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Abstract We present a probabilistic analysis of integer linear paotg (ILPS).
More specifically, we study ILPs in a so-called smoothed ysiglin which it is
assumed that first an adversary specifies the coefficienta oftager program
and then (some of) these coefficients are randomly pertughgd, using a Gaus-
sian or a uniform distribution with small standard deviatitn this probabilistic
model, we investigate structural properties of ILPs andyattyem to the analysis
of algorithms. For example, we prove a lower bound on thekstdi¢he optimal
solution. As a result of our analysis, we are able to spetiéysmoothed com-
plexity of classes of ILPs in terms of their worst case comipje This way, we
obtain polynomial smoothed complexity for packing and emg problems with
any fixed number of constraints. Previous results of thid kiere restricted to the
case of binary programs.
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1 Introduction

Many algorithmic problems are hard with respect to worsecastances but
there are algorithms for these problems that work quiteieffity on “typical
instances”, that is, on instances occurring frequentlyracice. Finding an ad-
equate theoretical model for typical instances, howesges, ¢hallenging task. A
reasonable approach seems to be to represent typical éestanthe form of a
probability distribution on the set of possible inputs. Assical average-case anal-
ysis begins with the specification of the input distributifsually, this is just a
simple uniform distribution. The dilemma with such an agmiois that any fixed
input distribution can be argued to be not the right, typmaé. During the last
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years there has been an increased interest in more geruihiodels and more
robust kinds of probabilistic analyses that do not only Hofcparticular input dis-
tributions. An example for such a concept is the so-calladothed analysisf the
Simplex algorithm by Spielman and Teng [14]. They assumefils an adver-
sary specifies the input numbers of an LP and then these adiadirsumbers are
slightly perturbed at random using a Gaussian distributitth specified standard
deviation. Spielman and Teng show that the expected rurimmgof the Simplex
algorithm under such random perturbations is polynomiatiynded in the size
of the input and the reciprocal of the standard deviatiotuitiwely, this means
that the running time function of the Simplex algorithm skosuperpolynomial
behavior only at some isolated peaks.

Beier and Vocking [6] generalize smoothed analysis towatidcrete opti-
mization problems. In particular, they study optimizatigmoblems that can be
represented in the form of binary programdiear binary optimization problem
is defined by a set of linear constraints and a linear objedtiaction over some
subset{0,1}". By parametrizing which constraints are of stochastic ahétkv
are of adversarial nature, it is possible to randomize sdrtfgecconstraints with-
out destroying the combinatorial structure described ewotonstraints. Their
analysis covers various probability distributions for ttteice of the stochastic
numbers and includes smoothed analysis with Gaussian &ed kinds of per-
turbation models as a special case. It is shown that a bingimization problem
has polynomial smoothed complexity if and only if it has ramdpseudopolyno-
mial complexity, i. e., the unary variant of the problem iZipP. Other results on
the smoothed and average-case analysis of discrete oatiarizproblems can be
found, e.g., in [1,2,5,3,4,6,7,9,11-13]. All these resalte restricted to prob-
lems that can be written in the form of a binary optimizatiookgem.

In this paper, we extend the results of Beier and Vockingii@in binary to-
wards integer linear programs (ILPs). We investigate stina¢ properties of ILPs
and, as a result of our analysis, we are able to describe thetked complexity of
classes of ILPs in terms of their worst case complexity sinti the characteriza-
tion for binary optimization problems. For example, our ratderization implies
polynomial smoothed (average) complexity for packing aadecing problems
with any fixed number of constraints since these classed #dmit pseudopoly-
nomial time algorithms. On the other hand, packing and d¢ogegsroblems with
an unbounded number of constraints do not have polynomiab#red complex-
ity, unlessZPP = NP, as these classes are stronyR-hard-.

Outline. In the next section, we define the considered probabilistcleh and
state our results in a formal way. The probabilistic analysipresented in Sec-
tion 2. It is centered around structural properties of iatdipear programs, called
winner, loser, andfeasibility gap In Section 3, we show how to exploit these gaps
algorithmically in the form of an adaptive rounding schemeréasing the accu-
racy of calculation until the optimal solution is found. Essially, Sections 2 and 3
show that the existence of a pseudopolynomial algorithnafolass of ILPs im-
plies that this class has polynomially smoothed complekit$ection 4, we show
that the inverse holds as well, that is, polynomial smootbetiplexity implies

1 An NP-hard problem is calledtrongly NP-hard if it remains NP-hard even if all input
numbers are encoded in unary (see, e. g., [10]).
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the existence of a pseudopolynomial algorithm. In our phdlsic analysis, we
assume that each variable can take only a polynomial nunilufferent values.
In Section 5, we show that this assumption is fulfilled forkpag and covering
ILPs, with high probability, so that we get a tight charai@ation of polynomial
smoothed complexity for packing and covering ILPs. Finaditensions of our
results and conclusions are given in the Sections 6 and 7.

1.1 Problems and Model

Our analysis deals witimteger linear programs (ILPsWithout loss of generality,
we consider maximization programs wifconstraints of the following standard
form:

max c'x
s.t. Ax<b
xe ",

whereA € R" b e RK, ¢ e R", andZ C Z. In our analysis we consider “classes
of ILPs”, that is, we place certain restrictions on ILPs. Iag and covering ILPs
are good examples for such restrictions. lpagking ILPall coefficients are non-
negative, the objective is makx and all constraints are of the forAx < b. In a
covering ILPall coefficients are non-negative as well, the objectiveiisahix and
all constraints are of the forfax > b. Both in packing and in covering ILPs, the
variables are assumed to be non-negative, tha? is; Ny. As another example,
one can also place restrictions on the number of allowedi@nss. Optimization
problems with such restrictions are, e. g., specified in timependium oNP opti-
mization problems [8]. For example, packing ILPs with onhea@onstraint corre-
spond to the NTEGER KNAPSACK PROBLEM, and packing ILPs with a constant
numberk of constraints correspond to theAMiMuM INTEGERK-DIMENSIONAL
KNAPSACK PROBLEM.

In our probabilistic analysis, we will assume that some @& donstraints
and/or the objective function are randomly perturbed. Tterocomponents of
the ILP are not touched by the randomization. When talkingualaclass/T of
ILPs, we mean thafl specifies which restrictions are placed on the ILPs and
which components are randomly perturbed.

Description of the probabilistic input modeSmoothed analysis assumes a semi-
random input model: First, an adversary specifies all inpotiers (coefficientsin
Aandc as well as all thresholds i), then some of the coefficients and thresholds
are randomly perturbed. We assume that all numbers spebifi¢ite adversary
are from the interva]—1,1]. Observe that this is not a restriction as every ILP
can be brought into this form by scaling the linear expresstbat violate this as-
sumption. In the considered probabilistic input model, cae choose which part
of the input is perturbed and which part is left untouchedhsy tandomization.
Basically, there are three different choices: either ohly ¢oefficients in the ob-
jective function or only the coefficients and thresholdshia tonstraints or both
are perturbed. We assume that the selected numbers (whiafihgall stochastic
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numbers/coefficienia the following) are randomly perturbed by adding an inde-
pendent random variable to each of them. More general fation models to
which our analysis can also be applied are discussed indBe@ti

Spielman and Teng use Gaussian perturbations [14]. Falpy8], we use
a more general perturbation model: The random numbers thaddded to the
adversarial numbers are drawn according to a specifiedyfarhprobability dis-
tributions satisfying the following conditions. Lét: R — R be a density func-
tion such that swif(s)) = 1 andE = [ |s|f(s) dsis finite. In words, the random
variable described by has “maximum density equal to 1” and a “finite expected
absolute mean value”. The functidris called theperturbation modelForg > 1,
we definefy, by scalingf, that is, fy(s) = @f(sp), for everys € R. This way it
holds sup.r (fy(s)) = @ and [ |s| fy(s) ds= E/¢. We obtaing-perturbationsac-
cording to perturbation moddl by adding an independent random variable with
densityf, to each stochastic coefficient.

For example, one obtains the Gaussian perturbation mamel[ft4] by choos-
ing f to be the Gaussian density with standard devia(tﬂn)‘l/z. A non-negative
feasible region for the random numbers can be obtained, leyghoosingf to
be the density of the uniform distribution ovi®; 1]. In [14], the running time is
described in terms of the input size and the standard demiati Following [6],
we describe the running time in terms of the input size andldresity parameter
@. For the Gaussian and the uniform distribution these twarpaters are closely
related: in both caseg is proportional to Yo. Intuitively, ¢ can be seen as a
measure specifying how close the probabilistic analysie & worst-case analy-
sis. A worst-case instance can be interpreted as a stociegince in which the
probability mass for each stochastic number is mapped togespoint. Thus, the
largerg, the closer we are to a worst-case analysis.

