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Abstract We present a probabilistic analysis of integer linear programs (ILPs).
More specifically, we study ILPs in a so-called smoothed analysis in which it is
assumed that first an adversary specifies the coefficients of an integer program
and then (some of) these coefficients are randomly perturbed, e. g., using a Gaus-
sian or a uniform distribution with small standard deviation. In this probabilistic
model, we investigate structural properties of ILPs and apply them to the analysis
of algorithms. For example, we prove a lower bound on the slack of the optimal
solution. As a result of our analysis, we are able to specify the smoothed com-
plexity of classes of ILPs in terms of their worst case complexity. This way, we
obtain polynomial smoothed complexity for packing and covering problems with
any fixed number of constraints. Previous results of this kind were restricted to the
case of binary programs.
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1 Introduction

Many algorithmic problems are hard with respect to worst-case instances but
there are algorithms for these problems that work quite efficiently on “typical
instances”, that is, on instances occurring frequently in practice. Finding an ad-
equate theoretical model for typical instances, however, is a challenging task. A
reasonable approach seems to be to represent typical instances in the form of a
probability distribution on the set of possible inputs. A classical average-case anal-
ysis begins with the specification of the input distribution. Usually, this is just a
simple uniform distribution. The dilemma with such an approach is that any fixed
input distribution can be argued to be not the right, typicalone. During the last
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years there has been an increased interest in more general input models and more
robust kinds of probabilistic analyses that do not only holdfor particular input dis-
tributions. An example for such a concept is the so-calledsmoothed analysisof the
Simplex algorithm by Spielman and Teng [14]. They assume that first an adver-
sary specifies the input numbers of an LP and then these adversarial numbers are
slightly perturbed at random using a Gaussian distributionwith specified standard
deviation. Spielman and Teng show that the expected runningtime of the Simplex
algorithm under such random perturbations is polynomiallybounded in the size
of the input and the reciprocal of the standard deviation. Intuitively, this means
that the running time function of the Simplex algorithm shows superpolynomial
behavior only at some isolated peaks.

Beier and Vöcking [6] generalize smoothed analysis towards discrete opti-
mization problems. In particular, they study optimizationproblems that can be
represented in the form of binary programs. Alinear binary optimization problem
is defined by a set of linear constraints and a linear objective function over some
subset{0,1}n. By parametrizing which constraints are of stochastic and which
are of adversarial nature, it is possible to randomize some of the constraints with-
out destroying the combinatorial structure described by other constraints. Their
analysis covers various probability distributions for thechoice of the stochastic
numbers and includes smoothed analysis with Gaussian and other kinds of per-
turbation models as a special case. It is shown that a binary optimization problem
has polynomial smoothed complexity if and only if it has random pseudopolyno-
mial complexity, i. e., the unary variant of the problem is inZPP. Other results on
the smoothed and average-case analysis of discrete optimization problems can be
found, e. g., in [1,2,5,3,4,6,7,9,11–13]. All these results are restricted to prob-
lems that can be written in the form of a binary optimization problem.

In this paper, we extend the results of Beier and Vöcking [6]from binary to-
wards integer linear programs (ILPs). We investigate structural properties of ILPs
and, as a result of our analysis, we are able to describe the smoothed complexity of
classes of ILPs in terms of their worst case complexity similar to the characteriza-
tion for binary optimization problems. For example, our characterization implies
polynomial smoothed (average) complexity for packing and covering problems
with any fixed number of constraints since these classes of ILPs admit pseudopoly-
nomial time algorithms. On the other hand, packing and covering problems with
an unbounded number of constraints do not have polynomial smoothed complex-
ity, unlessZPP = NP, as these classes are stronglyNP-hard1.

Outline. In the next section, we define the considered probabilistic model and
state our results in a formal way. The probabilistic analysis is presented in Sec-
tion 2. It is centered around structural properties of integer linear programs, called
winner, loser, andfeasibility gap. In Section 3, we show how to exploit these gaps
algorithmically in the form of an adaptive rounding scheme increasing the accu-
racy of calculation until the optimal solution is found. Essentially, Sections 2 and 3
show that the existence of a pseudopolynomial algorithm fora class of ILPs im-
plies that this class has polynomially smoothed complexity. In Section 4, we show
that the inverse holds as well, that is, polynomial smoothedcomplexity implies

1 An NP-hard problem is calledstronglyNP-hard if it remainsNP-hard even if all input
numbers are encoded in unary (see, e. g., [10]).
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the existence of a pseudopolynomial algorithm. In our probabilistic analysis, we
assume that each variable can take only a polynomial number of different values.
In Section 5, we show that this assumption is fulfilled for packing and covering
ILPs, with high probability, so that we get a tight characterization of polynomial
smoothed complexity for packing and covering ILPs. Finally, extensions of our
results and conclusions are given in the Sections 6 and 7.

1.1 Problems and Model

Our analysis deals withinteger linear programs (ILPs). Without loss of generality,
we consider maximization programs with≤-constraints of the following standard
form:

max cTx

s. t. Ax≤ b

x∈ Dn ,

whereA∈ R
k×n, b∈ R

k, c∈ R
n, andD ⊂ Z. In our analysis we consider “classes

of ILPs”, that is, we place certain restrictions on ILPs. Packing and covering ILPs
are good examples for such restrictions. In apacking ILPall coefficients are non-
negative, the objective is maxcTx and all constraints are of the formAx≤ b. In a
covering ILPall coefficients are non-negative as well, the objective is mincTx and
all constraints are of the formAx≥ b. Both in packing and in covering ILPs, the
variables are assumed to be non-negative, that is,D = N0. As another example,
one can also place restrictions on the number of allowed constraints. Optimization
problems with such restrictions are, e. g., specified in the compendium ofNP opti-
mization problems [8]. For example, packing ILPs with only one constraint corre-
spond to the INTEGER KNAPSACK PROBLEM, and packing ILPs with a constant
numberk of constraints correspond to the MAXIMUM INTEGERk-DIMENSIONAL
KNAPSACK PROBLEM.

In our probabilistic analysis, we will assume that some of the constraints
and/or the objective function are randomly perturbed. The other components of
the ILP are not touched by the randomization. When talking about aclassΠ of
ILPs, we mean thatΠ specifies which restrictions are placed on the ILPs and
which components are randomly perturbed.

Description of the probabilistic input model.Smoothed analysis assumes a semi-
random input model: First, an adversary specifies all input numbers (coefficients in
A andc as well as all thresholds inb), then some of the coefficients and thresholds
are randomly perturbed. We assume that all numbers specifiedby the adversary
are from the interval[−1,1]. Observe that this is not a restriction as every ILP
can be brought into this form by scaling the linear expressions that violate this as-
sumption. In the considered probabilistic input model, onecan choose which part
of the input is perturbed and which part is left untouched by the randomization.
Basically, there are three different choices: either only the coefficients in the ob-
jective function or only the coefficients and thresholds in the constraints or both
are perturbed. We assume that the selected numbers (which wewill call stochastic
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numbers/coefficientsin the following) are randomly perturbed by adding an inde-
pendent random variable to each of them. More general perturbation models to
which our analysis can also be applied are discussed in Section 6.

Spielman and Teng use Gaussian perturbations [14]. Following [6], we use
a more general perturbation model: The random numbers that are added to the
adversarial numbers are drawn according to a specified family of probability dis-
tributions satisfying the following conditions. Letf : R → R≥0 be a density func-
tion such that sups( f (s)) = 1 andE =

∫

R
|s| f (s)ds is finite. In words, the random

variable described byf has “maximum density equal to 1” and a “finite expected
absolute mean value”. The functionf is called theperturbation model. Forφ ≥ 1,
we definefφ by scaling f , that is, fφ (s) = φ f (sφ), for everys∈ R. This way it
holds sups∈R( fφ (s)) = φ and

∫

R
|s| fφ(s)ds= E/φ . We obtainφ -perturbationsac-

cording to perturbation modelf by adding an independent random variable with
density fφ to each stochastic coefficient.

For example, one obtains the Gaussian perturbation model from [14] by choos-
ing f to be the Gaussian density with standard deviation(2π)−1/2. A non-negative
feasible region for the random numbers can be obtained, e. g., by choosingf to
be the density of the uniform distribution over[0,1]. In [14], the running time is
described in terms of the input size and the standard deviation σ . Following [6],
we describe the running time in terms of the input size and thedensity parameter
φ . For the Gaussian and the uniform distribution these two parameters are closely
related: in both cases,φ is proportional to 1/σ . Intuitively, φ can be seen as a
measure specifying how close the probabilistic analysis isto a worst-case analy-
sis. A worst-case instance can be interpreted as a stochastic instance in which the
probability mass for each stochastic number is mapped to a single point. Thus, the
largerφ , the closer we are to a worst-case analysis.

Definition of smoothed complexity.The smoothed complexity of a classΠ of ILPs
with an associated perturbation modelf is given in terms of the input lengthN and
the parameterφ . First of all, the definition of the input length needs some clarifi-
cation as some of the input numbers are assumed to be random variables following
continuous probability distributions. These numbers are irrational with probability
1, but we define that each of these numbers has a virtual lengthof one. (This way,
we ensureN ≥ nk.) The bits of the stochastic numbers can be accessed by asking
an oracle in timeO(1) per bit. The bits after the binary point of each stochastic
number are revealed one by one from left to right. As one of theresults of our
probabilistic analysis, we will see thatO(logn) revealed bits per number are suf-
ficient to determine the optimal solution with high probability. The deterministic
part of the input does not contain irrational numbers and canbe encoded in an
arbitrary fashion. LetIN denote the set of possible adversarial inputs forΠ of
lengthN. For an instanceI ∈ IN, let I + fφ denote the random instance that is
obtained by aφ -perturbation ofI . We say thatΠ haspolynomial smoothed com-
plexityunder f if and only if it admits a polynomialP and an algorithmA whose
running timeT satisfies

Pr
[

T(I + fφ ) ≥ P

(

N,φ ,
1
ε

)]

≤ ε , (1)
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for everyN ∈ N, φ ≥ 1, ε ∈ (0,1], andI ∈ IN, that is, with probability at least
1− ε the running time ofA is polynomially bounded in the input lengthN, the
perturbation parameterφ , and the reciprocal ofε. An equivalent way of defining
polynomial smoothed complexity is to require the existenceof an algorithmA

whose running timeT satisfies

∃α,β > 0 : ∀φ ≥ 1 : ∀N ∈ N : max
I∈IN

E
[

(

T(I + fφ)
)α

]

≤ β φN .

This definition of polynomial smoothed complexity follows more or less the way
how polynomial complexity is defined in average-case complexity theory, adding
the requirement that the running time should be polynomially bounded not only
in N but also inφ . Observe that this does not imply that the expected running
time is polynomially bounded. To enforce expected polynomial running time, the
exponentα in the definition of polynomial smoothed complexity must be placed
outside instead of inside the expectation. The reason for not defining polynomial
smoothed complexity based on the expected running time is that this is not a suf-
ficiently robust notion. For example, an algorithm with expected polynomial run-
ning time on one machine model might have expected exponential running time
on another machine model. In contrast, the above definition yields a notion of
polynomial smoothed complexity that does not vary among classes of machines
admitting polynomial time simulations among each other. The drawback of this
definition is, however, that polynomial smoothed complexity does not imply poly-
nomial expected running time.

