fact can be found in the full
version of this paper.

First, we discuss how an algorithm A with randomized
pseudo-polynomial running time can be transformed into
an algorithm with expected polynomial running time in the
smoothed model. There exists a constant ` ≥ 1 such that
the expected running time of algorithm A is bounded from
above by (NW )`. We claim that the following algorithm has
expected polynomial running time on smoothed instances:

1) Set b = 1 and u = 2`+1 + 1.
2) Round every coefficient wi after b bits after the binary

point. Denote by bwicb the rounded coefficients and
by bwcb the corresponding vector.

3) Compute the u best solutions x?1b , . . . , x
?u
b with re-

spect to the rounded objective function bwcb · x.
4) If with respect to the rounded coefficients, x?1b has an

objective value that is better by at most n2−b than the
objective value of x?ub , then increase b by one and go
to step 2.

5) From the u computed solutions x?1b , . . . , x
?u
b in the

previous step output the one with minimal objective
value with respect to the original, unrounded objective
function w · x.

We need to prove two claims: First, the expected running
time of this algorithm is polynomial. Second, the algorithm
always outputs the optimal solution to the problem with
unrounded coefficients. Due to space limitations, the proofs
of these claims are deferred to the full version of this paper.

The model considered in [8] also considers the case
that instead of the objective function, a linear constraint is
perturbed. In fact, also our stronger characterization can be
extended to that case, when we assume that the (adversarial)
objective function is linear. Then we can use the generalized
loser gap instead of the generalized winner gap to obtain a
similar result as in Theorem 6.2.

6.3. Extension to Integer Optimization Problems

So far, we have considered the case of binary optimization
problems, in which the feasible region S is a subset of
{0, 1}n. This case covers already most of the interest-
ing combinatorial optimization problems. Let us, however,
mention that our results can also be extended to the case
that the feasible region is a subset of Zn for a finite set
of integers Z ⊆ Z. The important parameter is then the



maximum absolute value of the integers in Z, i.e., m :=
maxz∈Z |z|. Without significant changes to our proofs, we
can replace the two occurrences of log(n2φ) in Theorem 5.1
by logm+1(n2φ). Hence, if logm+1(n2φ) → ∞, there
is no qualitative difference compared to the binary case.
Otherwise, the proof can be adapted to yield a function
h : N × N → N such that for every number d of objectives
and every c ∈ N, the expected value of qcd is bounded from
above by (mnφ)h(d,c).

7. DISCUSSION AND OPEN PROBLEMS

We introduced a novel technique to analyze multiobjective
optimization problems in the model of smoothed analysis.
This technique gives not only the first bounds for the
smoothed number of Pareto-optimal solutions in multiob-
jective optimization, but also the first concentration bounds
for this quantity. It can also be applied to transform pseudo-
polynomial time algorithms into algorithms with expected
polynomial running time on smoothed instances.

However, there is still a variety of open questions in the
realm of smoothed analysis of multiobjective optimization.
The most apparent question is probability whether the ex-
ponent in Theorem 5.1 can be improved to a polynomial in
d. Another question is whether our method can also be used
to bound higher moments. The bound of

√
log n2φ that we

currently have in Lemma 4.1 is due to the occurrence of 2z
2

in the bound for the loser gap in Lemma 3.1. If this could
be improved to, e.g., 2z log z , then we would obtain a bound
for even higher moments, leading to stronger concentration
bounds. Finally, lower bounds on the smoothed number of
Pareto-optimal solutions and an improved analysis of the
integer case would be of interest.
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APPENDIX

1. Proofs from Section 3

Proof of Lemma 3.2: Assume without loss of generality
that the vectors x1, . . . , xr are a basis of the space spanned
by x1, . . . , xu. Let M denote the n×r matrix whose columns
are the vectors x1, . . . , xr. As the rank of this matrix is r,
we can find a set I ⊆ [n] of r indices such that the rows
corresponding to I are linearly independent and form a basis
of the row space of M .

We claim that for every vector y ∈ {0, 1}r there is at
most one vector xi with xiI = y. As the vectors x1

I , . . . , x
r
I

form a basis of Rr, there exists, for every y ∈ {0, 1}r, a
unique set of coefficients λ1, . . . , λr ∈ R such that λ1x

1
I +

. . .+ λrx
r
I = y. This means that it is not possible to obtain

two different vectors as linear combinations of x1, . . . , xr

that coincide on the indices in I . As the vectors x1, . . . , xr

are a basis of the space spanned by x1, . . . , xu, this proves
that for every vector y ∈ {0, 1}r there is at most one vector
xi with xiI = y. Hence, u ≤ 2r and r ≥ dlog ue. Moreover,
we have identified a set I ⊆ [n] with |I| = r such that
x1
I , . . . , x

r
I have rank r.

Proof of Lemma 3.3: As the vectors a1, . . . , ar are
linearly independent, they form a basis of Rr. We perform a
change of variables from the canonical basis to (a1, . . . , ar).
Let Φ: Rr → Rr denote the corresponding transformation.
For the matrix A whose columns are the vectors a1, . . . , ar,
we can write Φ as Φ(x) = Ax.