Definition of smoothed complexitfhe smoothed complexity of a claSsof ILPs
with an associated perturbation modes given in terms of the input lengti and

the parametep. First of all, the definition of the input length needs soneiéi+
cation as some of the input numbers are assumed to be randiainlga following
continuous probability distributions. These numbers aegional with probability

1, but we define that each of these numbers has a virtual lefgite. (This way,
we ensureéN > nk.) The bits of the stochastic numbers can be accessed bygaskin
an oracle in time>(1) per bit. The bits after the binary point of each stochastic
number are revealed one by one from left to right. As one ofrésailts of our
probabilistic analysis, we will see th@{logn) revealed bits per number are suf-
ficient to determine the optimal solution with high probéhilThe deterministic
part of the input does not contain irrational numbers andlmencoded in an
arbitrary fashion. Let#y denote the set of possible adversarial inputsfioof
lengthN. For an instance ¢ .%y, let1 + f, denote the random instance that is
obtained by ap-perturbation of. We say that7 haspolynomial smoothed com-
plexityunderf if and only if it admits a polynomialP and an algorithmz’ whose
running timeT satisfies

Pr {T(I+f<p)>P<N,<p,:—eL>] <eg, (1)
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foreveryN e N, ¢ > 1, € € (0,1], andl € .#y, that is, with probability at least
1— ¢ the running time ofe/ is polynomially bounded in the input lenghth the
perturbation parametes, and the reciprocal of. An equivalent way of defining
polynomial smoothed complexity is to require the existeotan algorithme/
whose running timé satisfies

Ja,B>0:vp=1:VNEN: maxE[(T(1+fy)"] < BoN .
le N

This definition of polynomial smoothed complexity followsone or less the way
how polynomial complexity is defined in average-case coripl¢heory, adding
the requirement that the running time should be polynomiatiunded not only
in N but also ing. Observe that this does not imply that the expected running
time is polynomially bounded. To enforce expected polyradminning time, the
exponenta in the definition of polynomial smoothed complexity must lbeced
outside instead of inside the expectation. The reason fode&fining polynomial
smoothed complexity based on the expected running timetshis is not a suf-
ficiently robust notion. For example, an algorithm with ecfael polynomial run-
ning time on one machine model might have expected expaientining time
on another machine model. In contrast, the above definitieldy a notion of
polynomial smoothed complexity that does not vary amongsga of machines
admitting polynomial time simulations among each other @hawback of this
definition is, however, that polynomial smoothed complegites not imply poly-
nomial expected running time.

1.2 Our Results

We show that the smoothed complexity of ILPs can be chaiaetbin terms
of their worst-case complexity. For a claBsof ILPs, let[1, denote the corre-
sponding optimization problem in which the stochastic narstare assumed to
be integers in unary representation instead of randomlgainoeal-valued num-
bers.

Theorem 1 Let T be a class of ILPs in which each variable can take only a
polynomial number of different values, i. €%| is polynomially bounded in the
number of variablesll has polynomial smoothed complexity if and onl§lif €
ZPP.

In other words /1 has polynomial smoothed complexity if it admits a (possi-
bly randomized) algorithm with (expected) pseudopolyradmiorst-case running
time. If we apply this theorem to ILPs containing at least peeturbed packing
constraint then we can even drop the restriction on th&set perturbed instances
of these problems fulfill this restriction with high probbityi

Theorem 2 A classll of ILPs with at least one perturbed packing constraint has
polynomial smoothed complexity if and onlyTif € ZPP.

Unfortunately, Theorem 2 cannot be generalized to clasésPs with at
least one perturbed covering constraint. However, it Ibtstie if all constraints
are covering constraints that are randomly perturbed.
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Theorem 3 A class/l1 of ILPs consisting only of perturbed covering constraints
has polynomial smoothed complexity if and onlfiifc ZPP.

This characterization shows that stron§jf?-hard classes like general pack-
ing or covering ILPs do not have polynomial smoothed comiplesnlessZPP =
NP. On the other hand, packing and covering problems with a fixgdber of
constraints like, e.g., the MKiIMUM INTEGER (k-DIMENSIONAL) KNAPSACK
PrRoBLEM have polynomial smoothed complexity as they admit pseugiape
mial time algorithms. The same is true for ILPs with polynalyi bounded 2|
and a fixed number of constraints.

Technical comparison to previous worka this paper we present a generaliza-
tion of the smoothed analysis for binary optimization pevbt presented in [6]
towards integer optimization problems. The rough courgbeprobabilistic anal-
ysis presented in the subsequent sections is similar tortagsas from [6]: We
prove certain structural properties which are then exgtb#lgorithmically in the
form of an adaptive rounding scheme using pseudopolynoaiggrithms as a
subroutine. In particular, we present a probabilistic gsialshowing that it is suf-
ficient to reveal only a logarithmic number of bits of eachchi@stic number in
order to determine the optimal solution. We want to remadwéver, that the
generalization of this result from the binary to the integase is not straightfor-
ward but technically difficult in several aspects. The majuallenge we have to
tackle is that the main part of the previous probabilistialgsis heavily relies on
the fact that variables are binary. For example, the prevamalysis uses the ex-
istence of 0 entries in any solution (excepj in order to place assumptions on
subsets of solutions sharing a 0 at the same position. GhHsavassumptions on
the values of the solutions in such subsets do not affecttidom coefficients at
which all these solutions take the value 0. Obviously, thésnentary trick fails
already when going from binary to tertiary variables. Irsthaper, we use a dif-
ferent kind of analysis that places assumptions on sub$a@tions in such a
way that only values of linear combinations of pairs of ramdmefficients are re-
vealed. In the subsequent analysis, the knowledge abaé timear combinations
is taken into account carefully.

2 Probabilistic Analysis of ILPs

In order to prepare the proof of Theorem 1, we will analyzectrral properties of
semi-random ILPs. Ldt= (A, b, c) be an ILP withn integer variablegy, ..., xy €
2 which has been generated according to the semi-randomrmpae| described
above. Throughout this analysis, let= |Z|, mnax= {|al | a € Z}, and let[n]|
denote the seft, ..., n}. Note thatm < 2mpyax+ 1 holds for every?.

2.1 Winner Gap

In this section, we assume only the coefficients in the oljedtnction to be
randomly perturbed. We assume that the objective functiaf the formc™x =
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C1X1+ - - + CnXn, Where the coefficientsy, . .., ¢, correspond to independent ran-
dom variables following possibly different probabilitysttibutions with bounded
densitiesfy, ..., fn, respectively. Foli € [n], let @ = sup.y fi(s) and letg =
maxcjy @. The constraints can be chosen arbitrarily. In fact, it isewen nec-
essary that they are linear. In the following, we assumeahatrbitrary set” of
feasible solutions is given.

The first structural property that we are interested in isdiséance between
the best and the second best solution. The best solutiomevitelled thevinner
and denoted by, i.e.,x* = argmaXc’x|x € .’}. The second best solution will
be denoted by, i.e.,x** = argmaXc'x|x € .7\ {x*}}. We define thevinner
gapA to be the difference between the objective values* @&ndx**, that is,

A=c'x —c'x* .

We will prove a lower bound on the size of the winner gap. Thaopfollows
roughly the line of arguments used in [6] to bound the sizehef winner gap
for binary optimization problems. It demonstrates soméeftechniques that are
used later in a more involved fashion to analyze the casaohastic constraints.

Lemma 4 (Isolating Lemma)For all € > 0, it holdsPr[A < €] < & gnn?.

Proof Analyzing the winner gag directly seems to be difficult sina& depends
in a complicated fashion on the random variabtgs ..,c,. In order to over-
come these difficulties, we define random varialdgs.. ., A,, also depending
oncy,...,Cn, With the property that, regardless of the values ofdfe A always
takes a value equal to at least one offfie. Hence A can only take a value in the
interval [0, €] if this also true for at least oné; and hence we can apply a union
bound to obtain

Prid<egl < _iPr[Ai <g . 2

Fori € [n], the random variabl4; has the property that, even after fixing the values
of thecy’s with k # i arbitrarily, the conditional probability of the evefit € [0, €]

is small. Combining this result with equation (2) yields thesired bound on the
probability thatA does not exceesl. In the following, we will define the random
variablesAs, ..., 4, in a formal way and estimate the probabilities of the events
4 € [0, €.

If a variablex; takes the same value in all feasible solutions, then thislvkr
does not affect the winner gap and thus we can assume withssiof general-
ity that, for everyi € [n], there exist two feasible solutions that differ in then
position. Under this assumption, we can define a winner4yapith respect to
positioni, for eachi € [n], by

A =c'x* —cTy |, wherey = argmaXc'x|x € .7 A% # X'}

denotes the best solution that differs from the winkiein thei-th position. In
words, 4; is the difference between the objective value of the winieaind the
value of a solutiory that is best among those solutions that differ in ittt bit
from x*.

Clearly, the best solutior™ = (x], ..., %;) and the second best solutigf =
(X3%,...,%5") differ in at least one position, that is, there exists arn| such that
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X # x*. If the best and the second best solution differ in posititrenA = A;.
Thus,A is guaranteed to take a value also taken by at least one oftiebles
Al, e ,An.

Fix an arbitrary index € [n]. We will prove an upper bound on the probability
thatA; does not exceesd. For that purpose, we partition the set of feasible solu-
tions. into disjoint subsets”}, for j € 2. We define the subset] to be the set
of all feasible solutions which take valyet position, i. e.,xi ={xeSx=j}.
Now suppose all random variablegwith k # i are fixed arbitrarily. Obviously,
under this assumption, the winner among the solutions/jnand its objective
value are fixed as the objective values of the solutiong(jrdo not depend on;.
Although the objective values of the solutionsfr‘j, for j # 0, are not fixed, the
winner ofjﬂji is determined as well because the unknown outcome of th@nand
variablec; does not affect the order among the solutions‘h For j € 7, letx())
denote a winner among the solutionsﬁ'ﬂ-i.

Since the winnex" and the best solution differing in theh position fromx*
cannot be contained in the same.s¢lt it always existj, j; € 2 with jj # j3 and
4 = c"x1) —cTxU2). Hence 4 is always equal to one of the random variables
c"x1) —cTxi2) with j1, j» € 2, j1 # j» and therefore

Priai<e#]< 5 Pr [ch(jl) —c™x2) ¢ o, e]|9’} : A3)
i1.12€2
1#]2
where# denotes the event that tlegs with k # i take the values they are fixed
to.

Observe that, under the assumption thatglewith k # i are fixed, the ran-
dom variablec”x(i1) — ¢Tx(J2) can be rewritten ag + (j1 — j2)c;, for some con-
stantk depending on they’s with k # i. Since we assumed the densityoptto
be bounded by, the density ok + (j1 — j2)ci is bounded byp/(]j1— j2|) < @.
Hence, for anyj1, j» € 2 with j1 # o, we have

Pr [chUl) —c'X2 el Z|<e-0 . (4)

Since there are less thar different possible choices fgg and j,, combining

(3) and (4) yields
Prigi<eg <e-om .