1.2 Our Results

We show that the smoothed complexity of ILPs can be characterized in terms
of their worst-case complexity. For a classΠ of ILPs, let Πu denote the corre-
sponding optimization problem in which the stochastic numbers are assumed to
be integers in unary representation instead of randomly chosen real-valued num-
bers.

Theorem 1 Let Π be a class of ILPs in which each variable can take only a
polynomial number of different values, i. e.,|D | is polynomially bounded in the
number of variables.Π has polynomial smoothed complexity if and only ifΠu ∈
ZPP.

In other words,Π has polynomial smoothed complexity if it admits a (possi-
bly randomized) algorithm with (expected) pseudopolynomial worst-case running
time. If we apply this theorem to ILPs containing at least oneperturbed packing
constraint then we can even drop the restriction on the setD as perturbed instances
of these problems fulfill this restriction with high probability.

Theorem 2 A classΠ of ILPs with at least one perturbed packing constraint has
polynomial smoothed complexity if and only ifΠu ∈ ZPP.

Unfortunately, Theorem 2 cannot be generalized to classes of ILPs with at
least one perturbed covering constraint. However, it is still true if all constraints
are covering constraints that are randomly perturbed.
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Theorem 3 A classΠ of ILPs consisting only of perturbed covering constraints
has polynomial smoothed complexity if and only ifΠu ∈ ZPP.

This characterization shows that stronglyNP-hard classes like general pack-
ing or covering ILPs do not have polynomial smoothed complexity, unlessZPP =
NP. On the other hand, packing and covering problems with a fixednumber of
constraints like, e. g., the MAXIMUM INTEGER (k-DIMENSIONAL) KNAPSACK
PROBLEM have polynomial smoothed complexity as they admit pseudopolyno-
mial time algorithms. The same is true for ILPs with polynomially bounded|D |
and a fixed number of constraints.

Technical comparison to previous work.In this paper we present a generaliza-
tion of the smoothed analysis for binary optimization problems presented in [6]
towards integer optimization problems. The rough course ofthe probabilistic anal-
ysis presented in the subsequent sections is similar to the analysis from [6]: We
prove certain structural properties which are then exploited algorithmically in the
form of an adaptive rounding scheme using pseudopolynomialalgorithms as a
subroutine. In particular, we present a probabilistic analysis showing that it is suf-
ficient to reveal only a logarithmic number of bits of each stochastic number in
order to determine the optimal solution. We want to remark, however, that the
generalization of this result from the binary to the integercase is not straightfor-
ward but technically difficult in several aspects. The majorchallenge we have to
tackle is that the main part of the previous probabilistic analysis heavily relies on
the fact that variables are binary. For example, the previous analysis uses the ex-
istence of 0 entries in any solution (except 1n) in order to place assumptions on
subsets of solutions sharing a 0 at the same position. Observe that assumptions on
the values of the solutions in such subsets do not affect the random coefficients at
which all these solutions take the value 0. Obviously, this elementary trick fails
already when going from binary to tertiary variables. In this paper, we use a dif-
ferent kind of analysis that places assumptions on subsets of solutions in such a
way that only values of linear combinations of pairs of random coefficients are re-
vealed. In the subsequent analysis, the knowledge about these linear combinations
is taken into account carefully.

2 Probabilistic Analysis of ILPs

In order to prepare the proof of Theorem 1, we will analyze structural properties of
semi-random ILPs. LetI = (A,b,c) be an ILP withn integer variablesx1, . . . ,xn ∈
D which has been generated according to the semi-random inputmodel described
above. Throughout this analysis, letm= |D |, mmax = {|a| | a ∈ D}, and let[n]
denote the set{1, . . . ,n}. Note thatm≤ 2mmax+1 holds for everyD .

2.1 Winner Gap

In this section, we assume only the coefficients in the objective function to be
randomly perturbed. We assume that the objective function is of the formcTx =
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c1x1 + · · ·+cnxn, where the coefficientsc1, . . . ,cn correspond to independent ran-
dom variables following possibly different probability distributions with bounded
densities f1, . . . , fn, respectively. Fori ∈ [n], let φi = sups∈R fi(s) and letφ =
maxi∈[n] φi . The constraints can be chosen arbitrarily. In fact, it is not even nec-
essary that they are linear. In the following, we assume thatan arbitrary setS of
feasible solutions is given.

The first structural property that we are interested in is thedistance between
the best and the second best solution. The best solution willbe called thewinner
and denoted byx∗, i. e.,x∗ = argmax{cTx|x∈ S }. The second best solution will
be denoted byx∗∗, i. e.,x∗∗ = argmax{cTx|x ∈ S \{x∗}}. We define thewinner
gap∆ to be the difference between the objective values ofx∗ andx∗∗, that is,

∆ = cTx∗−cTx∗∗ .

We will prove a lower bound on the size of the winner gap. The proof follows
roughly the line of arguments used in [6] to bound the size of the winner gap
for binary optimization problems. It demonstrates some of the techniques that are
used later in a more involved fashion to analyze the case of stochastic constraints.

Lemma 4 (Isolating Lemma)For all ε ≥ 0, it holdsPr [∆ ≤ ε] ≤ ε ·φnm2.

Proof Analyzing the winner gap∆ directly seems to be difficult since∆ depends
in a complicated fashion on the random variablesc1, . . . ,cn. In order to over-
come these difficulties, we define random variables∆1, . . . ,∆n, also depending
on c1, . . . ,cn, with the property that, regardless of the values of theci ’s, ∆ always
takes a value equal to at least one of the∆i ’s. Hence,∆ can only take a value in the
interval [0,ε] if this also true for at least one∆i and hence we can apply a union
bound to obtain

Pr [∆ ≤ ε] ≤
n

∑
i=1

Pr [∆i ≤ ε] . (2)

For i ∈ [n], the random variable∆i has the property that, even after fixing the values
of theck’s with k 6= i arbitrarily, the conditional probability of the event∆i ∈ [0,ε]
is small. Combining this result with equation (2) yields thedesired bound on the
probability that∆ does not exceedε. In the following, we will define the random
variables∆1, . . . ,∆n in a formal way and estimate the probabilities of the events
∆i ∈ [0,ε].

If a variablexi takes the same value in all feasible solutions, then this variable
does not affect the winner gap and thus we can assume without loss of general-
ity that, for everyi ∈ [n], there exist two feasible solutions that differ in thei-th
position. Under this assumption, we can define a winner gap∆i with respect to
positioni, for eachi ∈ [n], by

∆i = cTx∗−cTy , wherey = argmax{cTx|x∈ S ∧xi 6= x∗i }

denotes the best solution that differs from the winnerx∗ in the i-th position. In
words,∆i is the difference between the objective value of the winnerx∗ and the
value of a solutiony that is best among those solutions that differ in thei-th bit
from x∗.

Clearly, the best solutionx∗ = (x∗1, . . . ,x
∗
n) and the second best solutionx∗∗ =

(x∗∗1 , . . . ,x∗∗n ) differ in at least one position, that is, there exists ani ∈ [n] such that
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x∗i 6= x∗∗i . If the best and the second best solution differ in positioni then∆ = ∆i .
Thus,∆ is guaranteed to take a value also taken by at least one of the variables
∆1, . . . ,∆n.

Fix an arbitrary indexi ∈ [n]. We will prove an upper bound on the probability
that∆i does not exceedε. For that purpose, we partition the set of feasible solu-
tionsS into disjoint subsetsS i

j , for j ∈D . We define the subsetS i
j to be the set

of all feasible solutions which take valuej at positioni, i. e.,S i
j = {x∈S |xi = j}.

Now suppose all random variablesck with k 6= i are fixed arbitrarily. Obviously,
under this assumption, the winner among the solutions inS i

0 and its objective
value are fixed as the objective values of the solutions inS i

0 do not depend onci .
Although the objective values of the solutions inS i

j , for j 6= 0, are not fixed, the
winner ofS i

j is determined as well because the unknown outcome of the random

variableci does not affect the order among the solutions inS i
j . For j ∈D , let x( j)

denote a winner among the solutions inS i
j .

Since the winnerx∗ and the best solution differing in thei-th position fromx∗

cannot be contained in the same setS i
j , it always existj∗1, j∗2 ∈D with j∗1 6= j∗2 and

∆i = cTx( j∗1) − cTx( j∗2). Hence,∆i is always equal to one of the random variables
cTx( j1)−cTx( j2) with j1, j2 ∈ D , j1 6= j2 and therefore

Pr [∆i ≤ ε|F ] ≤ ∑
j1, j2∈D

j1 6= j2

Pr
[

cTx( j1)−cTx( j2) ∈ [0,ε]|F
]

, (3)

whereF denotes the event that theck’s with k 6= i take the values they are fixed
to.

Observe that, under the assumption that theck’s with k 6= i are fixed, the ran-
dom variablecTx( j1) − cTx( j2) can be rewritten asκ +( j1− j2)ci , for some con-
stantκ depending on theck’s with k 6= i. Since we assumed the density ofci to
be bounded byφ , the density ofκ +( j1− j2)ci is bounded byφ/(| j1− j2|) ≤ φ .
Hence, for anyj1, j2 ∈ D with j1 6= j2, we have

Pr
[

cTx( j1)−cTx( j2) ∈ [0,ε]|F
]

≤ ε ·φ . (4)

Since there are less thanm2 different possible choices forj1 and j2, combining
(3) and (4) yields

Pr [∆i ≤ ε] ≤ ε ·φm2 .

Observe that combining (3) and (4) directly yields a conditional probability. How-
ever, since the resulting bound holds for arbitrarily fixedck’s, we can leave out the
condition. (Formally, we can integrate the product of the conditional probability
and the densities of theck’s over all possible values theck’s can take.)

Combining this with (2) concludes the proof of the lemma. ⊓⊔

2.2 Loser and Feasibility Gap for a Single Constraint

Now we assume the coefficients in the objective function to befixed arbitrarily.
Solutions with the same objective values are ranked in an arbitrary but fixed fash-
ion (e. g., lexicographically). In this section, we deal only with the casek = 1,
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that is, the set of feasible solutions is determined by one linear constraint. For
this case, we will define two structural properties calledloser gapandfeasibility
gapand prove lower bounds for these gaps holding with a certain probability. A
generalization to the general case withk > 1 many constraints is given in the next
section.

We assume that the constraint determining the set of feasible solutions is of the
form wTx = w1x1 + · · ·+ wnxn ≤ t, where the coefficientsw1, . . . ,wn correspond
to independent random variables following possibly different probability distri-
butions with bounded densitiesf1, . . . , fn, respectively. For technical reasons, we
have to allow further restrictions on the set of feasible solutions. To be more pre-
cise, we assume that an arbitrary subsetS ⊆ Dn is given and that the set of fea-
sible solutions is obtained as intersection ofS with the half-spaceB described
by the constraintwTx ≤ t. For i ∈ [n], let φi = sups∈R fi(s) andφ = maxi∈[n] φi .
The winner, denoted byx∗, is the solution with the highest rank inS ∩B. The
feasibility gapis defined by

Γ =

{

t −wTx∗ if S ∩B 6= /0
⊥ otherwise.

