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Abstract. We study online algorithms for bin packing and bin cover-
ing in two different probabilistic settings in which the item sizes are
drawn randomly or the items are adversarial but arrive in random order.
We prove several results on the expected performance of well-known on-
line algorithms in these settings. In particular, we prove that the simple
greedy algorithm Dual Next-Fit for bin covering performs in the random-
order setting strictly better than in the worst case, proving a conjecture
by Christ et al. (Theoretical Computer Science, 556:71-84, 2014).
Additionally we also study class-constrained bin packing and bin cover-
ing. In these problems, each item has not only a size but also a color and
there are constraints on the number of different colors in each bin. These
problems have been studied before in the classical worst-case model and
we provide the first probabilistic analysis of these problems. We prove
for several simple online algorithms bounds on their expected perfor-
mance in the two probabilistic models discussed above. We observe that
in the case of class constrained bin packing for several algorithms their
performance differs with respect to the two probabilistic performance
measures.

1 Introduction

Bin packing and bin covering are classical optimization problems, which have
been studied extensively both as offline and online problems. In these problems,
the input consists of a set of n items with sizes s1, . . . , sn ∈ [0, 1] and one seeks
for a partition of the items into bins. In the bin packing problem the goal is to
partition the items into as few bins as possible such that each bin contains items
with a total size of at most 1, whereas in the bin covering problem the goal is
to partition the items into as many bins as possible such that each bin contains
items with a total size of at least 1.

In addition to these pure versions, also several variations of bin packing and
bin covering with additional constraints are of interest. One particular line of
research is concerned with class constrained versions in which an additional
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parameter k is given and each item i has not only a size si ∈ [0, 1] but also a
color ci ∈ N. In the class constrained bin packing problem the goal is to partition
the items into as few bins as possible such that each bin contains items with a
total size of at most 1 and of at most k different colors. In the class constrained
bin covering problem the goal is to find a partition into as many bins as possible
such that each bin contains items with a total size of at least 1 and of at least k
different colors.

The class constrained bin packing problem has been introduced in [13] and
studied in a sequence of papers [14, 16, 7]. Its theoretical importance stems from
the fact that it generalizes the classical bin packing problem and the cardinality
constrained bin packing problem (see e.g. [11, 1, 3]). In cardinality constrained
bin packing there is a parameter k ∈ N given and a bin must contain at most
k items. From a practical point of view there are applications in production
planning and video-on-demand systems [16]. Given the class constrained bin
packing problem, it is natural to also study the class constrained bin covering
problem, which has been introduced by Epstein et al. [6] with applications in
fault-tolerant communication networks.

In this article, we focus on the online setting, in which the items arrive
one after another and an algorithm has to assign each item immediately and
irrevocably upon its arrival to one of the bins without knowing the items that
come afterwards. We are particularly interested in probabilistic performance
measures. We study the setting where the items are drawn independently and
identically distributed (i.i.d.) from an adversarial distribution and the random-
order model, in which an adversary chooses the set of items, but the items arrive
in random order.

Up to now, it is not fully understood when the performance of algorithms
coincide or differs in these two probabilistic settings. We prove several new up-
per and lower bounds on the competitive ratio of online algorithms in these
probabilistic models both for the classical and the class constrained versions of
bin packing and bin covering. For special cases we observe that even heuristics
behave asymptotically optimal on random input. In the case of class constrained
bin packing we observe different behaviors of the considered algorithms w.r.t.
the two performance measures. Our analysis sheds new light on the nature of
these two probabilistic performance measures in the context of bin packing and
bin covering and its variants.

1.1 Probabilistic Performance Measures

In all problems considered in this article, an instance I is given by a sequence
(a1, . . . , an) of items, and we assume that the items arrive in the order specified
by their indices. We denote by OPT(I) the value of the optimal offline solution,
i.e., the minimum number of bins needed to pack the items in the (class con-
strained) bin packing problem and the maximum number of bins that can be
covered by the items in the (class constrained) bin covering problem. Similarly,
for an algorithm A we denote by A(I) the value of the solution computed by A
on instance I. Furthermore, we denote by |I| the number of items in instance I.
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The usual performance measure for an online algorithm A is its (asymptotic)
competitive ratio, which essentially measures by which factor the solutions com-
puted by A can be worse than the optimal offline solution. Since competitive
analysis is based on the worst-case behavior of algorithms, it often yields too
pessimistic results and, in many cases, it is not fine-grained enough to differ-
entiate meaningfully between different algorithms. Worst-case analysis can be
viewed as a game between the algorithm designer and an adversary whose goal
is to select an input on which the designed algorithm performs as poorly as
possible. For the reasons discussed above, we weaken the adversary by studying
inputs that are to some extent random.

We first describe the probabilistic measures in terms of (class constrained)
bin packing and discuss later how they can be adapted to (class constrained)
bin covering. The first probabilistic model we consider is i.i.d. sampling. Let I
denote a (possibly infinite) multiset of items and p : I → [0, 1] a probability
measure on the set of items. Observe that in the case of class constrained bin
packing an item is a tuple (s, c) consisting of a size s and a color c whereas
in the normal bin packing problem p is simply a probability measure on item
sizes. We will often denote the pair (I, p) by F . Then, IFn denotes a random
instance (A1, . . . , An), where n items are drawn independently according to F .
The asymptotic average performance ratio of an algorithm A is defined as

AAPR(A) = sup
F

lim sup
n→∞

E
[

A(IFn )

OPT(IFn )

]
.