Observe that combining (3) and (4) directly yields a condisil probability. How-
ever, since the resulting bound holds for arbitrarily fixgd, we can leave out the
condition. (Formally, we can integrate the product of thaditonal probability
and the densities of thg’s over all possible values th®’s can take.)

Combining this with (2) concludes the proof of the lemma. ad

2.2 Loser and Feasibility Gap for a Single Constraint

Now we assume the coefficients in the objective function tdixed arbitrarily.
Solutions with the same objective values are ranked in atranpbut fixed fash-
ion (e.g., lexicographically). In this section, we dealyonlith the casek = 1,
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that is, the set of feasible solutions is determined by oneali constraint. For
this case, we will define two structural properties caltkr gapandfeasibility
gap and prove lower bounds for these gaps holding with a certaibability. A
generalization to the general case vty 1 many constraints is given in the next
section.

We assume that the constraint determining the set of feesiblitions is of the
form w'x = wixg + - - - +WnXn < t, where the coefficientan, ..., w, correspond
to independent random variables following possibly déferprobability distri-
butions with bounded densitids, .. ., f,, respectively. For technical reasons, we
have to allow further restrictions on the set of feasibleisohs. To be more pre-
cise, we assume that an arbitrary suhget 2" is given and that the set of fea-
sible solutions is obtained as intersectionsfwith the half-space” described
by the constraintv™x < t. Fori € [n], let @ = sup_g fi(s) andg = maXc iy @.
Thewinner, denoted by*, is the solution with the highest rank i N %. The
feasibility gapis defined by

r_ {tWTx* if #N%#0

Tl 4L otherwise.

In words,I” corresponds to the slack of the winner with respect to thestiwldt.
A solution from. is called doserif it has a higher rank thaxi, that is, the losers
are those solutions fron¥ that are better than the winner (w.r. t. the ranking) but
that are cut off by the constraimt” x < t. The set of losers is denoted . If
there is no winner, as there is no feasible solution, then efmel.Z = .. The
loser gapis defined by

A= min{w'x—tjxc £} if Z#0
L otherwise.

Next, we show that both the loser and the feasibility gap ofrmigandom ILP
with one constraint are lower bounded by a polynomiahin,ax@) ~* with prob-
ability close to 1.

The definitions of winner, loser, and feasibility gap arastrated in Figure 1.
Intuitively, if these gaps are lower bounded by a polynorimighmyax@) 1, then a
pseudopolynomial algorithm can be turned into an algorithth polynomial run-
ning time by simply rounding all coefficients. We need to easthat the rounding
does not change the optimal solution. Rounding each caaitichanges theosts
c"x and theweight w x of each solutiorx only slightly. Therefore, if the gaps are
large enough, rounding the coefficients does not changeptiraal solution. This
intuition is formalized in Section 3.

Observe that the solutior'@s different from all other solutions i as its
feasibility does not depend on the outcome of the randonficaaftswa, . .., Wy.
Suppose De . and @ has the highest rank among all solutionssth Then one
can enforcé” = 0 by setting = 0. Similarly, one can enforcé — 0 byt < 0 and
t — 0. For this reason, we need to exclude the solutibfidm our analysis. Later
we will describe how the random perturbation of the thredhwdlps us to cope
with this problem.

The key result of this section is the following lemma on theesiof loser and
feasibility gap.



10 Heiko Rdglin, Berthold Vocking

c'x leldx
r A min
> X
fxmin ° “—77.
" ) ° " o ©
- 0o © P e ©
Al e 00 e .
--{-e o °
o o o.. .: o ® .. .. *
°e,° ° °*e|," o %
° o o q0 ° ‘ LI o0 °,
°o® ° ,° ‘e ® e o® o
® % ° ® o © |o o o
wTx [w) fx

Fig. 1 Rounding the coefficients inandw changes slightly the costs and weights of the solu-
tions. Intuitively, the rounding causes all solutions tovaslightly up or down and left or right.
However, if winner, loser, and feasibility gap are large wgto(i. e., larger than the movement
due to the rounding), then the optimal solution w.r.t. the-nounded ILP is also the optimal
solution w. r. t. the rounded ILP.

Lemma5 (Separating Lemma)Let . with 0" ¢ . be chosen arbitrarily and
let c= max [y E [|wi]]. Then, for alle with & < (32n°m’mpax@?) 1, Prlr < g] <

2(& - 32crPm’ mmax@?) Y2 andPr [A < €] < 2(g-32crPm’ mypax@?) /3.

The proof of this lemma is subdivided into a few steps. At fins will assume
that the densitie$;, ..., f, have a bounded support, i. e., we assume the existence
of a constans € Rxq such thatf;(x) = 0 holds for every € [n] and for every ¢
[—s,9. In addition to that, we assume that the sétdoes only contain elements
which are pairwise linearly independent, i. e., we assuraettiere do not exist
two solutionsx,y € . such thai = ay or y = ax holds for somex € R. In this
case, we can show an upper bound on the probability that Hee gap does not
exceeds. Then, we will use symmetry properties between the two gamsder
to show that bounds for the loser gap also hold for the felitgilgiap and vice
versa. Thus, the bound proven for the loser gap holds forehsilbility gap as
well. The assumption that the sgt does not contain linearly dependent solutions
can be dropped at the cost of an extra facthdor the feasibility gap. Due to the
symmetry, this bound also applies to the loser gap. In thestap, we will drop
the assumption that the support of the densities is bounded.

2.2.1 Loser Gap for Linearly Independent Solutions.

In this section, we prove the Separating Lemma for the loaprig the case that
- does not contain two solutions which are linearly dependent

Lemma 6 Let.s” with 0" ¢ . be chosen arbitrarily such tha#’ does not contain
two linearly dependent solutions. Assum&)f= 0, for i € [n] and x¢ [—s,s].
Then, for alle > 0and forall p> 1,

1
Prin <e] < P + & An*mPminax®®sp .
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The role of the paramet@rneeds some explanation. We will show that the density
of the loser gap is upper bounded hy*#Pmy.@?spif some failure eveng (p)
does not occur. It holdBr [£(p)] < 1/(2p). Thus, the first summand corresponds
to the case of failure&’(p) and the second one corresponds to the easép).
Note that an upper bound on the density oA implies an upper bound on the
probability that/\ takes a value less than or equalktof ea sinceA takes only
non-negative values.

Now we present our approach to bound the deniitpf the random variable
. We will see that this approach fails under certain circamsés and define the
failure eventt’ = &(p) accordingly. The first step of the proof is very similar to the
proof of the Isolating Lemma. We define certain auxiliarydam variables which
are easier to analyze than the loser gaguch that\ is guaranteed to always take
a value also taken by at least one of these auxiliary randoiablas.

Definition of the auxiliary random variableszor each combination af j € [n]
with i < j and ofm= (my, M, Mg, my) € 2* with linearly independent vectors
(mg, mp) and(mg, my), we define a random variab}:’&?‘f‘ﬁ in such a way that there

are always indices j and a vectom such that\ = /\m holds. Hence, it follows

PriA <e]=PrjA €]0,¢]] < Z PriAT e[0¢]] .
i,j,m

For this reason, a bound on the densities of the random Vesialj} implies a
bound on the probability that does not exceed _

Let x* denote the winner, lex™" denote theminimal loser i.e., x™" =
argmin{w'x|x € .#}, and fix some, j € [n] with i < j and a vectom € 2* with
linearly independent subvectofsy, my) and (mg, my). First of all, we formally
define the random variab#. Therefore, Ieki’f’jm3’m4 denote the winner of those
solutionsx with x; = mg andx; = my, i.e., X*,ng ™ denotes the highest ranked

solution in{x € .7|x; = mg,Xx; = My} N %. Based on this definition, we define a
set of losers

L = {xe.7 | x =my,x; = my, xis ranked higher thax; e

min,m .

The minimal losex: is defined to be the solution fromﬂ-?‘rj with the smallest

Ny
weight, i. e. x,mj"”’ﬁ = argmin{w"x | x € £™}. Now the random variabld™ is

defined to be the slack of the minimal Iosé?'”m w.r.t. the threshold, i.e.,

AT = wa,mJ'” Mt If LM=0 thenx,mJ'n »m and/A are undefined.

The loser gap always takes a value also taken by at least otleecduxiliary
random variables.One can easily argue that the requirement thatways takes

a value equal to one of the values of mgj‘ is fulfilled. The winnerx* and the
minimal loserx™" are linearly independent since they are both elements from
.. Thus, there are always two indiceg € [n] with i < j such that the vectors
(x,x]) and (xmin. x’J“'”) are linearly independent. Settiigs, M) = (X', X]) and

(Mg, mp) = (XM, xm'”) yieldsA = /\
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Analysis of the auxiliary random variable3he auxiliary random variable4;
defined in the proof of the Isolating Lemma have the propdray the probability
of the event); € [0, €] is small even when all's with k # i are fixed arbitrarily.
A slightly weaker property is also true for the random valeal;f\m If all wy's
with k # i andk # j and additionally also the sumgw; 4 myw; are flxed then we
can prove an upper bound on the conditional probability efahent/\7 [0,¢€]
which depends only on the fixed value of the samBw; + myw;.