In words,Γ corresponds to the slack of the winner with respect to the thresholdt.
A solution fromS is called aloserif it has a higher rank thanx∗, that is, the losers
are those solutions fromS that are better than the winner (w. r. t. the ranking) but
that are cut off by the constraintwTx ≤ t. The set of losers is denoted byL . If
there is no winner, as there is no feasible solution, then we defineL = S . The
loser gapis defined by

Λ =

{

min{wTx− t|x∈ L } if L 6= /0
⊥ otherwise.

Next, we show that both the loser and the feasibility gap of a semi-random ILP
with one constraint are lower bounded by a polynomial in(nmmaxφ)−1 with prob-
ability close to 1.

The definitions of winner, loser, and feasibility gap are illustrated in Figure 1.
Intuitively, if these gaps are lower bounded by a polynomialin (nmmaxφ)−1, then a
pseudopolynomial algorithm can be turned into an algorithmwith polynomial run-
ning time by simply rounding all coefficients. We need to ensure, that the rounding
does not change the optimal solution. Rounding each coefficient changes thecosts
cTx and theweight wTx of each solutionx only slightly. Therefore, if the gaps are
large enough, rounding the coefficients does not change the optimal solution. This
intuition is formalized in Section 3.

Observe that the solution 0n is different from all other solutions inS as its
feasibility does not depend on the outcome of the random coefficientsw1, . . . ,wn.
Suppose 0n ∈ S and 0n has the highest rank among all solutions inS . Then one
can enforceΓ = 0 by settingt = 0. Similarly, one can enforceΛ → 0 by t < 0 and
t → 0. For this reason, we need to exclude the solution 0n from our analysis. Later
we will describe how the random perturbation of the threshold helps us to cope
with this problem.

The key result of this section is the following lemma on the sizes of loser and
feasibility gap.
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cTx

wTx

⌊c⌋T
d x

⌊w⌋T
d x

tt

∆

Γ Λ

x∗x∗
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Fig. 1 Rounding the coefficients inc andw changes slightly the costs and weights of the solu-
tions. Intuitively, the rounding causes all solutions to move slightly up or down and left or right.
However, if winner, loser, and feasibility gap are large enough (i. e., larger than the movement
due to the rounding), then the optimal solution w. r. t. the non-rounded ILP is also the optimal
solution w. r. t. the rounded ILP.

Lemma 5 (Separating Lemma)Let S with 0n /∈ S be chosen arbitrarily and
let c= maxi∈[n] E [|wi |]. Then, for allε with ε ≤ (32n5m7mmaxφ2)−1, Pr [Γ ≤ ε]≤

2(ε ·32cn5m7mmaxφ2)1/3 andPr [Λ ≤ ε] ≤ 2(ε ·32cn5m7mmaxφ2)1/3.

The proof of this lemma is subdivided into a few steps. At first, we will assume
that the densitiesf1, . . . , fn have a bounded support, i. e., we assume the existence
of a constants∈ R≥0 such thatfi(x) = 0 holds for everyi ∈ [n] and for everyx /∈
[−s,s]. In addition to that, we assume that the setS does only contain elements
which are pairwise linearly independent, i. e., we assume that there do not exist
two solutionsx,y∈ S such thatx = αy or y = αx holds for someα ∈ R. In this
case, we can show an upper bound on the probability that the loser gap does not
exceedε. Then, we will use symmetry properties between the two gaps in order
to show that bounds for the loser gap also hold for the feasibility gap and vice
versa. Thus, the bound proven for the loser gap holds for the feasibility gap as
well. The assumption that the setS does not contain linearly dependent solutions
can be dropped at the cost of an extra factorm for the feasibility gap. Due to the
symmetry, this bound also applies to the loser gap. In the last step, we will drop
the assumption that the support of the densities is bounded.

2.2.1 Loser Gap for Linearly Independent Solutions.

In this section, we prove the Separating Lemma for the loser gap in the case that
S does not contain two solutions which are linearly dependent.

Lemma 6 LetS with 0n /∈S be chosen arbitrarily such thatS does not contain
two linearly dependent solutions. Assume fi(x) = 0, for i ∈ [n] and x /∈ [−s,s].
Then, for allε ≥ 0 and for all p≥ 1,

Pr [Λ ≤ ε] ≤
1

2p
+ ε ·4n4m6mmaxφ2sp .
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The role of the parameterp needs some explanation. We will show that the density
of the loser gap is upper bounded by 4n4m6mmaxφ2sp if some failure eventE (p)
does not occur. It holdsPr [E (p)] ≤ 1/(2p). Thus, the first summand corresponds
to the case of failureE (p) and the second one corresponds to the case¬E (p).
Note that an upper boundα on the density ofΛ implies an upper bound on the
probability thatΛ takes a value less than or equal toε of εα sinceΛ takes only
non-negative values.

Now we present our approach to bound the densityfΛ of the random variable
Λ . We will see that this approach fails under certain circumstances and define the
failure eventE = E (p) accordingly. The first step of the proof is very similar to the
proof of the Isolating Lemma. We define certain auxiliary random variables which
are easier to analyze than the loser gapΛ such thatΛ is guaranteed to always take
a value also taken by at least one of these auxiliary random variables.

Definition of the auxiliary random variables.For each combination ofi, j ∈ [n]
with i < j and ofm = (m1,m2,m3,m4) ∈ D4 with linearly independent vectors
(m1,m2) and(m3,m4), we define a random variableΛ m

i, j in such a way that there
are always indicesi, j and a vectormsuch thatΛ = Λ m

i, j holds. Hence, it follows

Pr [Λ ≤ ε] = Pr [Λ ∈ [0,ε]] ≤ ∑
i, j,m

Pr
[

Λ m
i, j ∈ [0,ε]

]

.

For this reason, a bound on the densities of the random variablesΛ m
i, j implies a

bound on the probability thatΛ does not exceedε.
Let x∗ denote the winner, letxmin denote theminimal loser, i. e., xmin =

argmin{wTx|x∈ L }, and fix somei, j ∈ [n] with i < j and a vectorm∈ D4 with
linearly independent subvectors(m1,m2) and(m3,m4). First of all, we formally
define the random variableΛ m

i, j . Therefore, letx∗,m3,m4
i, j denote the winner of those

solutionsx with xi = m3 andx j = m4, i. e., x∗,m3,m4
i, j denotes the highest ranked

solution in{x ∈ S |xi = m3,x j = m4}∩B. Based on this definition, we define a
set of losers

L
m
i, j = {x∈ S | xi = m1,x j = m2, x is ranked higher thanx∗,m3,m4

i, j } .

The minimal loserxmin,m
i, j is defined to be the solution fromL m

i, j with the smallest

weight, i. e.,xmin,m
i, j = argmin{wTx | x ∈ L m

i, j}. Now the random variableΛ m
i, j is

defined to be the slack of the minimal loserxmin,m
i, j w. r. t. the thresholdt, i. e.,

Λ m
i, j = wTxmin,m

i, j − t. If L m
i, j = /0 thenxmin,m

i, j andΛ m
i, j are undefined.

The loser gap always takes a value also taken by at least one ofthe auxiliary
random variables.One can easily argue that the requirement thatΛ always takes
a value equal to one of the values of theΛ m

i, j is fulfilled. The winnerx∗ and the

minimal loserxmin are linearly independent since they are both elements from
S . Thus, there are always two indicesi, j ∈ [n] with i < j such that the vectors
(x∗i ,x

∗
j ) and(xmin

i ,xmin
j ) are linearly independent. Setting(m3,m4) = (x∗i ,x

∗
j ) and

(m1,m2) = (xmin
i ,xmin

j ) yieldsΛ = Λ m
i, j .
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Analysis of the auxiliary random variables.The auxiliary random variables∆i
defined in the proof of the Isolating Lemma have the property that the probability
of the event∆i ∈ [0,ε] is small even when allck’s with k 6= i are fixed arbitrarily.
A slightly weaker property is also true for the random variablesΛ m

i, j . If all wk’s
with k 6= i andk 6= j and additionally also the summ3wi +m4wj are fixed, then we
can prove an upper bound on the conditional probability of the eventΛ m

i, j ∈ [0,ε]
which depends only on the fixed value of the summ3wi +m4wj .

Hence, we assume the coefficientswk with k 6= i andk 6= j and the summ3wi +
m4wj to be fixed arbitrarily. An upper bound for the density ofΛ m

i, j holding for all
deterministic choices of these random variables obviouslyholds for all random
choices as well. The reason for fixing these random variablesis that, for given
values ofwk with k 6= i andk 6= j and form3wi + m4wj , the winnerx∗,m3,m4

i, j can
be determined without knowing the outcome ofwi andwj as the weights of all
solutions in{x∈S |xi = m3,x j = m4} are known. Thus, alsoL m

i, j is known. Since
the random variableswi andwj affect the weight of all solutions inL m

i, j in the

same fashion, also the minimal loserxmin,m
i, j does not depend on the outcome ofwi

andwj . Hence, if the outcome ofwk with k 6= i andk 6= j and the summ3wi +m4wj

are known, the loser gapΛ m
i, j can be rewritten as

Λ m
i, j = wTxmin,m

i, j − t = κ +m1wi +m2wj ,

whereκ denotes a constant depending on the fixed values ofwk with k 6= i andk 6=
j andm3wi +m4wj . Thus, under our assumption,Λ m

i, j andm1wi +m2wj are random
variables which differ only by a constant offset. In particular, upper bounds on the
density of the random variablem1wi + m2wj hold for the density ofΛ m

i, j as well.
Recall that we still assume the summ3wi +m4wj to be fixed to an arbitrary value
z∈ R. Therefore, we will determine the conditional densitygm,z

i, j of m1wi + m2wj

under the conditionm3wi +m4wj = z.

Lemma 7 Let (m1,m2) ∈ D2 and(m3,m4) ∈ D2 be linearly independent and let
fm3wi+m4w j : R → R denote the density of the random variable m3wi +m4wj . Fur-

thermore, let gm,z
i, j : R → R denote the conditional density of the random variable

m1wi +m2wj under the condition m3wi +m4wj = z. Then, for all x∈ R,

gm,z
i, j (x) ≤

φ2

fm3wi+m4w j (z)
. (5)

Proof Let f : R× R → R≥0 denote the joint density of the random variables
A = m1wi +m2wj andB = m3wi +m4wj . Since the vectors(m1,m2) and(m3,m4)

are assumed to be linearly independent, the transformationΦ : R
2 → R

2 with
Φ(x,y) = (m1x+m2y,m3x+m4y) is bijective and can be inverted as follows

Φ−1(a,b) =

(

m4a−m2b
m1m4−m2m3

,
m1b−m3a

m1m4−m2m3

)

.