For i ∈ {r−k+1, . . . , r}, we use Ii(a1 ·X, . . . , ai−1 ·X)
to denote the interval

[gi(a1 ·X, . . . , ai−1 ·X), gi(a1 ·X, . . . , ai−1 ·X) + ε].

If we denote by f the joint density of the random variables
X1, . . . , Xr and set y<i := (y1, . . . , yi−1), then we can write
the probability of the event F(ε) as∫

y1∈R
· · ·
∫
yr−k∈R

∫
yr−k+1∈Ii(y<r−k+1)

· · ·∫
yr∈Ir(y<r)

1
|detA|

· f(Φ−1(y)) dyr · · · dy1

≤ φr

|detA|

∫
y1∈[−r,r]

· · ·
∫
yr−k∈[−r,r]∫

yr−k+1∈Ii(y<r−k+1)

· · ·
∫
yr∈Ir(y<r)

1 dyr · · · dy1,

where the inequality follows because every random variable
ai · X can only take values in [−r, r]. As all the intervals
Ii(y<i) have length ε, we obtain the desired bound of

φr(2r)r−kεk

|detA|
≤ (2r)r−kφrεk

because the determinant of A is an integer and not equal to
zero.

2. Proofs from Section 5

Proof of the claims in the proof of Theorem 5.1: Let
us consider the first claim. For this, let x ∈ P be an
arbitrary Pareto-optimal solution with w1(x) > ti. For
j ∈ {2, . . . , d}, we set x?,j = argmin{wj(y) | y ∈
Pi, wj(x) < wj(y)} and x?,j =⊥ if there exists no solution
y ∈ Pi with wj(x) < wj(y). We claim that for these
choices, x ∈ L(x?). The tuple x? must be interesting
because otherwise, if there was a solution y ∈ Pi whose
weight vector dominates (w2(x?,2), . . . , wd(x?,d)) ∈ Rd−1,
then either this solution also dominates x, contradicting the
assumption that x is Pareto-optimal. Or, if y does not dom-
inate x, then since w1(y) ≤ ti < w1(x), there must exist
an index j ∈ {2, . . . , d} with wj(x) < wj(y) < wj(x?,j),
contradicting our choice of x?,j . Here we implicitly used the
fact that in our probabilistic model, with probability one,
there are no two solutions with exactly the same weight.
Hence, x? is interesting and from its definition it follows
immediately that x ∈ L(x?).

Now let us consider the second claim. Assume for con-
tradiction that there exist an interesting tuple x? and a
solution x ∈ L(x?) with w1(x) ≤ ti. As x? is inter-
esting, there is no solution y ∈ S with w1(y) ≤ ti for
which the point (w2(y), . . . , wd(y)) dominates the point
(w2(x?,2), . . . , wd(x?,d)). Since by the definition of the
loser set (w2(x), . . . , wd(x)) < (w2(x?,2), . . . , wd(x?,d)),
this implies that x cannot be dominated by any solution
y with w1(y) ≤ ti. As we assume that w1(x) ≤ ti,
this implies that y cannot be dominated by any solution
from S and must hence be Pareto-optimal. This in turn
implies that x ∈ Pi and hence, x? cannot be an inter-
esting tuple as (w2(x?,2), . . . , wd(x?,d)) is dominated by
(w2(x), . . . , wd(x)).

3. Proofs from Section 6.2

Proof of Lemma 6.1: We set u = 2z−1+1 and consider
the solutions x?1, . . . , x?u with the u smallest objective
values. These solutions must have rank at least z according
to Lemma 3.2. Without loss of generality, we assume that
we can find a subset I ⊆ [n] of z indices such that the
vectors x?1I , . . . , x

?z
I have rank z.

For every subset I ⊆ [n] of size z and every set
{y1, . . . , yz} ⊆ {0, 1}z of linearly independent vectors, we
define a random indicator variable ∆I,Y as follows: Let x?iI,Y
denote the solution with the smallest objective value among
all solutions x ∈ S with xI = yi, and define ∆I,Y to be{

1 if ∀i ∈ {2, . . . , z} : w(x?1I,Y )− w(x?iI,Y ) ∈ [0, ε],
0 otherwise.

If we choose I such that x?1I , . . . , x
?z
I have rank z and if

we choose Y such that x?iI = yi for all i ∈ [z], then the
solutions x?iI,Y coincide with the solutions x?i. Hence, if the



winner gap is at most ε, then there is a choice for I and Y
such that ∆I,Y = 1.

Let us now fix I and Y and analyze ∆I,Y . We allow an
adversary to fix all weights wi for i /∈ I . If additionally
the linear combination wI · y1 is fixed, then for each i ∈
{2, . . . , z}, there is an interval of length ε that the linear
combination wI · yi has to fall into in order for ∆I,Y to
be 1. Hence, we can apply Lemma 3.3, to obtain an upper
bound of 2zφzεz−1 for the probability of ∆I,Y being 1. A
union bound over all choices for I and Y yields the lemma.