Hence, we assume the coefficiemswith k # i andk # j and the sunmgw; +
myw; to be fixed arbitrarily. An upper bound for the densﬁWF holding for all
deterministic choices of these random variables obwobslyls for all random
choices as well. The reason for fixing these random variablésat, for given
values ofwy with k # i andk # j and formgw; + mywj, the Wlnnerx*Jm3 ™ can
be determined without knowing the outcomevgfandw; as the weights of all
solutions in{x € .’|x = mg,x; = My} are known. Thus, als& is known. Since

the random variables; andw; affect the weight of all solutlons i in the

same fashion, also the minimal Ioséﬂ’ does not depend on the outcome/\(pf
andwj. Hence, if the outcome afi, with k # i andk # j and the sunmaw; + myWw;
are known, the loser gafyT can be rewritten as

R Tm'”m —t =K+ MW + mw;j
wherek denotes a constant dependlng on the fixed valueg wifith k £ i andk £
j andmsw; +myw;. Thus, under our assumptlofqm andmw; +mpw; are random
variables which differ only by a constant offset. In partauupper bounds on the
density of the random variable;w; + mpw; hold for the density oﬂm as well.
Recall that we still assume the sumw; + myw; to be fixed to an arbltrary value
z< R. Therefore, we will determine the conditional den@ﬁf of mw; + mpw;
under the conditiomgw; + myw; = z. 7

Lemma 7 Let(my,mp) € 22 and (mg,my) € 22 be linearly independent and let
fmgwi+muw; : R — R denote the density of the random variablgn- myw;. Fur-

thermore, let Q‘Z R — R denote the conditional density of the random variable
MW + MpWw; under the condition Bw; +myw; = z. Then, for all xc R,

mz @
9 (x) < 7fm3Wi+m4Wj(Z) .

(5)

Proof Let f : R x R — R>g denote the joint density of the random variables
A= mWw; +mpw; andB = maw; + myw;. Since the vectoremy, mp) and(mg, my)

are assumed to be linearly independent, the transformatio®? — R? with
®(x,y) = (mXx+ mpy, Mmex+ myy) is bijective and can be inverted as follows

(o) = ( mya— mpb mib—mga >
’ MMy — Mg " MMy — Mpg
In order to determine the conditional densd?z, we have to determine the Ja-
cobian matrixM of the transformatior®—! containing the partial derivatives of
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@1 as matrix entries. Witk = mymy — mpmg, we have
T
w (%)
d d
The determinant of the Jacobian matrix i&1Due to the independence of the
random variables; andwj, the joint densityf of A andB can be written as
f(a,b) = |detM]|- fi(@ (@ b)) - fj(®, (a,b))

:i.f_ mya— mpb . mb — msa
|d| d ! d

¢
swgﬁ.

The conditional densitgﬂZ can be expressed as follows

f(xz2 f(x,2)
Ja T 2)dX T rmow; (2)

g =
Thus, for allx € R, it holds
mz @
TN <
gl?J ( )7 fm3Wi+m4Wj(Z)
O

Hencegm’Z cannot be upper bounded since, in general, the denomimedsy i

can become arbitrarily small. Therefore, we restrict thesfile choices for to
the seR\M;">™ with

1
mg,my __
3™ = {220 fwsnen® < g5 -

We denote the event thatsw; + myw; takes a value fronMi’fF’m“ by & i

In the case ofw@iﬁb’m“, the conditional densityg':‘jZ is bounded from above by
4’ mPmmax@?sp. Hence,

Pr [AiT elo, s]hé‘fﬁ’m“} < £ AnPMmP M ax@?sp . (6)

In the following lemma, we use the bounded support of theitlead; and f; to
show that it is unlikely that the ever{'>™ occurs. Lets’ denote the event that,
for at least one combination &fj € [n|] andmg,my € &, the events[’; ™ occurs,
that is,& denotes the union of all these events.
Lemma 8 For everye > O, it holds
PriA < g|-&)] < € 4n*'mPminaxg®sp

and

Pri¢] < 1

p— 2p .
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Proof We have definet;lE‘}"J-‘3’m4 to be the event that the random variabigw; +
myw; takes a value from the set

1
mg,mMy __
3™ = {220 fwsnen® < g5 -

The probability of this event can be written as follows
Pr [é‘ﬂ‘?’m“} — /M"‘S’m“ fm3wi+m4wj(2)d2 .
i.J

We define
ijmm‘l = {ze Mf}s’m“ | Frngw -+ maw; (2) > 0}

and obtain the following estimate

Pr[gmem] = /M o T, (202
i,

1

< .
- 4n2mzmnaxSD/Mi’fjm3‘m4 1dz @

Below, we prove an upper bound afidaxs on the integral occurring in (7). This

upper bound yields
1

Pr {é‘j"ﬁm“} < nep -

Hence, we obtain

and

Pr AT € [0,€]|-¢] =

<1
~1-1/(2p)
<2.Pr [/\{T} o, s]\ﬂgﬂb’m“}
< £-8mmM’ Mmax®’sp .
Applying a union bound and (6) yields
PriA<e[-6]< 5 Pr (AT € [0,€][-¢]

i,;m
<e- <2> m* - 8n°mPMimax@?sp

< £-4n*mPminax@®sp .

-Pr [/\{T} €[0,e]A ﬁé‘}f?’m“}
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It remains to show an upper bound ofi}axs on the integral occurring in (7).
In order to prove this upper bound, we distinguish betwegars¢cases.
1st case:mg = 0 and my # 0. In this case, it h0|d§r'n3wi+m4Wj = fm4wj, where
fm4Wj denotes the density of the random variamigv;. We obtain

MM C {z€ R| fmyw; (2) >0}

= [—s|mu[,sjmy|] .

Altogether, we obtain

/Mi*]%m 1dz < 2s|my| < 2Mmaxs -

2nd case:mz # 0 and my = 0. Analogous to the first case.

Preparation of the following casesln the cases which we have not yet consid-
ered it holdsmz £ 0 andmy # 0. Therefore, the densit)‘/nbwimuwj(z) can be
rewritten as follows:

g (2) = [ g (0 T (220
e L))
mg| - [Ma| /o~ \ Mg my
= i/ fi (x)- f (Z_%X> dx
M| Jow my
Thus, formg # 0 andmy # 0, it holds
M;Te C {ZER ﬁ/ fi (x) - f; (Z—nf;hx> dx > 0}
C {ZER IKeR: fi(x)-f (znzgx> >0}

{ZGR IxeR: fi(x) >0Af <an]3x> >0}

c {ZGR HXGR:(sgxgs)A(sg Z_nszgs>} . (8

3rd case:mg # 0,my # 0 and mg - my > 0. We start by rewriting the second in-
equality in (8). We have

Z— MgX

<S <= *%SJr

VA
,SS < J—
m g
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Hence, the inequalities in (8) imply the following lower als forx

z
X 1=—sandx = —@er —
m N

and the following upper bounds far

z
Xy1=sandxy» = %SJr — .
m M

For any giverg, the domain of the variabbeis restricted by these bounds to the
interval | = [max{x 1,% 2}, min{xy1,Xy2}]. If this interval is empty, thez does
not belong to the sd‘tllifjmm“. In order to determine the values ofvhich yield

| = 0, we solve the equations1 = x,2 andx » = X, 1 W. I. t. z We obtain

X1=Xy2 < z=—(Mg+mu)s

and

X2 =Xy1 < z= (Mg+my)s .

Subcase 3amz > 0 and my > 0. In this subcase it holds

z < —(mMg+my)s = x 1> X2 and
z > (mg+my)s =X 2> X1 -

Thus, settingz < —(mg+my)s or z> (Mg + my)s yields | = 0. Altogether, we
obtain

MM C [~ (mg -+ my)s, (Mg + my)S
and, therefore,

/ 1dz < 2(mg +My)s < 4Mmass
TS

1]
Subcase 3bmg < 0 and my < 0. Analogous to case 3a.
4th case:mg # 0,my # 0 and mg - My < 0. Analogous to the third case.
This concludes the proof of the lemma. ad

Proof (Lemma 6Now Lemma 6 follows as an easy corollary from Lemma 8:

PriA <eg] <Pr[&]+PriA <g|=&) < 2—1p+8-4n4m6mmax<ﬂzsp .
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2.2.2 Connection between Loser and Feasibility Gap.

In this section, we show that Lemma 6 holds for the feasibgap as well. First
of all, we have to generalize the definitions of loser andibglity gap a little bit.
LetA(t) denote the loser gap w. r. t. the constraifik < t and let/” (t) denote the
feasibility gap w. r. t. this constraint.

Lemma 9 Lete € R>p and te R be chosen arbitrarily, the®r [A(t) < g|-&] =
Prilr(t+e¢) <eg|=&).

This lemma can be proven by arguments very similar to those imsthe proof of
Lemma 9 in [6]. For the sake of completeness, we provide tbeffrere.

Proof (Lemma 9)

We take an alternative view on the given optimization probl&Ve interpret
the problem as a bicriteria problem. The feasible regiorefindd by the set”.
On the one hand, we seek for a solution froffwhose rank is as high as possible.
On the other hand, we seek for a solution with small weighgnetiheweightof
a solutionx € .7 is defined by the linear function” x. A solutionx € . is called
Pareto-optimalif there is no higher ranked solutigne . with weight at most
wTx. Let & denote the set of Pareto-optimal solutions.

Next we show that winners and minimal losers of the originatiroization
problem correspond to Pareto-optimal solutions of theiteica problem. First,
let us observe that the winnat with respect to any given weight threshdld
is a Pareto-optimal solution for the bicriteria problem dnese there is no other
solution with a higher rank and a smaller weight than w'x*. Moreover, for
every ParTeto—optimaI solution there is also a threshalduch thak is the winner,
e, t=w'x

The same kind of characterization holds for minimal loserwell. Recall, for
a given threshold, the minimal loser is defined to B&™" = argmin{w'x|x € .#}.
We claim that there is no other solutigrthat simultaneously achieves a higher
rank and not larger weight that™". This can be seen as follows. Suppgse
a solution with higher rank thax™". If w'y <'t, theny € % and, hencex™"
would not be a loser. However, W'y ¢ (t,w"x™"], theny andx™" would both
be losers, buy instead ofk™" would be minimal. Here we implicitly assume that
there are no two solutions with the same weight. This assom# justified as the
probability that there are two solutions with the same weigB. Furthermore, for
every Pareto-optimal solution there is also a thresholduch that is a minimal
loser. This threshold can be obtained by settingwx, t < w'x.