In order to determine the conditional densitygm,z
i, j , we have to determine the Ja-

cobian matrixM of the transformationΦ−1 containing the partial derivatives of



Smoothed Analysis of Integer Programming 13

Φ−1 as matrix entries. Withd = m1m4−m2m3, we have

M =

( m4
d −m2

d

−m3
d

m1
d

)

.

The determinant of the Jacobian matrix is 1/d. Due to the independence of the
random variableswi andwj , the joint densityf of A andB can be written as

f (a,b) = |detM| · fi(Φ−1
1 (a,b)) · f j(Φ−1

2 (a,b))

=
1
|d|

· fi

(

m4a−m2b
d

)

· f j

(

m1b−m3a
d

)

≤
φ2

|d|
≤ φ2 .

The conditional densitygm,z
i, j can be expressed as follows

gm,z
i, j (x) =

f (x,z)
∫

R
f (x′,z)dx′

=
f (x,z)

fm3wi+m4w j (z)
.

Thus, for allx∈ R, it holds

gm,z
i, j (x) ≤

φ2

fm3wi+m4w j (z)
.

⊓⊔

Hence,gm,z
i, j cannot be upper bounded since, in general, the denominator in (5)

can become arbitrarily small. Therefore, we restrict the possible choices forz to
the setR\Mm3,m4

i, j with

Mm3,m4
i, j =

{

z∈ R

∣

∣

∣

∣

0≤ fm3wi+m4w j (z) ≤
1

4n2m2mmaxsp

}

.

We denote the event thatm3wi + m4wj takes a value fromMm3,m4
i, j by E

m3,m4
i, j .

In the case of¬E
m3,m4
i, j , the conditional densitygm,z

i, j is bounded from above by

4n2m2mmaxφ2sp. Hence,

Pr
[

Λ m
i, j ∈ [0,ε]|¬E

m3,m4
i, j

]

≤ ε ·4n2m2mmaxφ2sp . (6)

In the following lemma, we use the bounded support of the densities fi and f j to
show that it is unlikely that the eventE

m3,m4
i, j occurs. LetE denote the event that,

for at least one combination ofi, j ∈ [n] andm3,m4 ∈ D , the eventE m3,m4
i, j occurs,

that is,E denotes the union of all these events.

Lemma 8 For everyε ≥ 0, it holds

Pr [Λ ≤ ε|¬E ] ≤ ε ·4n4m6mmaxφ2sp

and

Pr [E ] ≤
1

2p
.
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Proof We have definedE m3,m4
i, j to be the event that the random variablem3wi +

m4wj takes a value from the set

Mm3,m4
i, j =

{

z∈ R

∣

∣

∣

∣

0≤ fm3wi+m4w j (z) ≤
1

4n2m2mmaxsp

}

.

The probability of this event can be written as follows

Pr
[

E
m3,m4
i, j

]

=

∫

M
m3,m4
i, j

fm3wi+m4w j (z)dz .

We define
M∗,m3,m4

i, j =
{

z∈ Mm3,m4
i, j

∣

∣ fm3wi+m4w j (z) > 0
}

and obtain the following estimate

Pr
[

E
m3,m4
i, j

]

=

∫

M
m3,m4
i, j

fm3wi+m4w j (z)dz

≤
1

4n2m2mmaxsp

∫

M
∗,m3,m4
i, j

1dz . (7)

Below, we prove an upper bound of 4mmaxs on the integral occurring in (7). This
upper bound yields

Pr
[

E
m3,m4
i, j

]

≤
1

n2m2p
.

Hence, we obtain

Pr [E ] = Pr

[

⋃

i, j,m3,m4

E
m3,m4
i, j

]

≤

(

n
2

)

m2 ·
1

n2m2p
≤

1
2p

and

Pr
[

Λ m
i, j ∈ [0,ε]|¬E

]

=
Pr

[

Λ m
i, j ∈ [0,ε]∧¬E

]

Pr [¬E ]

≤
1

1−1/(2p)
·Pr

[

Λ m
i, j ∈ [0,ε]∧¬E

m3,m4
i, j

]

≤ 2·Pr
[

Λ m
i, j ∈ [0,ε]|¬E

m3,m4
i, j

]

≤ ε ·8n2m2mmaxφ2sp .

Applying a union bound and (6) yields

Pr [Λ ≤ ε|¬E ] ≤ ∑
i, j,m

Pr
[

Λ m
i, j ∈ [0,ε]|¬E

]

≤ ε ·
(

n
2

)

m4 ·8n2m2mmaxφ2sp

≤ ε ·4n4m6mmaxφ2sp .
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It remains to show an upper bound of 4mmaxs on the integral occurring in (7).
In order to prove this upper bound, we distinguish between several cases.
1st case:m3 = 0 and m4 6= 0. In this case, it holdsfm3wi+m4w j = fm4w j , where
fm4w j denotes the density of the random variablem4wj . We obtain

M∗,m3,m4
i, j ⊆

{

z∈ R
∣

∣ fm4w j (z) > 0
}

=

{

z∈ R

∣

∣

∣

∣

1
|m4|

· f j

(

z
m4

)

> 0

}

⊆

{

z∈ R

∣

∣

∣

∣

−s≤
z

m4
≤ s

}

= [−s|m4|,s|m4|] .

Altogether, we obtain
∫

M
∗,m3,m4
i, j

1dz≤ 2s|m4| ≤ 2mmaxs .

2nd case:m3 6= 0 and m4 = 0. Analogous to the first case.
Preparation of the following cases.In the cases which we have not yet consid-
ered it holdsm3 6= 0 andm4 6= 0. Therefore, the densityfm3wi+m4w j (z) can be
rewritten as follows:

fm3wi+m4w j (z) =
∫ ∞

−∞
fm3wi (x) fm4w j (z−x)dx

=
1

|m3| · |m4|
·

∫ ∞

−∞
fi

(

x
m3

)

f j

(

z−x
m4

)

dx

=
1

|m4|
·

∫ ∞

−∞
fi (x) · f j

(

z−m3x
m4

)

dx .

Thus, form3 6= 0 andm4 6= 0, it holds

M∗,m3,m4
i, j ⊆

{

z∈ R

∣

∣

∣

∣

1
|m4|

·

∫ ∞

−∞
fi (x) · f j

(

z−m3x
m4

)

dx> 0

}

⊆

{

z∈ R

∣

∣

∣

∣

∃x∈ R : fi (x) · f j

(

z−m3x
m4

)

> 0

}

=

{

z∈ R

∣

∣

∣

∣

∃x∈ R : fi (x) > 0∧ f j

(

z−m3x
m4

)

> 0

}

⊆

{

z∈ R

∣

∣

∣

∣

∃x∈ R : (−s≤ x≤ s)∧

(

−s≤
z−m3x

m4
≤ s

)}

. (8)

3rd case:m3 6= 0,m4 6= 0 and m3 ·m4 > 0. We start by rewriting the second in-
equality in (8). We have

−s≤
z−m3x

m4
≤ s ⇐⇒ −

m4

m3
s+

z
m3

≤ x≤
m4

m3
s+

z
m3

.
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Hence, the inequalities in (8) imply the following lower bounds forx

xl ,1 = −sandxl ,2 = −
m4

m3
s+

z
m3

and the following upper bounds forx

xu,1 = sandxu,2 =
m4

m3
s+

z
m3

.

For any givenz, the domain of the variablex is restricted by these bounds to the
interval I = [max{xl ,1,xl ,2},min{xu,1,xu,2}]. If this interval is empty, thenz does
not belong to the setM∗,m3,m4

i, j . In order to determine the values ofz which yield
I = /0, we solve the equationsxl ,1 = xu,2 andxl ,2 = xu,1 w. r. t. z. We obtain

xl ,1 = xu,2 ⇐⇒ z= −(m3 +m4)s

and

xl ,2 = xu,1 ⇐⇒ z= (m3 +m4)s .

Subcase 3a:m3 > 0 and m4 > 0. In this subcase it holds

z < −(m3 +m4)s⇒ xl ,1 > xu,2 and

z > (m3 +m4)s ⇒ xl ,2 > xu,1 .

Thus, settingz < −(m3 + m4)s or z > (m3 + m4)s yields I = /0. Altogether, we
obtain

M∗,m3,m4
i, j ⊆ [−(m3+m4)s,(m3 +m4)s]

and, therefore,
∫

M
∗,m3,m4
i, j

1dz≤ 2(m3 +m4)s≤ 4mmaxs .

Subcase 3b:m3 < 0 and m4 < 0. Analogous to case 3a.
4th case:m3 6= 0,m4 6= 0 and m3 ·m4 < 0. Analogous to the third case.

This concludes the proof of the lemma. ⊓⊔

Proof (Lemma 6)Now Lemma 6 follows as an easy corollary from Lemma 8:

Pr [Λ ≤ ε] ≤ Pr [E ]+Pr [Λ ≤ ε|¬E ] ≤
1

2p
+ ε ·4n4m6mmaxφ2sp .

⊓⊔
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2.2.2 Connection between Loser and Feasibility Gap.

In this section, we show that Lemma 6 holds for the feasibility gap as well. First
of all, we have to generalize the definitions of loser and feasibility gap a little bit.
Let Λ (t) denote the loser gap w. r. t. the constraintwTx≤ t and letΓ (t) denote the
feasibility gap w. r. t. this constraint.

Lemma 9 Letε ∈ R≥0 and t∈ R be chosen arbitrarily, thenPr [Λ (t)≤ ε|¬E ] =
Pr [Γ (t + ε) ≤ ε|¬E ].

This lemma can be proven by arguments very similar to those used in the proof of
Lemma 9 in [6]. For the sake of completeness, we provide the proof here.

Proof (Lemma 9)
We take an alternative view on the given optimization problem. We interpret

the problem as a bicriteria problem. The feasible region is defined by the setS .
On the one hand, we seek for a solution fromS whose rank is as high as possible.
On the other hand, we seek for a solution with small weight, where theweightof
a solutionx∈S is defined by the linear functionwTx. A solutionx∈ S is called
Pareto-optimalif there is no higher ranked solutiony ∈ S with weight at most
wTx. Let P denote the set of Pareto-optimal solutions.

Next we show that winners and minimal losers of the original optimization
problem correspond to Pareto-optimal solutions of the bicriteria problem. First,
let us observe that the winnerx∗ with respect to any given weight thresholdt
is a Pareto-optimal solution for the bicriteria problem because there is no other
solution with a higher rank and a smaller weight thant ≥ wTx∗. Moreover, for
every Pareto-optimal solutionx, there is also a thresholdt such thatx is the winner,
i. e.,t = wTx.

The same kind of characterization holds for minimal losers as well. Recall, for
a given thresholdt, the minimal loser is defined to bexmin = argmin{wTx|x∈L }.
We claim that there is no other solutiony that simultaneously achieves a higher
rank and not larger weight thanxmin. This can be seen as follows. Supposey is
a solution with higher rank thanxmin. If wTy ≤ t, theny ∈ B and, hence,xmin

would not be a loser. However, ifwTy ∈ (t,wTxmin], theny andxmin would both
be losers, buty instead ofxmin would be minimal. Here we implicitly assume that
there are no two solutions with the same weight. This assumption is justified as the
probability that there are two solutions with the same weight is 0. Furthermore, for
every Pareto-optimal solutionx, there is also a thresholdt such thatx is a minimal
loser. This threshold can be obtained by settingt → wTx, t < wTx.