Lemma A.1. If for a problem Π there is a (randomized)
algorithm A with (expected) running time T (N,W ) for
solving instances of input size N with largest number W ,
then there exists a (randomized) algorithm with (expected)
running time (2n)z

2 · T (N,nW ) + poly(N,W ) for finding
the z best solutions, for any constant z.

Proof: Let x1, . . . , xz denote the z best solutions. For
each pair {xa, xb}, there must be an index i, with xai 6= xbi .
Let I with |I| ≤ z2 denote the set of these indices. Assume
that the set I is known. Then we can, for every y ∈ {0, 1}|I|,
use algorithm A to compute the optimal solution x?(y)
among all solutions x ∈ S that satisfy xI = y. This can be
accomplished by modifying the coefficients in the objective
function as follows: We set wi = nW for all i ∈ I with
yi = 0 and wi = −nW for all i ∈ I with yi = 1.
The solution that is optimal with respect to this modified
objective function must satisfy xI = y if there exists a
solution x ∈ S with xI = y. Hence, the optimal solution of
this modified instance is x?(y).

This implies that if we have chosen the right index set I ,
then the best z solutions are among the solutions x?(y). We
try all possibilities for choosing the set I . This gives us in
total at most (2n)z

2
different solutions x?(y). We just need

to output the best z of them.
Additions to the Proof of Theorem 6.2: The correctness

follows easily: When the algorithm stops, then all solutions
that are not among the solutions x?1b , . . . , x

?u
b have, with

respect to the rounded coefficients, a distance of more than
n2−b from the rounded value of x?1b . Since rounding lowers
the value of each solution by at most n2−b, none of these
solutions can be better than x?1b with respect to the original
coefficients. Hence, the optimal solution must be among the
solutions x?1b , . . . , x

?u
b .

Now let us consider the expected running time: For fixed
b, the running time of one iteration is bounded by (N2b)` as
every rounded number can be represented by b bits after the
binary point. That is, when we scale all numbers by a factor
of 2b, then we obtain an instance with integer coefficients
that are bounded by 2b. It can only happen that the accuracy
of b bits is not enough if the distance between x?1b and all
x?ib for i ∈ [a] in terms of the rounded objective function
bwcb · x is at most n2−b. In this case, in terms of the

original objective function w · x, the values of the solutions
x?ib can be at most n2−b+1 away from the value w · x?1b .
Also in terms of the original objective function, the true
winner x? can be better than x?1b by at most n2−b. Hence
the distance between x? and the solutions x?ib in terms of
the original coefficients is at most n2−b+2. This can only
happen if the u-th winner gap is smaller than n2−b+2, which
happens according to Lemma 6.1 with probability at most
κn`+2φ`+2(n2−b+2)`+1, for a sufficiently large constant κ
depending only on `. Hence, we obtain the following bound
on the running time T of algorithm A:

E[T ] ≤
∞∑
b=1

(N2b)` · Pr
[
∆(u) ≤ n2−b+2

]
≤
∞∑
b=1

(N2b)` · κn`+2φ`+2(n2−b+2)`+1)

≤ poly(N,φ) ·
∞∑
b=1

1
2b

= poly(N,φ).

The other direction follows from the previous characteri-
zation: If there exists an algorithm with expected polynomial
running time in the smoothed model, then this algorithm
also has polynomial smoothed complexity in the weaker
sense used in [8]. Hence, according to Beier and Vöcking’s
characterization, the problem can be solved in randomized
pseudo-polynomial time in the worst case.

4. A Lemma about Random Vectors

In this section, we present a cute lemma about random
vectors that follows from our result about the expected
number of Pareto-optimal solutions. We find this lemma
interesting on its own, but so far we have neither found
it in the literature nor have we found a direct way to prove
it.

Lemma A.2. Let W 1, . . . ,Wn ∈ [−1, 1]d be random
vectors and assume that every coordinate of every vector is
an independent random variable drawn uniformly at random
from [−1, 1]. For every constant d, the probability that
there exists a subset I ⊆ [n] of these vectors such that∑
i∈IW

i > ~0 is at least 1− poly(n)/2n.

Proof: Consider a binary optimization problem with
S = {0, 1}n and d linear objective functions w1, . . . , wd.
Assume that the coefficients in all objective functions are
chosen uniformly at random from [−1, 1]. The probability
that the solution 0n is not Pareto-optimal coincides with the
probability in the statement of the lemma that we want to
bound. To see this, one has to use the fact that there exists
only with probability zero a non-empty subset I such that
one of the components of the vector

∑
i∈IW

i is exactly
zero.

We claim that the probability that a solution x ∈ {0, 1}n
is Pareto-optimal is exactly the same for every solution x.



The solution x is Pareto-optimal if there does not exist
a subset I ⊆ [n] such that for every i ∈ [d], the sum∑
j∈I,xj=0 w

i
j −

∑
j∈I,xj=1 w

i
j is at least 0. (If x is domi-

nated by a solution y, then I is the set of indices in which x
and y differ.) Since the coefficients are chosen uniformly in
[−1, 1], the probability p of not being Pareto-optimal is the
same for every x. Hence, the expected number of Pareto-
optimal solutions is 2n · (1− p). Using Theorem 5.1 yields
2n · (1− p) = poly(n), proving the lemma.