Now let us describe loser and feasibility gap in terms of feaoptimal solu-
tions. Let#? C .# denote the set of Pareto-optimal solutions with respedteo t
fixed ranking and the random weight functishx. Then loser and feasibility gap
are characterized by

r(t) =min{t—w'xjxe Zw'x<t} ,
At) = minfw'x—tjxe 2 wix>t} .
For a better intuition, we can imagine that all Pareto-optisolutions are

mapped onto a horizontal line such that a Pareto-optimatisolx is mapped to
the pointw” x. Thenr (t) is the distance from the poihbn this line to the closest
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Pareto point left ta (i. e., less than or equal tp, andA (t) is the distance from
to the closest Pareto point strictly righttofi. ., larger than). That is,

PriA(t) < €[-&] = Pr[3xe 2 :w'x € (t,t +£]| &)
=Pr[l(t+¢)<egl-&] .

O

Corollary 10 Let.” with Q" ¢ . be chosen arbitrarily such tha¥” does not
contain two linearly dependent solutions. Assunig) = 0, for i € [n] and x¢
[—s,9. Then, for alle > 0and for all p> 1,

Prir <eg < 2—1p+£-4n4m6mnax<pzsp )

Proof Observe that Lemma 6 and Lemma 9 hold for arbitrary choicds bof
particular, for givert € R and givens > 0, Lemma 6 holds for' =t — €. Hence

Prilr <g]=Pr[l(t) <g
=PriA(t—e) <¢]

< 2_1p + € - An*mPminax@®sp .

2.2.3 Separating Lemma for Densities with Bounded Support.

Next, we drop the assumption that the set of feasible salsiti6 does not contain
linearly dependent solutions and obtain the following lesu

Lemma 11 Let.” with O" ¢ . be chosen arbitrarily. Assume(X) = 0, fori €
[n] and x¢ [—s,5]. Then, for alle > 0and for all p> 1, Pr[l <¢|-&) < ¢-
An*m’mpax@?sp andPr [A < g|-&] < - 4n’m’ Myax@?sp.

Proof The main idea of the proof is to partition the set of feasildkitgons.”
intomclasses” ...,.7M such that none of these classes contains two linearly
dependent solutions. L&t = {dy,...,dn}. If 0 ¢ 2, such a partition can simply
be created by setting’® = {x € .|x; = dy}, for k € [m]. Otherwise, we assume
w. |.0.g.dy =0 and we set, fok € [m— 1],

SW={xe.s|Tien:x=...=x_1=0andx =d} .

For each of these classes a feasibility gay is defined. First we define the
winnerx*®¥ w.r.t. 7 to be that element fron¥’¥) 1 2 which is ranked high-
est. The feasibility gag ¥ is simply defined as —w"x~® if .7k -£ @, and

1 otherwise. Since the winnet of the original problem is contained in one of
the classes” (¥, the feasibility gap~ always takes the value of one of the vari-
ablesl” ). Observe that Lemma 6 can be applied to the subproblems défine
the classes”® since these classes do not contain linearly dependeniamut
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Hence, we can combine Lemma 8 and Lemma 9 to ob?ai[r(” < s\ﬂ@@} <
£ - 4n*mPmmax@?sp Thus, it holds

m
PrIr < el-6]< 3 Pr[r® < g -6] < &-an'mmuaop
k=1

The result on the loser gap follows by another applicatidreshma 9 analogously
to Corollary 10. ad

2.2.4 Proof of the Separating Lemma.

Now we drop the assumption that the densitigs. ., f, have bounded supports
and finish the proof of Lemma 5.

Proof (Lemma 5)The main idea is to choose some conswatR such that the
probability that one of the coefficients, . . ., w, takes a value outside of the inter-
val [—s, | is upper bounded by/12p). We sets= 2npc Fori € [n], let% denote
the event thatv; ¢ [—s,s| and let¥ denote the union of these events. An appli-
cation of Markov’s inequality showBr [¢] < 1/(2p). For the conditional density
functions it holds

0 if X ¢ [—s,s] 0 ifx¢[-ss
fij- (x) = { % otherwise = {Zfi (x) otherwise.

Thus, the densities of the random variablgs. . ., w, have a bounded support
under the condition-¢. We define# = & U¥ to be the failure event. Then we
can bound the probability that the loser gap or the feasgityhp does not exceed
under the condition.Z . We have seen that the conditiof# leads to a conditional
density which is by a factor of at most 2 larger than the una@hl density.
Hence, Lemma 11 yieldBr [A < g|-.%] < € - 32crPm’ Myax@? p?. Furthermore,

it holdsPr [#] = Pr[€U%] < Pr(&] +Pr[#] < <. Thus, we obtain
Prin < e] < %+£~32cn5m7mnax<p2 p? .

Settingp = (& - 32crPm’ mmax@?) /2 yields the desired result. The upper bound
on ¢ is due to the assumptign> 1. The claim about the feasibility gap follows
analogously. ad

2.3 Loser and Feasibility Gap for Multiple Constraints

Assume there ark > 2 constraints. Without loss of generality these constsaint
are of the formAx < b with A € R**" andb e R¥, and the set of points satisfy-
ing these constraints ar#, . .., %, respectively. We generalize the definition of
loser and feasibility gap as follows. Given a set of soludiofi and a ranking,
the winnerx* is the highest ranked solution i&f N %, ... N %Bg. Thefeasibility
gap for multiple constraintss the minimal slack ok* over all constraints, that is,
I =minjc{(b—Ax);}, if X" exists, and” =L otherwise.
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A
X1

X2
[ J

Fig. 2 The feasible region, i.e., the shaded, triangular-shapgibm, is determined by three
linear constraints. Lex* be the winner and lex; and x; be the only losers, ther; is the
minimal loser determining the loser gdp

A solution in.¥ is called loser if it has a higher rank thah Observe that
a loser only needs to be infeasible with respect to one okthenstraints. In
particular, it is not true that the weight values of each e likely to be far
away from the corresponding threshotgsj < [k]; not even if we consider only
those constraints for which the respective loser is infdaskortunately, however,
we do not need such a property in the application of the logpr gor every loser,
one only needs a single constraint that renders the loseasiifle. Therefore, we
define thdoser gap for k constraintsy

A~ [mines max;e g {W] x—t;} if £ #0
1 otherwise.

The definitions of loser and feasibility gap for multiple straints are illustrated
in Figure 2.

Lemma 12 Let c= max ¢y Ma%c|q E[|A;i|] denote the maximal expected abso-

lute value of any of the coefficients. Then[I" < ] < 2k(& - 32crPm’ Mmax@?) /3
andPr[A < &] < 2k(g - 32cr°m Myax@?) /3 for all £ < (3200M Mpay@?) ™

Proof First we show the bound for the feasibility gap. bétdenote the winner
and supposé < ¢, for somee € Rxo. Then there exists pe [K] with t; — J-Tx* <
€. Thus,
Prir <e < ;]Pr [tj —w]x" < ¢
J€lK]

For each individuaj € [k], we can apply the Separating Lemma assuming that the
set of feasible solutions with respect to all other constsaiss fixed as the coeffi-
cients in this constraint are stochastically independemh fthe other constraints.
This way, we obtaitPr [I” < €] < 2k(& - 32crPm’ mpax@?) /3.

Next, we turn our attention to the loser gap. Unfortunatelg, cannot gen-
eralize the bound on the loser gap from one to multiple caigt in the same
way as we generalized the feasibility gap since the loserfgamultiple con-
straints does not correspond to the minimal loser gap oweiirttlividual con-
straints. Instead we will make use of the result for the fahssi gap established
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above. Assumé\ < g, for somee € R>p. Then there exists a los&rsatisfying
Vje K :WJ-Tx—tj < €. Let x_ denote the loser with this property that is ranked

highest. Consider a relaxed variahof the given ILPI where the thresholds of all
stochastic constraints are increaseceby. e., we have constrainijx <tj+eg,

j € [K]. Observe thak_ is feasible in the relaxed ILP and, by the definition
of x., no higher ranked solution is feasible. Thus,is the winner ofl’. Since
t < WJ-TXL <tj+ ¢ for somej € [K|, the feasibility gap™’ of the relaxed prob-
lem is smaller thare. Hence A < € impliesl™’ < €. Finally, applying the bound
Pr{I’ < g] < 2k(g-32crPm’mmax@?) Y2 derived in the first part of the proof yields
PriA < g] < 2k(e - 32crPm’ myax@?) V3. O

3 From Structural Properties to Algorithms

Now we describe how the Isolating and the Separating Lemmea, iemma 4
and 5, can be used for turning an algorithm with pseudopohyabworst-case
complexity into an algorithm with polynomial smoothed cdexity. In order
to apply the pseudopolynomial algorithm efficiently, it seeto be necessary
to round the coefficients, but obviously even the smalleshding can change
the optimal solution in a deterministically chosen ILP. Hwer, using the re-
sults about the sizes of winner, loser, and feasibility gapsvn in the previous
sections, we are able to show that typically rounding thdfimbents of a semi-
random ILP after a logarithmic number of bits does not chahgeoptimal solu-
tion.

We will exploit this property by amdaptive roundingapproach. To be more
precise, our algorithm rounds the coefficients after a litigrauic number of bitsd
and calls the pseudopolynomial time algorith#to obtain an optimal solution
X for the rounded input in polynomial time. After that, the adighm calls acer-
tifier, i. e., a subroutine determining whethéis also the optimal solution of the
original, non-rounded ILP or not. In the former case, theatgm can stop with
outputx’, in the latter case, the precisidris increased by one and the algorithm
starts over again.