Now let us describe loser and feasibility gap in terms of Pareto-optimal solu-
tions. LetP ⊆ S denote the set of Pareto-optimal solutions with respect to the
fixed ranking and the random weight functionwTx. Then loser and feasibility gap
are characterized by

Γ (t) = min{t −wTx|x∈ P ,wTx≤ t} ,

Λ (t) = min{wTx− t|x∈ P ,wTx > t} .

For a better intuition, we can imagine that all Pareto-optimal solutions are
mapped onto a horizontal line such that a Pareto-optimal solution x is mapped to
the pointwTx. ThenΓ (t) is the distance from the pointt on this line to the closest
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Pareto point left tot (i. e., less than or equal tot) , andΛ (t) is the distance fromt
to the closest Pareto point strictly right oft (i. e., larger thant). That is,

Pr [Λ (t)≤ ε|¬E ] = Pr
[

∃x∈ P : wTx∈ (t, t + ε]|¬E
]

= Pr [Γ (t + ε) ≤ ε|¬E ] .

⊓⊔

Corollary 10 Let S with 0n /∈ S be chosen arbitrarily such thatS does not
contain two linearly dependent solutions. Assume fi(x) = 0, for i ∈ [n] and x /∈
[−s,s]. Then, for allε ≥ 0 and for all p≥ 1,

Pr [Γ ≤ ε] ≤
1

2p
+ ε ·4n4m6mmaxφ2sp .

Proof Observe that Lemma 6 and Lemma 9 hold for arbitrary choices oft. In
particular, for givent ∈ R and givenε > 0, Lemma 6 holds fort ′ = t − ε. Hence

Pr [Γ ≤ ε] = Pr [Γ (t) ≤ ε]

= Pr [Λ (t − ε) ≤ ε]

≤
1

2p
+ ε ·4n4m6mmaxφ2sp .

⊓⊔

2.2.3 Separating Lemma for Densities with Bounded Support.

Next, we drop the assumption that the set of feasible solutionsS does not contain
linearly dependent solutions and obtain the following result.

Lemma 11 Let S with 0n /∈ S be chosen arbitrarily. Assume fi(x) = 0, for i ∈
[n] and x /∈ [−s,s]. Then, for allε ≥ 0 and for all p≥ 1, Pr [Γ < ε|¬E ] ≤ ε ·
4n4m7mmaxφ2sp andPr [Λ < ε|¬E ] ≤ ε ·4n4m7mmaxφ2sp.

Proof The main idea of the proof is to partition the set of feasible solutionsS

into mclassesS (1), . . . ,S (m) such that none of these classes contains two linearly
dependent solutions. LetD = {d1, . . . ,dm}. If 0 /∈ D , such a partition can simply
be created by settingS (k) = {x∈S |x1 = dk}, for k∈ [m]. Otherwise, we assume
w. l. o. g.dm = 0 and we set, fork∈ [m−1],

S
(k) = {x∈ S | ∃i ∈ [n] : x1 = . . . = xi−1 = 0 andxi = dk} .

For each of these classes a feasibility gapΓ (k) is defined. First we define the
winnerx∗,(k) w. r. t. S (k) to be that element fromS (k)∩B which is ranked high-
est. The feasibility gapΓ (k) is simply defined ast −wTx∗,(k), if S (k) 6= /0, and
⊥ otherwise. Since the winnerx∗ of the original problem is contained in one of
the classesS (k), the feasibility gapΓ always takes the value of one of the vari-
ablesΓ (k). Observe that Lemma 6 can be applied to the subproblems defined by
the classesS (k) since these classes do not contain linearly dependent solutions.
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Hence, we can combine Lemma 8 and Lemma 9 to obtainPr
[

Γ (k) ≤ ε|¬E

]

≤

ε ·4n4m6mmaxφ2sp. Thus, it holds

Pr [Γ ≤ ε|¬E ] ≤
m

∑
k=1

Pr
[

Γ (k) ≤ ε|¬E

]

≤ ε ·4n4m7mmaxφ2sp .

The result on the loser gap follows by another application ofLemma 9 analogously
to Corollary 10. ⊓⊔

2.2.4 Proof of the Separating Lemma.

Now we drop the assumption that the densitiesf1, . . . , fn have bounded supports
and finish the proof of Lemma 5.

Proof (Lemma 5)The main idea is to choose some constants∈ R such that the
probability that one of the coefficientsw1, . . . ,wn takes a value outside of the inter-
val [−s,s] is upper bounded by 1/(2p). We sets= 2npc. For i ∈ [n], letGi denote
the event thatwi /∈ [−s,s] and letG denote the union of these events. An appli-
cation of Markov’s inequality showsPr [G ] ≤ 1/(2p). For the conditional density
functions it holds

fi|¬G (x) =

{

0 if x /∈ [−s,s]
fi (x)

Pr[wi∈[−s,s]] otherwise ≤

{

0 if x /∈ [−s,s]
2 fi(x) otherwise.

Thus, the densities of the random variablesw1, . . . ,wn have a bounded support
under the condition¬G . We defineF = E ∪G to be the failure event. Then we
can bound the probability that the loser gap or the feasibility gap does not exceedε
under the condition¬F . We have seen that the condition¬G leads to a conditional
density which is by a factor of at most 2 larger than the unconditional density.
Hence, Lemma 11 yieldsPr [Λ < ε|¬F ] ≤ ε · 32cn5m7mmaxφ2p2. Furthermore,
it holdsPr [F ] = Pr [E ∪G ] ≤ Pr [E ]+Pr [G ] ≤ 1

p. Thus, we obtain

Pr [Λ < ε] ≤
1
p

+ ε ·32cn5m7mmaxφ2p2 .

Settingp = (ε ·32cn5m7mmaxφ2)−1/3 yields the desired result. The upper bound
on ε is due to the assumptionp≥ 1. The claim about the feasibility gap follows
analogously. ⊓⊔

2.3 Loser and Feasibility Gap for Multiple Constraints

Assume there arek ≥ 2 constraints. Without loss of generality these constraints
are of the formAx≤ b with A ∈ R

k×n andb ∈ R
k, and the set of points satisfy-

ing these constraints areB1, . . . ,Bk, respectively. We generalize the definition of
loser and feasibility gap as follows. Given a set of solutions S and a ranking,
the winnerx∗ is the highest ranked solution inS ∩B1 . . .∩Bk. The feasibility
gap for multiple constraintsis the minimal slack ofx∗ over all constraints, that is,
Γ = minj∈[k]{(b−Ax) j}, if x∗ exists, andΓ =⊥ otherwise.
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x1

x2

x∗

Λ

Γ

Fig. 2 The feasible region, i. e., the shaded, triangular-shaped region, is determined by three
linear constraints. Letx∗ be the winner and letx1 and x2 be the only losers, thenx1 is the
minimal loser determining the loser gapΛ .

A solution in S is called loser if it has a higher rank thanx∗. Observe that
a loser only needs to be infeasible with respect to one of thek constraints. In
particular, it is not true that the weight values of each loser are likely to be far
away from the corresponding thresholdst j , j ∈ [k]; not even if we consider only
those constraints for which the respective loser is infeasible. Fortunately, however,
we do not need such a property in the application of the loser gap. For every loser,
one only needs a single constraint that renders the loser infeasible. Therefore, we
define theloser gap for k constraintsby

Λ =

{

minx∈L maxj∈[k]{wT
j x− t j} if L 6= /0

⊥ otherwise.

The definitions of loser and feasibility gap for multiple constraints are illustrated
in Figure 2.

Lemma 12 Let c= maxj∈[k] maxi∈[n] E [|A j,i |] denote the maximal expected abso-

lute value of any of the coefficients. Then,Pr [Γ ≤ ε]≤ 2k(ε ·32cn5m7mmaxφ2)1/3

andPr [Λ ≤ ε] ≤ 2k(ε ·32cn5m7mmaxφ2)1/3 for all ε ≤ (32n5m7mmaxφ2)−1.

Proof First we show the bound for the feasibility gap. Letx∗ denote the winner
and supposeΓ ≤ ε, for someε ∈R≥0. Then there exists aj ∈ [k] with t j −wT

j x∗ ≤
ε. Thus,

Pr [Γ ≤ ε] ≤ ∑
j∈[k]

Pr
[

t j −wT
j x∗ ≤ ε

]

.

For each individualj ∈ [k], we can apply the Separating Lemma assuming that the
set of feasible solutions with respect to all other constraints is fixed as the coeffi-
cients in this constraint are stochastically independent from the other constraints.
This way, we obtainPr [Γ ≤ ε] ≤ 2k(ε ·32cn5m7mmaxφ2)1/3.

Next, we turn our attention to the loser gap. Unfortunately,we cannot gen-
eralize the bound on the loser gap from one to multiple constraints in the same
way as we generalized the feasibility gap since the loser gapfor multiple con-
straints does not correspond to the minimal loser gap over the individual con-
straints. Instead we will make use of the result for the feasibility gap established



Smoothed Analysis of Integer Programming 21

above. AssumeΛ ≤ ε, for someε ∈ R≥0. Then there exists a loserx satisfying
∀ j ∈ [k] : wT

j x− t j ≤ ε. Let xL denote the loser with this property that is ranked
highest. Consider a relaxed variantI ′ of the given ILPI where the thresholds of all
stochastic constraints are increased byε, i. e., we have constraintswT

j x ≤ t j + ε,
j ∈ [k]. Observe thatxL is feasible in the relaxed ILPI ′ and, by the definition
of xL, no higher ranked solution is feasible. Thus,xL is the winner ofI ′. Since
t j < wT

j xL ≤ t j + ε for some j ∈ [k], the feasibility gapΓ ′ of the relaxed prob-
lem is smaller thanε. Hence,Λ ≤ ε impliesΓ ′ ≤ ε. Finally, applying the bound
Pr [Γ ′ ≤ ε]≤ 2k(ε ·32cn5m7mmaxφ2)1/3 derived in the first part of the proof yields
Pr [Λ ≤ ε] ≤ 2k(ε ·32cn5m7mmaxφ2)1/3. ⊓⊔

3 From Structural Properties to Algorithms

Now we describe how the Isolating and the Separating Lemma, i. e., Lemma 4
and 5, can be used for turning an algorithm with pseudopolynomial worst-case
complexity into an algorithm with polynomial smoothed complexity. In order
to apply the pseudopolynomial algorithm efficiently, it seems to be necessary
to round the coefficients, but obviously even the smallest rounding can change
the optimal solution in a deterministically chosen ILP. However, using the re-
sults about the sizes of winner, loser, and feasibility gapsshown in the previous
sections, we are able to show that typically rounding the coefficients of a semi-
random ILP after a logarithmic number of bits does not changethe optimal solu-
tion.

We will exploit this property by anadaptive roundingapproach. To be more
precise, our algorithm rounds the coefficients after a logarithmic number of bitsd
and calls the pseudopolynomial time algorithmA to obtain an optimal solution
x′ for the rounded input in polynomial time. After that, the algorithm calls acer-
tifier, i. e., a subroutine determining whetherx′ is also the optimal solution of the
original, non-rounded ILP or not. In the former case, the algorithm can stop with
outputx′, in the latter case, the precisiond is increased by one and the algorithm
starts over again.

In the following sections, we first present and analyze the certifiers and, after
that, we show that the adaptive rounding approach yields polynomial smoothed
running time.

3.1 A Certifier for Stochastic Objective Functions

First we will consider the case that only the coefficients in the objective function
are randomly perturbed. The certifier used in [6] heavily relies on the fact that the
variables are binary. Hence, we have to substantially change it in order to make it
work in the general case of ILPs.

The crucial observation is that rounding after thed-th bit after the binary point
changes each coefficient in the objective function by at most2−d. Since the ab-
solute value of every variable is bounded bymmax, we conclude that rounding
changes the objective value of each solutionx ∈ S by at mostnmmax2−d. Thus,
if the optimal solutionx′ of the rounded ILP is better by at least 2nmmax2−d than
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every other solution, then we know for sure thatx′ is also the optimal solution of
the original, non-rounded ILP.

For any real number (or matrix of real numbers)a, let ⌊a⌋d denote the number
(or matrix) obtained froma by rounding it (or all its components) down after the
d-th bit after the binary point, i. e., by cutting of the remaining bits. Furthermore,
let x′ denote the optimal solution of the rounded ILP, i. e.,x′ is the optimal solution
of max(⌊c⌋d)

Tx w. r. t. the constraintsAx≤ b.
The certifier calls the pseudopolynomial time algorithm 2n many times, each

time with slightly modified coefficients in the objective function. Letc(i) denote
the coefficients in thei-th call of the pseudopolynomial time algorithmA and
let x(i) be the optimal solution to the objective function max(c(i))Tx w. r. t. the
constraintsAx≤ b. For i ∈ {1, . . . ,n}, we definec(i) to be

c(i)
j =

{

⌊c j⌋d if j 6= i
⌊c j⌋d +(nmmax+1)2−d+1 if j = i

and, fori ∈ {n+1, . . . ,2n}, we definec(i) to be

c(i)
j =

{

⌊c j⌋d if j 6= i −n
⌊c j⌋d − (nmmax+1)2−d+1 if j = i −n.

That is, in each of the firstn rounds one of the coefficients is slightly increased
and in each of the lastn rounds one of the coefficients is slightly decreased. If,
for all i ∈ [2n], x(i) = x′, i. e.,x′ is the optimal solution to all of these ILPs, then
we know for sure thatx′ is also the optimal solution to the non-rounded objective
function cTx, otherwise we cannot certifyx′ to be the true winner and report a
failure. In the latter case, which can only occur if the winner gap is small, the
adaptive rounding algorithm increases the precisiond and starts over again. Now
we prove these properties formally.

Lemma 13 If x′ = x(i) for all i ∈ [2n] then x′ is the true winner, i. e., the optimal
solution of the non-rounded ILP. If there exists an i∈ [2n] with x′ 6= x(i) then the
winner gap cannot be larger than nmmax2−d+1.

Proof Assumex′ = x(i), for all i ∈ [2n], and assume there exists a solutiony∈ S

with Ay≤ b andcTy > cTx′, that is,y is a better solution of the non-rounded ILP
thanx′. Sincex′ 6= y, we can choose an indexi ∈ [n] with x′i 6= yi . First, consider
the casex′i < yi . We will show that in this case we havex(i) = y, which contradicts
the assumptionx(i) = x′.

BecausecTy > cTx′ = cTx(i) and since rounding changes the objective values
of y andx(i) by at mostnmmax2−d, we have

(⌊c⌋d)
Ty− (⌊c⌋d)

Tx′ ≥−nmmax2
−d+1
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and hence

(c(i))Ty− (c(i))Tx′

= (⌊c⌋d)
Ty− (⌊c⌋d)

Tx′ +(yi −x′i)(nmmax+1)2−d+1

≥ (⌊c⌋d)
Ty− (⌊c⌋d)

Tx′ +(nmmax+1)2−d+1

≥ −nmmax2
−d+1 +(nmmax+1)2−d+1

= 2−d+1 > 0 .

Hence,y is a better solution to the objective function(c(i))Tx thanx′ which con-
tradicts the assumptionx′ = x(i). Thus, ifx′ = x(i) for everyi ∈ [2n], thenx′ must
be the optimal solution of the non-rounded ILP. In the casex′i > yi , one can anal-
ogously show thaty is a better solution to the objective function(c(n+i))Tx than
x′.

Now assume there exists ani ∈ [2n] with x′ 6= x(i). There are two cases between
we have to distinguish: eitherx′ is the true optimum of the non-rounded ILP orx′

has become the optimal solution only due to the rounding. Thecase thatx′ is not
the true optimal solution of the non-rounded ILP can occur only if the winner gap
is not larger thannmmax2−d+1 since

(⌊c⌋d)
Tx∗− (⌊c⌋d)

Tx′ ≥ cTx∗−cTx′−nmmax2
−d+1 ≥ ∆ −nmmax2

−d+1 .

Now assumex′ to be the true optimum of the non-rounded ILP, i. e.,x′ = x∗, and
x′ 6= x(i) for an i ∈ [2n], that is,(c(i))Tx∗ ≤ (c(i))Tx(i). Then we have

∆ ≤ cTx∗−cTx(i) ≤ (c(i))Tx∗− (c(i))Tx(i) +nmmax2
−d+1 ≤ nmmax2

−d+1 .

Thus, also in this case the winner gap cannot exceednmmax2−d+1. ⊓⊔

Corollary 14 The probability that the certifier fails because more bits need to
be revealed to determine the true optimal solution is bounded from above by
n2m2mmaxφ2−d+1.

Proof If the certifier fails, the winner gap cannot be larger thannmmax2−d+1. Ap-
plying Lemma 4 yields the desired bound. ⊓⊔

3.2 A Certifier for Stochastic Constraints

Let I denote a semi-randomly created ILP and letk denote the number of con-
straints, that is, the constraints have the formAx≤ b with A ∈ R

k×n andb ∈ R
k.

Furthermore, letx′ denote the optimal solution of the rounded ILP maxcTx w. r. t.
A′x ≤ b′ + (nmmax+ 1)2−d with A′ = ⌊A⌋d andb′ = ⌊b⌋d. In the following, we
assume that there is a unique ranking among the solutions, that is, we assume
there are no two solutions with the same objective values. This is without loss of
generality since we can assume solutions with equal objective values to be ranked
in an arbitrary order. Moreover, for two matricesA andB, A≤ B means≤ in ev-
ery component and, for a matrixA and a real numberz, A+ z denotes the matrix
obtained fromA by addingz to each entry.
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The certifier consists of only two steps: First, it tests whether there exists an
index i ∈ [k] such thatbi ∈ [−(nmmax+ 1)2−d,0) or not. In the former case,x′

cannot be certified to be the true winner with the given numberof revealed bitsd
per coefficient. In the latter case the certifier tests whether A′x′ ≤ b′− (nmmax+
1)2−d holds or not. In the former case,x′ can be certified to be the true winner, i. e.,
the optimal solution of the non-rounded ILPI . Otherwisex′ cannot be certified
to be the true winner. The latter case can only occur if eitherthe loser or the
feasibility gap is small.

Lemma 15 If A′x′ ≤ b′ − (nmmax+ 1)2−d, then x′ is the optimal solution of the
non-rounded ILP I. If A′x′ 6≤ b′− (nmmax+1)2−d, then either the loser gap or the
feasibility gap does not exceed nmmax2−d+1.

Proof First, we will show that solutions feasible w. r. t. the constraintsAx≤ b stay
feasible w. r. t. the constraintsA′x≤ b′ +(nmmax+ 1)2−d. AssumeAx≤ b. Since
the rounding changes each coefficient by at most 2−d and since, fori ∈ [n], it holds
|xi | ≤mmax, the j-th weightof the solutionx, i. e.,(Ax) j = aj,1x1+ · · ·+aj,nxn, for
j ∈ [k], is changed by at mostnmmax2−d. Hence,

A′x = ⌊A⌋dx≤ Ax+nmmax2
−d ≤ b+nmmax2

−d ≤ ⌊b⌋d +(nmmax+1)2−d .

Thus, there cannot be a feasible solution of the ILPI which is ranked higher than
x′.

Now we have to make sure thatx′ is a feasible solution of the non-rounded
ILP and has not become feasible only due to the rounding. IfA′x′ ≤ b′− (nmmax+
1)2−d, thenx′ must also be a feasible solution ofI , i. e.,Ax≤ b, since

Ax′ ≤ A′x′ +nmmax2
−d

≤ (b′x′− (nmmax+1)2−d)+nmmax2
−d

= b′x′−2−d ≤ bx′ .

Hence, in this case, the rank ofx′ cannot be higher than the rank of the true winner
x∗. Altogether, the rank ofx′ must equal the rank ofx∗ and thusx′ must equalx∗.

Now we have to consider the case thatA′x′ ≤ b′ − (nmmax+ 1)2−d does not
hold and show that, in this case, either the loser of the feasibility gap has to be
small. We distinguish between the case thatx′ is the true optimal solution of the
non-rounded ILPI , that is,x′ = x∗, and the case thatx′ has become feasible only
due to the rounding. In the former case, we haveAx′ ≤ b and there exists anl ∈ [k]
with b′l − (A′x′)l < (nmmax+1)2−d. Hence, we have

Γ ≤ min
j∈[k]

{

bj − (Ax′) j
}

≤ bl − (Ax′)l

≤ b′l − (A′x′)l +(nmmax+1)2−d

≤ (nmmax+1)2−d+1 ,

that is, the feasibility gap cannot be larger than(nmmax+1)2−d+1.
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In the latter case, we have(A′x′)l ≤ b′l +(nmmax+1)2−d and hence

Λ ≤ max
j∈[k]

{

(Ax′) j −bj
}

≤ max
j∈[k]

{

(A′x′) j −b′j +(nmmax+1)2−d
}

≤ (nmmax+1)2−d+1 ,

that is, the loser gap cannot be larger than(nmmax+1)2−d+1. ⊓⊔

Lemma 16 Assume c= maxj∈[k] maxi∈[n] E [|A j,i |] to be constant. The probability
that the certifier fails is bounded from above by2−d ·poly(n,m,mmax,φ ,k).

Proof The certifier can only fail ifbi ∈ [−(nmmax+1)2−d,0) holds for at least one
i ∈ [k] or if either the loser or the feasibility gap does not exceed(nmmax+1)2−d+1.
Since the thresholds are random variables whose densities are bounded byφ , the
probability of the first event is bounded from above byk(nmmax+ 1)2−dφ . But
observe that we cannot use Lemma 12 directly to bound the probability that one
of the gaps is too small since this lemma is true only if 0n is not a feasible solution.