In the following sections, we first present and analyze théfes and, after
that, we show that the adaptive rounding approach yieldgnpohial smoothed
running time.

3.1 A Certifier for Stochastic Objective Functions

First we will consider the case that only the coefficientsh@ dbjective function
are randomly perturbed. The certifier used in [6] heaviliegebdn the fact that the
variables are binary. Hence, we have to substantially anérig order to make it
work in the general case of ILPs.

The crucial observation is that rounding after theh bit after the binary point
changes each coefficient in the objective function by at rao$t Since the ab-
solute value of every variable is bounded fimy,x, We conclude that rounding
changes the objective value of each solutian.” by at mosimya,2 9. Thus,
if the optimal solutiornx’ of the rounded ILP is better by at leastrfa2 9 than
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every other solution, then we know for sure tiais also the optimal solution of
the original, non-rounded ILP.

For any real number (or matrix of real numbeas)et | a] 4 denote the number
(or matrix) obtained froma by rounding it (or all its components) down after the
d-th bit after the binary point, i. e., by cutting of the remaipbits. Furthermore,
letx' denote the optimal solution of the rounded ILP, ixtis the optimal solution
of max(|c|q)Txw.r. t. the constraintéx < b.

The certifier calls the pseudopolynomial time algorithmn2any times, each
time with slightly modified coefficients in the objective fition. Letcl) denote
the coefficients in thé-th call of the pseudopolynomial time algorithma and

let X be the optimal solution to the objective function neX)"x w.r.t. the
constraintsAx < b. Fori € {1,...,n}, we definecl) to be

i _ [ leild if j#1
! L€} Ja + (NMax+ 1)2_d+1 ifj=i

and, fori € {n+1,...,2n}, we definecl) to be

J

i _ [ Lcild if j#£i—n
[Cjla— (NMmax+1)279L if j=i—n.

That is, in each of the firgt rounds one of the coefficients is slightly increased
and in each of the last rounds one of the coefficients is slightly decreased. If,
for all i € [2n], X!} =X, i.e.,X is the optimal solution to all of these ILPs, then
we know for sure that’ is also the optimal solution to the non-rounded objective
function c"x, otherwise we cannot certify to be the true winner and report a
failure. In the latter case, which can only occur if the wingap is small, the
adaptive rounding algorithm increases the precisi@md starts over again. Now
we prove these properties formally.

Lemma 13 If X' = x( for all i € [2n] then % is the true winner, i. e., the optimal
solution of the non-rounded ILP. If there exists an [2n] with X # x() then the
winner gap cannot be larger than g2 9+1.

Proof Assumex' = xU), for alli € [2n], and assume there exists a solutjon.”
with Ay < b andc"y > c"X, that is,y is a better solution of the non-rounded ILP
thanx'. Sincex’' #y, we can choose an indéx [n] with x| # y;. First, consider

the caseq < yi. We will show that in this case we hax® =y, which contradicts
the assumption) = X'

Because'y > c¢'x = c"x() and since rounding changes the objective values
of y andx(V) by at mostnmya2 9, we have

(lc]a)Ty— (lc]g) X > —nmpa 4t
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and hence
COUICRRY
= (lcJa) "y — ([c]a) "X + (% — ) (NMnax+ 1) 274
> ([e]a)Ty—([c]a) X + (NMax+ 1)27 4
> —nrnnaxz_d+1 + (NMmax+ 1)2_d+l
—270150.

Henceyy is a better solution to the objective functiée))Tx thanx’ which con-
tradicts the assumptiod = x(), Thus, ifx' = x(V for everyi € [2n], thenx’ must
be the optimal solution of the non-rounded ILP. In the cdsey;, one can anal-
ogously show thay is a better solution to the objective functi¢et™))Tx than
X.

Now assume there exists aa [2n] with X # x(). There are two cases between
we have to distinguish: eithet is the true optimum of the non-rounded ILP6r
has become the optimal solution only due to the rounding.cHse thak’ is not
the true optimal solution of the non-rounded ILP can occuy drthe winner gap
is not larger thammpax2 911 since

(LCJd)TX* o (I_de)TX/ > CTX* o CTX/ N nmnax27d+1 >A— nmmaxzid{[ )

Now a_ssume(’ to be the true op_timum of the no_n—rounded ILP, ix¢= x*, and
X #x1) for ani € [2n], that is,(c)Tx* < (c)Tx(®). Then we have

A< CTX* _ CTx(i) < (C(i))TX* _ (C(i))TX(i) +nmnaX2—d+l < nmnaxz—d+1 )
Thus, also in this case the winner gap cannot exomagh,2 9+, O

Corollary 14 The probability that the certifier fails because more bitgdheo
be revealed to determine the true optimal solution is bodnfilem above by
N2 Mnax@2 9+,

Proof If the certifier fails, the winner gap cannot be larger tham,a2 9. Ap-
plying Lemma 4 yields the desired bound. a

3.2 A Certifier for Stochastic Constraints

Let | denote a semi-randomly created ILP andKetenote the number of con-
straints, that is, the constraints have the faxm< b with A € RK*" andb € R¥.
Furthermore, lex’ denote the optimal solution of the rounded ILP ra&xw.r. t.
AX < B + (NMyax+ 1)279 with A’ = [A]q andb’ = |b]g. In the following, we
assume that there is a unique ranking among the solutioasjghwe assume
there are no two solutions with the same objective values iStwithout loss of
generality since we can assume solutions with equal obgetlues to be ranked
in an arbitrary order. Moreover, for two matricAsandB, A < B means< in ev-
ery component and, for a matrixand a real numbez, A+ z denotes the matrix
obtained fromA by addingz to each entry.
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The certifier consists of only two steps: First, it tests wkethere exists an
indexi € [k] such that; € [—(NMyax+ 1)2-9,0) or not. In the former case(
cannot be certified to be the true winner with the given nunalbeevealed bitgl
per coefficient. In the latter case the certifier tests whefté < b’ — (nmypax+
1)2-9 holds or not. In the former casé can be certified to be the true winner, i. e.,
the optimal solution of the non-rounded ILIPOtherwisex' cannot be certified
to be the true winner. The latter case can only occur if eitherloser or the
feasibility gap is small.

Lemma 15 If A'’X' < b/ — (NnMnax+ 1)279, then % is the optimal solution of the
non-rounded ILP I. If AX £ B/ — (NMpax+ 1)2“’, then either the loser gap or the
feasibility gap does not exceed g2 9+1.

Proof First, we will show that solutions feasible w. r. t. the caaBitsAx < b stay
feasible w. r. t. the constrainf¥x < bf + (NMyax+ 1)279. AssumeAx < b. Since
the rounding changes each coefficient by at moStahd since, for € [n)], it holds
IXi| < Mmax, the j-th weightof the solutiorx, i. e.,(AX)j = aj 1X1 + - - - +&;j nXn, for
j € [K], is changed by at mosimya2 9. Hence,

Ax=|A]gx < AX+NMpa@ ¢ < b+ NMpax2 @ < |bg + (NMnax+1)279 .
Thus, there cannot be a feasible solution of the Ilv#hich is ranked higher than
X.

Now we have to make sure th&tis a feasible solution of the non-rounded

ILP and has not become feasible only due to the roundinfyxif< b’ — (nMpax—+
1)2-9, thenx’ must also be a feasible solutionlgf. e.,Ax < b, since

AX < AX + nmpa 9

< (X — (NMmax+1)279) + Mg

=bX-29<bx .
Hence, in this case, the rankxdfcannot be higher than the rank of the true winner
x*. Altogether, the rank of’ must equal the rank of and thus< must equak®.

Now we have to consider the case th&t’ < b’ — (NnMpnax+1)2-9 does not

hold and show that, in this case, either the loser of the lidagigap has to be
small. We distinguish between the case tkids the true optimal solution of the

non-rounded ILA, that is,xX = x*, and the case that has become feasible only
due to the rounding. In the former case, we haxe< b and there exists dne [K]|

with b — (A'X); < (NMmax+1)279. Hence, we have
I < min{bj — (AX);
< o by = (A0;)
< by — (AX),

< bf — (AX)) + (NMnax+1)27
< (NMpax+ 127441 |

that is, the feasibility gap cannot be larger thfamyay+ 1)2-9+1,
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In the latter case, we hay@'x); < bf + (NMmax+1)2-9 and hence

N < AX)i —b;
,?;ﬁ‘(i({( )] J}

< AX); —b 1)27¢
< T;ﬁg({( )i — bj + (NMmax+1) }

< (NMpax+1)279
that is, the loser gap cannot be larger tiiamyay+ 1)2-9+1. O

Lemma 16 Assume e= max;cx MaXe(y E[|Aj|] to be constant. The probability
that the certifier fails is bounded from above Dy - poly(n, m, Myax, @, k).

Proof The certifier can only fail ib € [—(NMmax-+1)279,0) holds for at least one
i € [K] or if either the loser or the feasibility gap does not exc@ethnay+ 1)2-9+1.
Since the thresholds are random variables whose dengiéid¢sanded byp, the
probability of the first event is bounded from above kipimyax+ 1)2 9. But
observe that we cannot use Lemma 12 directly to bound theapilitly that one
of the gaps is too small since this lemma is true onlyifsnot a feasible solution.
First, assume that there exists ope k] such thatb; < —(NMyax+ 1)2-9.

Then @' is not a feasible solution w. r.Ax < bandA'x < b’ 4+ (NMyax+1)2-9 and
hence, it does not affect the certifier. Thus, in this case;areuse the Separating
Lemma directly to bound the probability that the certifie)faSince the certifier
fails if, for atleast ong € [K], bj € [~ (nMmax+1)279,0), in this case, the solution
0" does not affect the certifier either.