First, assume that there exists onej ∈ [k] such thatbj < −(nmmax+ 1)2−d.
Then 0n is not a feasible solution w. r. t.Ax≤ b andA′x≤ b′+(nmmax+1)2−d and
hence, it does not affect the certifier. Thus, in this case, wecan use the Separating
Lemma directly to bound the probability that the certifier fails. Since the certifier
fails if, for at least onej ∈ [k], bj ∈ [−(nmmax+1)2−d,0), in this case, the solution
0n does not affect the certifier either.

Now assumebj ≥ 0 for all j ∈ [k]. Then 0n is feasible w. r. t.Ax ≤ b and
A′x ≤ b′ + (nmmax+ 1)2−d. If 0n is not the optimal solution w. r. t.Ax≤ b, then
0n does not affect loser and feasibility gap. Hence, the only case which needs
to be considered in more detail is the case that 0n is the optimal solution w. r. t.
Ax ≤ b. Observe that the feasibility of the solution 0n can be verified easily.
Therefore, no problem occurs in the case that 0n is the optimal solution w. r. t.
A′x≤ b′ +(nmmax+1)2−d.

The only case which is a little bit tricky to handle is the casethat 0n is the
optimal solution w. r. t.Ax ≤ b but that x′ 6= 0n is the optimal solution w. r. t.
A′x≤b′+(nmmax+1)2−d. In this case,x′ is rejected by the certifier since⌊A⌋dx′ ≤
⌊b⌋d − (nmmax+ 1)2−d does not hold. We have to bound the probability that this
case occurs. Analogously to the case 0n /∈ S , one can argue that this can only
happen if the size of the loser gapΛ does not exceed(nmmax+1)2−d+1. Unfortu-
nately, we cannot apply Lemma 12 directly since we analyzed the gaps only in the
case 0n /∈ S . Instead, we exclude 0n from the set of feasible solutions, that is, we
defineS ′ = S \{0n} and argue with the help of the loser gapΛ ′ w. r. t. S ′. The
crucial observation is that adding 0n to the set of solutions can, in the caseb≥ 0,
only result in an increase of the size of the loser gap. The reason therefore is that,
in the caseb≥ 0, 0n is a feasible solution which means that by adding 0n to the set
of solutions one cannot enlarge the set of losersL . Hence, it holdsΛ ≥ Λ ′ and
we can make use of Lemma 12 in order to bound the probability thatΛ ′ does not
exceed(nmmax+1)2−d+1.
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Altogether, the failure probability is bounded by

Pr
[

∃i ∈ [k] : bi ∈ [−(nmmax+1)2−d,0)
]

+ Pr
[

Γ ≤ (nmmax+1)2−d+1
]

+Pr
[

Λ ≤ (nmmax+1)2−d+1
]

≤ 2−d ·poly(n,m,mmax,φ ,k) .

⊓⊔

If D ⊂ N0, then it is not necessary to perturb the thresholds inb. The certifier
in Section 3.2 increased the rounded thresholdsb′ by (nmmax+ 1)2−d in order to
ensure that feasible solutions w. r. t.Ax≤ b stay feasible after the rounding. If we
assume that the thresholds inb belong to the deterministic part of the input and that
D ⊂N0, then this is already ensured by the rounding, i. e., ifAx≤ b, for a solution
x, then alsoA′x≤ b, as rounding down each entry ofA impliesA′x≤ Ax. Observe,
that in this case no problem with the solution 0n occurs since it is either feasible
w. r. t. bothAx≤ b andA′x≤ b or it is infeasible w. r. t. both. Thus, ifD ⊂ N0, it is
not important that none of the thresholds lies in the interval [−(nmmax+1)2−d,0),
and hence, it is not necessary to perturb the thresholds.

3.3 A Certifier for Stochastic Objective Functions and Constraints

If both the objective function and the constraints are perturbed, we can combine
the certifiers described in the preceding sections. That is,first we round the co-
efficients in the constraints and use the certifier for stochastic objective functions
to calculate a certified optimumx′ w. r. t. the rounded constraints. Then we use
the certifier for stochastic constraints to test whetherx′ is also an optimal solution
of the non-rounded ILP. The combined certifier fails if one ofthe two certifiers
used as subroutines fails, hence the probability of failurecan be bounded as in
Lemma 16.

3.4 Adaptive Rounding

In this section, we analyze the adaptive rounding approach formally. Assume that
we start withd = 1, that is, we reveal only the first bit after the binary point of each
coefficient. The pseudopolynomial algorithm is called to calculate the optimum
w. r. t. the rounded coefficients and, after that, an appropriate certifier is called.
If this certifier fails, the number of revealed bitsd is increased by one and the
pseudopolynomial algorithm and the certifier are called again. This is repeated
until a certified winner can be calculated.

Lemma 17 The adaptive rounding algorithm has polynomial smoothed running
time.

Proof We will show that a polynomialP with the same properties as the one in (1)
exists. Consider a classΠ of ILPs and letI be an ILP fromΠ with n integer
variables andk stochastic expressions. Furthermore, letN denote the input length
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of the ILPI . Since each stochastic coefficient has a virtual length of 1,it holdsN≥
nk and a random perturbation does not change the length ofI . Let A denote the
(possibly randomized) pseudopolynomial algorithm and letT(I) denote a random
variable describing the running time of algorithmA on input I plus the running
time of the subsequently called certifier.

If d bits of each stochastic coefficient and threshold are revealed, then we
scale each stochastic expression by the factor 2d to obtain integral expressions.
Let Id denote the rounded and scaled ILP obtained this way and observe that each
stochastic number inId is rounded and scaled in such a way that it is integral.
Let W denote the largest absolute value taken by one of the stochastic numbers
in Id, thenW = W1W2, where the factorW1 = 2d is due to the scaling and the
factorW2 denotes the integer part of the largest absolute value of anystochastic
number before the scaling. Since the running time ofA is pseudopolynomially
bounded (w. r. t. the perturbed numbers), we can choose two constantsc1,c2 ∈ R

with c2 ≥ 1 such that for each ILPI from the classΠ with lengthN we have
E [T(Id)] ≤ c1(NW)c2 = c1(N2dW2)

c2.

To analyze the running time of this adaptive rounding approach, we have to
estimateW1 = 2d andW2. If the certifier concludes optimality afterd0 bits after the
binary point of each random number have been revealed, we obtain the following
estimate on the expected running timeE [TAR] of the adaptive rounding

E [TAR] =
d0

∑
d=1

(E [T(Id)]+cN)

≤
d0

∑
d=1

(c1(N2dW2)
c2 +cN)

≤ cd0N+c1(N2d0+1W2)
c2 , (9)

wherecN denotes the costs for revealing an additional bit of each random number
and for scaling the constraints. Hence, we have to estimate how large the values
of d0 andW2 are typically. Since the absolute mean value of a random variable
which is described by the densityfφ is bounded byE/φ ≤ E, for some constant
E ∈ R, and since we assume the stochastic numbers to be in the interval [−1,1]
before perturbing them, an easy application of Markov’s inequality and a union
bound showPr [W2 > (E+1) ·4N/ε] ≤ ε/4.

We have seen (Corollary 14 and Lemma 16) that, for an appropriate polyno-
mial p, the probability that the certifier fails afterd bits after the binary point of
each coefficient have been revealed can be bounded by 2−d · p(n,m,mmax,φ ,k).
Hence, there is a polynomialq with Pr [d0 > log(q(N,φ ,1/ε))] ≤ ε/2.

In equation (9), we substituted0 by log(q(N,φ ,1/ε)), W2 by (E + 1) · 4N/ε
and multiply the resulting polynomial by 4/ε. We denote the polynomial obtained
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this way byP. For allN ∈ N, φ ≥ 1, ε ∈ (0,1] and for allI ∈ IN, we have

Pr
[

TAR(I + fφ ) ≥ P

(

N,φ ,
1
ε

)]

≤ Pr [d0 > log(q(N,φ ,1/ε))]+Pr [W2 > (E+1) ·4N/ε]

+Pr
[

TAR(I + fφ ) >
4
ε

E
[

TAR(I + fφ )
]

]

≤
ε
2

+
ε
4

+
ε
4

= ε ,

since the running time of the adaptive rounding can exceed the bound given by
the polynomialP only if eitherd0 or W2 exceed their bounds or if the expected
running time of the adaptive rounding is larger by a factor ofat least 4/ε than its
expected running time. ⊓⊔

We have proven how an algorithm with pseudopolynomial worst-case com-
plexity can be turned into an algorithm with polynomial smoothed complexity.
This concludes the first part of the proof of Theorem 1.

4 From Polynomial Smoothed Complexity to PseudopolynomialRunning
Time

Finally, we need to show that polynomial smoothed complexity implies the exis-
tence of a randomized pseudopolynomial algorithm. This canbe shown by argu-
ments similar to those used in the analysis of the binary case[6]. For the sake of
completeness, we provide the proof here.

Proof (Second part of Theorem 1)
Since we are aiming for a pseudopolynomial time algorithm, we can assume

that all numbers in the stochastic expressions are integers. LetM denote the largest
absolute value of these numbers. The idea is to perturb all numbers only slightly
such that the perturbation changes the value of each expression by at most12. To
ensure that the set of feasible solutions is not changed by the perturbation, we relax
all constraints by1

2, i. e., we replacewTx ≤ t by wTx ≤ t + 1
2 for all stochastic

constraints. We then use an algorithm with polynomial smoothed complexity to
compute an optimal solutionx∗ for the perturbed problem. By bounding the error
due to the random perturbation,x∗ can be shown to be optimal for the original
problem as well.

Let us describe the proof in more detail. Our smoothed analysis framework as-
sumes that all numbers in the stochastic expressions fall into the interval[−1,1] (or
[0,1]) before they are perturbed. To adapt our problem to this framework, we first
scale all input numbers in the stochastic expressions byM−1 and adapt the thresh-
olds accordingly, i. e.,w1x1 + w2x2 + · · ·+ wnxn ≤ t is replaced by(w1/M)x1 +
(w2/M)x2+ · · ·+(wn/M)xn ≤ t/M. Consequently, we have to ensure that the per-
turbation changes the value of an expression by at most 1/(2M). In particular,
we will allow only perturbations that change each individual number by at most
1/(2Mnmmax). We call such a perturbationproper. For the uniform distribution,
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we could simply setφ = 2Mnmmax. However, we have to deal with arbitrary fam-
ilies of distributions, as defined in our smoothed analysis framework, and they
do not necessarily have a finite domain. The idea is to chooseφ large enough so
that a random perturbation is proper with probability at least 1/2. Recall that the
perturbation model is described by the density functionf with density parame-
ter φ = 1. For other values ofφ , we scalef appropriately. By our assumptions
on f , it holds

∫

|t| fφ(t)dt = E/φ for some fixedE ∈ R. Let r be a random vari-
able following fφ . Settingφ = 4n2mmaxkEM and applying Markov’s inequality

yieldsPr
[

|r| > 1
2nmmaxM

]

= Pr
[

|r| > 2nkE
φ

]

≤ 1
2nk. Our perturbation drawskn of

these random variables. The probability that the perturbation is proper, i. e., the
probability that their absolute values are at most12nmmaxM

, is 1/2.
Consider any classΠ of ILPs with polynomial smoothed complexity. Polyno-

mial smoothed complexity implies that the problem admits analgorithmA whose
running time can be bounded polynomially inn andφ with arbitrary large con-
stant probability strictly less than 1. In particular, there exists a polynomialP(n,φ)
such that the probability that the running time exceedsP(n,φ) is at most14 . We
useA as a subroutine in order to obtain a pseudopolynomial algorithm. This al-
gorithm works as follows. At first, it generates a perturbation and checks whether
it is proper. If it is proper, then it runsA for at mostP(n,φ) time steps. IfA has
not finished within this time bound, the algorithm returns FAILURE. Let Q be the
event that the perturbation is proper. Observe that for every two eventsA andB
it holdsPr [A∧B] ≥ Pr [A]+Pr [B]−1. Therefore, the success probability of our
algorithm is

Pr [Q∧ (T ≤ P(n,φ))] ≥ Pr [Q]−Pr [T > P(n,φ)] ≥
1
4

.