Now assumebj > 0 for all j € [k]. Then @ is feasible w.r.t.Ax < b and
AX < B + (NMyax+1)279. 1f 0" is not the optimal solution w. r. Ax < b, then
0" does not affect loser and feasibility gap. Hence, the onkeaahich needs
to be considered in more detail is the case tHais@he optimal solution w.r.t.
Ax < b. Observe that the feasibility of the solutio 6an be verified easily.
Therefore, no problem occurs in the case tHatsOthe optimal solution w.r.t.
AX < b 4 (NMpax+1)279,

The only case which is a little bit tricky to handle is the césat 0 is the
optimal solution w.r.t.Ax < b but thatx' # 0" is the optimal solution w.r.t.
A'X < B+ (nMax+1)279. In this casey is rejected by the certifier singé |gx' <
|b]g — (NMmax+ 1)2-9 does not hold. We have to bound the probability that this
case occurs. Analogously to the casef0.s, one can argue that this can only
happen if the size of the loser gapdoes not exceethmyay+1)2-9+1. Unfortu-
nately, we cannot apply Lemma 12 directly since we analyzedjaps only in the
case 0 ¢ .. Instead, we exclud€'Grom the set of feasible solutions, that is, we
define.¥’ = .#\{0"} and argue with the help of the loser gapw.r.t..’. The
crucial observation is that adding @ the set of solutions can, in the cdsg 0,
only result in an increase of the size of the loser gap. Theoretherefore is that,
in the casé > 0, ' is a feasible solution which means that by addiRgdxhe set
of solutions one cannot enlarge the set of losgrsHence, it holdsA > A’ and
we can make use of Lemma 12 in order to bound the probabilitt/thdoes not
exceed NMyax+ 1)2-9+1,
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Altogether, the failure probability is bounded by
Pr [Hi € K :bi € [—(NMpnax+ 1)2*‘,0)}
+ Pr |7 < (MMnax+ 1)27%72] 4 Pr A < (e 12742
< 279 poly(n,m Mmax, @.K) .
O

If 2 C Ny, then itis not necessary to perturb the thresholds ifhe certifier
in Section 3.2 increased the rounded threshbldsy (nmyax—+ 1)2*d in order to
ensure that feasible solutions w. rAix < b stay feasible after the rounding. If we
assume that the thresholdsiibelong to the deterministic part of the input and that
2 C No, then this is already ensured by the rounding, i. éAxiEK b, for a solution
X, then alsod’x < b, as rounding down each entry AfimpliesA’x < Ax. Observe,
that in this case no problem with the solutidhdcurs since it is either feasible
w. I. t. bothAx < b andA’x < b or it is infeasible w. r. t. both. Thus, i C Ny, itis
not important that none of the thresholds lies in the intigv@nmpax+1)2-9,0),
and hence, it is not necessary to perturb the thresholds.

3.3 A Certifier for Stochastic Objective Functions and Craiats

If both the objective function and the constraints are pedd, we can combine
the certifiers described in the preceding sections. Thdirss,we round the co-
efficients in the constraints and use the certifier for stettb@bjective functions
to calculate a certified optimumx w.r.t. the rounded constraints. Then we use
the certifier for stochastic constraints to test whe#és also an optimal solution
of the non-rounded ILP. The combined certifier fails if onetlu two certifiers
used as subroutines fails, hence the probability of faitime be bounded as in
Lemma 16.

3.4 Adaptive Rounding

In this section, we analyze the adaptive rounding approaichdlly. Assume that
we start withd = 1, that is, we reveal only the first bit after the binary poiitach
coefficient. The pseudopolynomial algorithm is called ttcakate the optimum
w.r.t. the rounded coefficients and, after that, an appatpriertifier is called.
If this certifier fails, the number of revealed bitsis increased by one and the
pseudopolynomial algorithm and the certifier are calledragbhis is repeated
until a certified winner can be calculated.

Lemma 17 The adaptive rounding algorithm has polynomial smoothathing
time.

Proof We will show that a polynomidP with the same properties as the one in (1)
exists. Consider a clags3 of ILPs and letl be an ILP from/T with n integer
variables and stochastic expressions. Furthermore Netenote the input length
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of the ILPI. Since each stochastic coefficient has a virtual lengthibhbjdsN >
nk and a random perturbation does not change the lengthlaft <7 denote the
(possibly randomized) pseudopolynomial algorithm and (¢} denote a random
variable describing the running time of algorithm on inputl plus the running
time of the subsequently called certifier.

If d bits of each stochastic coefficient and threshold are rededhen we
scale each stochastic expression by the factaioXbtain integral expressions.
Let Iq denote the rounded and scaled ILP obtained this way andwebeat each
stochastic number ity is rounded and scaled in such a way that it is integral.
Let W denote the largest absolute value taken by one of the stiicimasnbers
in lg, thenW = WyWb, where the facto, = 29 is due to the scaling and the
factorW, denotes the integer part of the largest absolute value oftghastic
number before the scaling. Since the running timexis pseudopolynomially
bounded (w.r.t. the perturbed numbers), we can choose tngta@otsc;, c; € R
with ¢; > 1 such that for each ILIP from the clasg7 with lengthN we have
E[T(Ig)] < c1(NW)%2 = ¢c1(N29W5)%2,

To analyze the running time of this adaptive rounding apghnpave have to
estimataV, = 29 andWs. If the certifier concludes optimality afte bits after the
binary point of each random number have been revealed, veindbie following
estimate on the expected running tilBlar] of the adaptive rounding

do
E[Tar] = dz (E[T(la)] +cN)
=1

do
< dz (c1(N2"W,)% +-cN)
=]

< cdgN 4 ¢ (N2% )% | 9)

wherecN denotes the costs for revealing an additional bit of eacticannumber
and for scaling the constraints. Hence, we have to estinmateldrge the values
of dp andW, are typically. Since the absolute mean value of a randonalkeri
which is described by the densify, is bounded bye /@ < E, for some constant
E € R, and since we assume the stochastic numbers to be in theahjted, 1]
before perturbing them, an easy application of Markov'syiradity and a union
bound showPr W, > (E+1)-4N/g] < £/4.

We have seen (Corollary 14 and Lemma 16) that, for an ap@igppolyno-
mial p, the probability that the certifier fails afterbits after the binary point of
each coefficient have been revealed can be bounded byp2n, m myayx, @, k).
Hence, there is a polynomiglwith Pr [dy > log(q(N, @,1/¢))] < €/2.

In equation (9), we substituigy by log(q(N, ¢,1/¢)), Wo by (E+1)-4N/¢
and multiply the resulting polynomial by/4. We denote the polynomial obtained
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this way byP. ForallN e N, ¢ > 1, € € (0,1] and for alll € %y, we have

Pr {TAR“ +fp) >P (N,(p, %)}
< Pr[do > log(q(N,@,1/€))] +PrW> > (E+1)-4N/¢]

+Pr {TAR(I +fp) > gE [Tar (1 + f‘/’)]]

since the running time of the adaptive rounding can exceedtiund given by
the polynomialP only if eitherdy or W» exceed their bounds or if the expected
running time of the adaptive rounding is larger by a factoadieast 4¢ than its
expected running time. a

We have proven how an algorithm with pseudopolynomial woeste com-
plexity can be turned into an algorithm with polynomial sriwm complexity.
This concludes the first part of the proof of Theorem 1.

4 From Polynomial Smoothed Complexity to PseudopolynomiaRunning
Time

Finally, we need to show that polynomial smoothed compjeixitplies the exis-
tence of a randomized pseudopolynomial algorithm. Thiskeaehown by argu-
ments similar to those used in the analysis of the binary [&s€or the sake of
completeness, we provide the proof here.

Proof (Second part of Theorem 1)

Since we are aiming for a pseudopolynomial time algorithm,0&n assume
that all numbers in the stochastic expressions are intelgetrsl denote the largest
absolute value of these numbers. The idea is to perturb albets only slightly
such that the perturbation changes the value of each eiqumess at most%. To
ensure that the set of feasible solutions is not changeddyydtiurbation, we relax
all constraints by’—z‘, i.e., we replacav’x <t by w'x <t +% for all stochastic
constraints. We then use an algorithm with polynomial sinedtcomplexity to
compute an optimal solutiox for the perturbed problem. By bounding the error
due to the random perturbatioxi, can be shown to be optimal for the original
problem as well.

Let us describe the proof in more detail. Our smoothed aisfiysmework as-
sumes that all numbers in the stochastic expressionsfalihie interva[—1, 1] (or
[0,1]) before they are perturbed. To adapt our problem to thiséwonk, we first
scale all input numbers in the stochastic expressiord byand adapt the thresh-
olds accordingly, i.e.wiXg + WX + - - - +WpXny < t is replaced by(w; /M)x; +
(Wo/M)Xo+-- -+ (Wh/M)xy <t/M. Consequently, we have to ensure that the per-
turbation changes the value of an expression by at mg&M). In particular,
we will allow only perturbations that change each individmamber by at most
1/(2Mnmyax). We call such a perturbatigoroper. For the uniform distribution,
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we could simply sep = 2Mnmyax. However, we have to deal with arbitrary fam-
ilies of distributions, as defined in our smoothed analysasnework, and they
do not necessarily have a finite domain. The idea is to ch@gdaege enough so
that a random perturbation is proper with probability astek2. Recall that the
perturbation model is described by the density functfowith density parame-
ter ¢ = 1. For other values op, we scalef appropriately. By our assumptions
on f, it holds [ |t|f,(t) dt = E/¢ for some fixedE € R. Letr be a random vari-

able following f,. Settingg = 4’ mmakEM and applying Markov’s inequality

yields Pr [|r\ > m} =Pr [|r\ > 2”—("§E < k. Our perturbation drawn of
these random variables. The probability that the pertiohds proper, i.e., the
probability that their absolute values are at m@ﬁ}ww is1/2.