The running time of this algorithm is pseudopolynomial asφ = O(Mn2mmaxk).
Hence,Πu ∈ ZPP. This completes the proof of Theorem 1. ⊓⊔

5 Packing and Covering ILPs

In this section, we prove Theorem 2 and Theorem 3. For the sakeof simplicity,
we consider only the case that the thresholds are fixed arbitrarily instead of being
randomly perturbed. This is without loss of generality since perturbing the thresh-
olds is not necessary ifD ⊆ N0 as we have already mentioned in Section 3.2, and
furthermore it only strengthens the adversary.

First, we look at ILPs containing at least one perturbed packing constraint.

Proof (Theorem 2)We have to show the existence of a polynomialP with the
same properties as the one in (1). We will show that one can addthe box con-
straintsxi ≤ m, 1≤ i ≤ n, for a suitable chosenm= poly(N,ε−1) such that with
probability at least 1− ε/2 these additional box constraints do not change the op-
timal solution of the ILP. The class of ILPs with the additional box constraints
has polynomial smoothed complexity due to Theorem 1. Combining this with the
additional failure probability of at mostε/2 implies the theorem. Now, we will
analyze this formally.
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Consider an ILP with at least one perturbed packing constraint a1, . . . ,an ≤ 1,
wherea1, . . . ,an are random variables with density bounded byφ , and letx∈N

n
0 be

an arbitrary solution fulfilling this constraint. Fori ∈ [n], if xi > m, thenai < 1/m.
Since

Pr
[

∃i ∈ [n] : ai <
1
m

]

= Pr
[

∃i ∈ [n] : ai ∈

[

0,
1
m

)]

≤
nφ
m

,

the probability that restricting the feasible region to{0, . . . ,m}n with m= ⌈2nφ/ε⌉
changes the optimal solution is bounded byε/2.

We only look at the restricted problem withS = {0, . . . ,m}n. We can apply
Theorem 1 to show that this problem has polynomial smoothed complexity. That
means, it exist a polynomialP′ and an algorithmA whose running timeT satisfies

Pr
[

T(I + fφ ) ≥ P′

(

N,φ ,
1
ε

)]

≤
ε
2

,

for everyN ∈ N, φ ≥ 1, ε ∈ (0,1], andI ∈ IN. Without loss of generality we can
assumeP′ to be of the formP′(N,φ ,ε−1) = mα

max· p(N,φ ,ε−1), for some constant
α and a polynomialp independent ofS . We define a polynomialP by

P(N,φ ,ε−1) = β ·

(⌈

2nφ
ε

⌉)α
· p(N,φ ,ε−1) ,

for some constantβ to be defined later. LetK (ε) denote the event that there exists
an i ∈ [n] with ai < (⌈2nφ/ε⌉)−1, then we have

Pr
[

T(I + fφ) ≥ P

(

N,φ ,
1
ε

)]

≤ Pr [K (ε)]+Pr
[

T(I + fφ ) ≥ P

(

N,φ ,
1
ε

)
∣

∣

∣

∣

¬K (ε)

]

≤
ε
2

+
ε
2

= ε ,

where the last inequality follows since under the condition¬K (ε) the feasible
regionS is {0, . . . ,m}n with m= ⌈2nkφ/ε⌉. Observe that the additional constant
β is needed since the condition¬K (ε) can increase the maximal densityφ . But
not more than by a factor of 2 sincePr [¬K (ε)] ≤ 1/2. ⊓⊔

The line of arguments used to prove Theorem 2 can also be used to prove
Theorem 3. It only remains to show that, for an ILP consistingonly of perturbed
covering constraints, one can choose anm = poly(N,ε−1) such that adding the
box constraintsxi ≤ m, for i ∈ [n], does not change the optimal solution, with high
probability.

Proof (Theorem 3)Consider an ILP consisting ofk covering constraintsAx≥ 1
and letx∗ denote an optimal solution of this ILP. Since the objective function has
to be minimized and all coefficients are non-negative, we canassume that each
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vector y with y < x∗ is infeasible. Hence,x∗i > m implies that there must be a
j ∈ [k] with aj,i < 1/(m−1). Since

Pr
[

∃i ∈ [n], j ∈ [k] : aj,i <
1

m−1

]

≤
nkφ

m−1
,

if we setm to ⌈2nkφ/ε +1⌉, the probability that restricting the feasible region to
{0, . . . ,m}n changes the optimal solution is bounded byε/2.

The remaining part of the proof is completely analogous to the proof of Theo-
rem 2. ⊓⊔

6 Extensions

In this section, we will briefly discuss two extensions to theclass of problems and
the class of perturbation models to which our analysis can beapplied. That is, we
will show that one does not need a linear objective function if only the constraints
are perturbed and that coefficients set to zero by the adversary do not need to be
perturbed. For the sake of simplicity, we have not considered these extensions in
the previous sections explicitly.

6.1 Nonlinear Objective Functions and Constraints

Let us remark that, as described in Section 1.1, our probabilistic input model
leaves the freedom to perturb only parts of the input. Our analysis shows that a
class of ILPs has polynomial smoothed complexity if and onlyif the correspond-
ing optimization problem has pseudopolynomial worst-casecomplexity w. r. t. the
perturbed numbers. This characterization also holds for nonlinear adversarial ob-
jective functions, that is, a class of integer programs witharbitrary objective func-
tions and linear constraints has polynomial smoothed complexity when the coef-
ficients in the constraints are randomly perturbed if and only if the corresponding
optimization problem has pseudopolynomial worst-case complexity w. r. t. these
coefficients.

In Section 2.2 and in Section 2.3, where we analyzed loser andfeasibility
gap, we did not make use of the fact that the objective function is linear. Instead,
we only assumed a fixed ranking among the solutions and hence Lemma 5 and
Lemma 12 hold for arbitrary objective functions. In particular, observe that in the
definitions of loser and feasibility gap and in the definitions of winner and minimal
loser a fixed ranking among the solutions is assumed and it is never made use of
the fact that this ranking is induced by a linear objective function. Also the certifier
described in Section 3.2 works for arbritrary rankings.

For many problems, it does not make sense to perturb every constraint since
some of the constraints might describe an underlying problem structure which
should not be touched by the randomization. In the analysis of loser and fea-
sibility gap, we assumed that the feasible region is given bythe intersection of
an arbitrary setS ⊆ Dn with the half-spacesB1, . . . ,Bk determined by the lin-
ear constraints. Observe that one can explicitly distinguish between adversarial
and stochastic constraints by encoding the adversarial constraints into the setS



32 Heiko Röglin, Berthold Vöcking

which is not affected by the randomization. This way, it is also possible to have
non-linear adversarial constraints.

6.2 Zero-Preserving Perturbations

One criticism of the smoothed analysis of the Simplex algorithm is that the ad-
ditive perturbations destroy the zero-structure of an optimization problem as they
replace zeros with small values. See also the discussion in [14]. The same criti-
cism applies to the zero-structure of ILPs. It turns out, however, that our proba-
bilistic analysis in Section 2 is robust enough to allow the preservation of the zero-
structure. In particular, we can extend our semi-random input model introduced in
Section 1.1 by allowing the coefficients in the stochastic expressions to be fixed to
zero instead of being a random variable. In the model of smoothed analysis, this
corresponds to strengthening the adversary by avoiding theperturbation of these
zero-coefficients. To show this, we define equivalence classes with respect to the
objective function or a constraint. Consider the expression wTx and letZ be the
set of indicesi with wi fixed to zero. We call two solutionsx,x′ ∈ S ⊆ {0,1}n

equivalent, if they differ only in positions contained inZ, e. g., ifxi 6= x′i ⇒ i ∈ Z
holds. This way,Z defines equivalence classes onS with respect to the expres-
sion wTx. Clearly, wTx evaluates to the same value for all solutions within the
same equivalence class.

For the Separating Lemma, observe that only the highest ranked solution in
each equivalence class is relevant for the loser and feasibility gap. This is because
the winner and the minimal loser are Pareto optimal solutions. As all solutions
within an equivalence class have the same weight, only the highest ranked so-
lution of this class can become Pareto optimal. For the purpose of analysis, we
can virtually remove all solutions fromS that are not ranked highest within its
equivalence class. This way, we can ignore variablesxi with i ∈ Z and apply the
Separating Lemma as before.

A similar argument can be used to show that the Generalized Isolating Lemma
stays valid with respect to equivalence classes, that is, the winner gap is defined
to be the difference in objective value between the best and the second best equiv-
alence class. However, it might be very likely that there aremany optimal solu-
tions as the winning equivalence class might have many solutions. We adapt the
certifier described in Section 3.1 to this situation by making two changes. Let
x′ denote the solution of the rounded ILP as defined in Section 3.1 and assume
w. l. o. g. thatcn−l+1, . . . ,cn are those coefficients set to zero. Then only thex(i) for
i ∈ {1, . . . ,n− l}∪{n+1, . . . ,2n− l} are considered and it is not checked whether
x′ = x(i) but if x′ andx(i) are in the same equivalence class. After these modi-
fications, the arguments in Lemma 13 also hold for the case of zero-preserving
perturbations.

7 Conclusions

Our probabilistic analysis shows that important classes ofILPs with a fixed num-
ber of constraints have polynomial smoothed complexity. This means that random
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or randomly perturbed instances of such ILPs can be solved inpolynomial time.
We obtained these results by using algorithms with pseudopolynomial worst-case
complexity as subroutines. Usually these pseudopolynomial time algorithms are
based on dynamic programming. We want to remark that we do notbelieve that
this approach is the most practical one to tackle ILPs of thiskind. We expect that
branch and boundandbranch and cutheuristics are much faster than algorithms
based on dynamic programming. The next challenging task is asmoothed analysis
of these heuristics in order to theoretically explain theirgreat success on practi-
cal applications. The main contribution of this paper is to point out chances and
limitations for such a probabilistic analysis.
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