Consider any clasg of ILPs with polynomial smoothed complexity. Polyno-
mial smoothed complexity implies that the problem admitalgorithm.e” whose
running time can be bounded polynomiallyrrand ¢ with arbitrary large con-
stant probability strictly less than 1. In particular, thexists a polynomid®(n, @)
such that the probability that the running time exceRgs @) is at most%l. We
use/ as a subroutine in order to obtain a pseudopolynomial dlyariThis al-
gorithm works as follows. At first, it generates a perturbatnd checks whether
it is proper. If it is proper, then it runs/ for at mostP(n, @) time steps. lfe7 has
not finished within this time bound, the algorithm returns fRE. Let Q be the
event that the perturbation is proper. Observe that foryetveo eventsA andB
it holds Pr[AAB] > Pr[A] + Pr [B] — 1. Therefore, the success probability of our
algorithm is

[

PrIQA(T <P(n,@))] = PriQ—Pr[T>P(n¢)] > 7 .

N

The running time of this algorithm is pseudopolynomialg@s: O(Mn?mya,K).
Hence [, € ZPP. This completes the proof of Theorem 1. ad

5 Packing and Covering ILPs

In this section, we prove Theorem 2 and Theorem 3. For the afakenplicity,
we consider only the case that the thresholds are fixed arbjtmstead of being
randomly perturbed. This is without loss of generality siperturbing the thresh-
olds is not necessary # C Ng as we have already mentioned in Section 3.2, and
furthermore it only strengthens the adversary.

First, we look at ILPs containing at least one perturbed packonstraint.

Proof (Theorem 2)Ne have to show the existence of a polynonitalith the
same properties as the one in (1). We will show that one carttadthox con-
straintsx; < m, 1 < i < n, for a suitable chosem = poly(N, £~1) such that with
probability at least - £/2 these additional box constraints do not change the op-
timal solution of the ILP. The class of ILPs with the addi@box constraints
has polynomial smoothed complexity due to Theorem 1. Comgithis with the
additional failure probability of at most/2 implies the theorem. Now, we will
analyze this formally.
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Consider an ILP with at least one perturbed packing comgtagj...,a, <1,
whereay, . .., a, are random variables with density boundedand letx € Nj be
an arbitrary solution fulfilling this constraint. Foe [n], if x; > m, thena; < 1/m.
Since

. i 1 . . 1 ng
Pr {Hle[n].a{< m} =Pr [Hle[n].a € {O, m)] < e
the probability that restricting the feasible regio{ ®. .., m}" with m= [2ng/¢]
changes the optimal solution is boundedehy.
We only look at the restricted problem witif = {0,...,m}". We can apply
Theorem 1 to show that this problem has polynomial smootbetbtexity. That
means, it exist a polynomi& and an algorithne whose running tim@ satisfies

1 £
> P )<=
Pr {T(I+ffp)P (N,(p,g)] <3

foreveryN e N, ¢ > 1, ¢ € (0,1], andl € .#y. Without loss of generality we can
assumé to be of the fornP (N, @, e~1) = mZ,,- p(N, @, 1), for some constant
a and a polynomiap independent of”. We define a polynomid? by

PN,g,e ) =B- G@DG p(N,p.e71) |

£

for some constarf to be defined later. Le¥ (¢) denote the event that there exists
ani € [n] with & < ([2n@/€])~1, then we have

Pr {T(I +fp) >P (N,(p, %)]

< Pr[ (g)]+Pr {T(I + fp) > P(N,(p,%)

ﬁ%(e)}

where the last inequality follows since under the conditiof(¢) the feasible
region.” is {0, ..., m}" with m= [2nkg/e]. Observe that the additional constant
B is needed since the conditien? (€) can increase the maximal densgty But
not more than by a factor of 2 sin€& [-.7 (¢)] < 1/2. O

The line of arguments used to prove Theorem 2 can also be ospebve
Theorem 3. It only remains to show that, for an ILP consistinty of perturbed
covering constraints, one can choosenas- poly(N,£~1) such that adding the
box constraintg; < m, fori € [n], does not change the optimal solution, with high
probability.

Proof (Theorem 3onsider an ILP consisting &f covering constraintéx > 1
and letx* denote an optimal solution of this ILP. Since the objectiwection has
to be minimized and all coefficients are non-negative, we assume that each
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vectory with y < x* is infeasible. Hencex" > m implies that there must be a
j € [kl witha;; <1/(m—1). Since
. . 1 nke
A< — | < ——
Pr|3iein],jelK a,,.<mi1 <1
if we setmto [2nkg/€ + 1], the probability that restricting the feasible region to
{0,...,m}" changes the optimal solution is boundedejy.
The remaining part of the proof is completely analogous éoptoof of Theo-

rem 2. ]

6 Extensions

In this section, we will briefly discuss two extensions to ¢hess of problems and
the class of perturbation models to which our analysis caappdied. That is, we
will show that one does not need a linear objective functi@amiy the constraints
are perturbed and that coefficients set to zero by the adyedsanot need to be
perturbed. For the sake of simplicity, we have not considi¢hese extensions in
the previous sections explicitly.

6.1 Nonlinear Objective Functions and Constraints

Let us remark that, as described in Section 1.1, our pra#biinput model

leaves the freedom to perturb only parts of the input. Oulyaigshows that a
class of ILPs has polynomial smoothed complexity if and afitiie correspond-
ing optimization problem has pseudopolynomial worst-casaplexity w. r. t. the

perturbed numbers. This characterization also holds fatimgar adversarial ob-
jective functions, that is, a class of integer programs waithitrary objective func-
tions and linear constraints has polynomial smoothed cexitylwhen the coef-
ficients in the constraints are randomly perturbed if ang drthe corresponding
optimization problem has pseudopolynomial worst-caseptexity w.r.t. these
coefficients.

In Section 2.2 and in Section 2.3, where we analyzed loserfeasibility
gap, we did not make use of the fact that the objective fundtdinear. Instead,
we only assumed a fixed ranking among the solutions and hesmcenla 5 and
Lemma 12 hold for arbitrary objective functions. In partariobserve that in the
definitions of loser and feasibility gap and in the definifafwinner and minimal
loser a fixed ranking among the solutions is assumed and @visrrmade use of
the fact that this ranking is induced by a linear objectivection. Also the certifier
described in Section 3.2 works for arbritrary rankings.

For many problems, it does not make sense to perturb evestraam since
some of the constraints might describe an underlying protd&ucture which
should not be touched by the randomization. In the analylslsser and fea-
sibility gap, we assumed that the feasible region is giverhyintersection of
an arbitrary set” C 2" with the half-spacess, ..., %k determined by the lin-
ear constraints. Observe that one can explicitly distislylietween adversarial
and stochastic constraints by encoding the adversariati@nts into the set”
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which is not affected by the randomization. This way, it iscapossible to have
non-linear adversarial constraints.

6.2 Zero-Preserving Perturbations

One criticism of the smoothed analysis of the Simplex atpatiis that the ad-
ditive perturbations destroy the zero-structure of anmjatition problem as they
replace zeros with small values. See also the discussiatdin The same criti-
cism applies to the zero-structure of ILPs. It turns out, &asv, that our proba-
bilistic analysis in Section 2 is robust enough to allow thesprvation of the zero-
structure. In particular, we can extend our semi-randonatinpodel introduced in
Section 1.1 by allowing the coefficients in the stochastjregsions to be fixed to
zero instead of being a random variable. In the model of sheabainalysis, this
corresponds to strengthening the adversary by avoidingeherbation of these
zero-coefficients. To show this, we define equivalence ekagsth respect to the
objective function or a constraint. Consider the expressibx and letZ be the
set of indices with w; fixed to zero. We call two solutions X' € ./ C {0,1}"
equivalent, if they differ only in positions containedZne.g., ifx #x = i€ Z
holds. This wayZ defines equivalence classes.ghwith respect to the expres-
sionw'x. Clearly,w'x evaluates to the same value for all solutions within the
same equivalence class.

For the Separating Lemma, observe that only the highesedas&lution in
each equivalence class is relevant for the loser and féisdmp. This is because
the winner and the minimal loser are Pareto optimal solstids all solutions
within an equivalence class have the same weight, only thkelst ranked so-
lution of this class can become Pareto optimal. For the mepd analysis, we
can virtually remove all solutions fron¥’ that are not ranked highest within its
equivalence class. This way, we can ignore variaklegth i € Z and apply the
Separating Lemma as before.

A similar argument can be used to show that the Generalizdgtisg Lemma
stays valid with respect to equivalence classes, thatéswihner gap is defined
to be the difference in objective value between the bestladecond best equiv-
alence class. However, it might be very likely that thereragy optimal solu-
tions as the winning equivalence class might have manyisakitWe adapt the
certifier described in Section 3.1 to this situation by mgkiwo changes. Let
X' denote the solution of the rounded ILP as defined in SectibraBd assume
w.l.0.g. thatc,_|.1,...,Cy are those coefficients set to zero. Then onlyxthefor
ie{l,...,n—=1}U{n+1,...,2n—1} are considered and it is not checked whether
X = xO but if X andx®) are in the same equivalence class. After these modi-
fications, the arguments in Lemma 13 also hold for the casemf-greserving
perturbations.

7 Conclusions

Our probabilistic analysis shows that important classdkR$ with a fixed num-
ber of constraints have polynomial smoothed complexitys fiteans that random
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or randomly perturbed instances of such ILPs can be solvedlymomial time.
We obtained these results by using algorithms with pseuglopmial worst-case
complexity as subroutines. Usually these pseudopolynaimi@ algorithms are
based on dynamic programming. We want to remark that we dbelave that
this approach is the most practical one to tackle ILPs ofkimd. We expect that
branch and boundndbranch and cuheuristics are much faster than algorithms
based on dynamic programming. The next challenging tasknsathed analysis
of these heuristics in order to theoretically explain tlgg#at success on practi-
cal applications. The main contribution of this paper is ¢inpout chances and
limitations for such a probabilistic analysis.
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