We prove that for the distributions and algorithms we consider, the asymptotic
average performance ratio can usually also be expressed as

sup
F

lim sup
n→∞

E
[
A(IFn )

]
E [OPT(IFn )]

.

In the case of (class constrained) bin covering we have to replace sup lim sup
by inf lim inf.

Often, we can reduce the analysis of the asymptotic average performance
ratio to a restricted class P of distributions, the so-called perfect-packing distri-
butions. We say that F is a perfect-packing distribution if we can represent F
in the following way: We assume that there are m ∈ N bins that are perfectly
packed in the sense that the total size of the items in each bin is exactly 1 and
the number of colors in each bin is at most k or at least k for class constrained
bin packing or class constrained bin covering, respectively. We denote by ` the
total number of items and the items are numbered consecutively from 1 to `.
The distribution F is obtained by drawing an index i uniformly at random from
{1, . . . , `} =: [`] and choosing the item with the corresponding index. Analo-
gously, a perfect-packing instance in the random-order model is an instance in
which in the optimal solution all bins are perfectly packed in the above sense.

Now we introduce the second performance measure. For an instance I, we
denote by Iσ a random instance, where the items in I are randomly permuted.
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Let A be an algorithm for the (class constrained) bin packing problem. Then
the asymptotic random-order ratio RR(A) of A is defined as

RR(A) = lim sup
OPT(I)→∞

E [A(Iσ)]

OPT(I)
.

In the case of (class constrained) bin covering we have to replace lim sup by lim inf.
For all considered problems, the asymptotic average performance ratio cannot

be worse than the random-order ratio, i.e., for any algorithm A we have 1 ≤
AAPR(A) ≤ RR(A) and 1 ≥ AAPR(A) ≥ RR(A) for the (class constrained)
bin packing problem and the (class constrained) bin covering covering problem,
respectively (see [8] or the full version of the paper).

We also study the special cases of class constrained bin packing and covering,
where we have unit sized items. In this special case, we are given a parameter B ∈
N, and all items have size 1/B. For convenience, we will scale the item sizes to
1 and the bin capacity to B in this case.

1.2 Related Work

There is vast body of literature on the classical versions of bin packing and
bin covering. We discuss only the results that are most relevant for our arti-
cle. Kenyon [10] introduced the notion of asymptotic random-order ratio for bin
packing and proved that the asymptotic random-order ratio of the best-fit algo-
rithm (BF) lies between 1.08 and 1.5, while its (worst-case) competitive ratio is
well-known to be 1.7 [15, 5]. In contrast to this, Coffman et al. [9] showed that
the random-order ratio of the next-fit algorithm (NF) equals its (worst-case)
competitive ratio 2. Christ et al. [4] adapted the asymptotic random-oder ratio
to bin covering and proved that the random-order ratio of the dual next-fit al-
gorithm (DNF) is at most 0.8, which was later improved to 2/3 [8]. In [8], we
proved that the asymptotic average performance ratio of DNF is 0.5 + ε for a
small constant ε > 0 for every discrete distribution F . However, this lower bound
does not carry over to the random-order ratio of DNF and no lower bound except
for the trivial bound of 0.5 is known for this.

The class constrained bin packing problem has been introduced in [13] and
studied in a sequence of papers [14, 16, 7]. All results so far concern the competi-
tive ratio in the classical worst-case model. In the case of unit sized items there is
a lower bound of 2 for the asymptotic competitive ratio that can be achieved and
this bound is achieved by the first-fit algorithm (FF) and the algorithm CS [NF]
(also called ColorSets) introduced in [14]. In the general case, for all values
of k, there exists an online algorithm for class constrained bin packing with a
competitive ratio of at most 2.63492 [7]. Also the competitive ratios of several
other online algorithms have been analyzed [7, 16] and approximation schemes
for the offline problem have been obtained [7].

The class constrained bin covering problem has been introduced by Epstein
et al. [6]. Also this problem has not been studied in a probabilistic setting before.
Epstein et al. consider only the case of unit sized items and they prove several
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results. They obtain a polynomial-time algorithm for the offline problem and an

upper bound of
(

(B−1)(B−k+1)
B(B−k)+B−1 · (

B−k
B−1 + Hk−1)

)−1
for the competitive ratio of

any online algorithm. Furthermore, they prove that DNF is not competitive for
class constrained bin covering and they introduce the algorithm Color&Size
and prove that it is Ω(1/k)-competitive. They also introduce the algorithm FF2
and prove that its competitive ratio is exactly 1/B.

1.3 Our Contributions

All mentioned algorithms are described in detail in Section 1.4.

Classical Bin Packing and Covering We prove that for bin covering the
simple greedy algorithm DNF achieves a random-order ratio of at least 0.501.
While this is only a small improvement over the trivial bound of 0.5, it is the
first bound that shows that DNF performs better in the random-order setting
than in the worst case. This has already been conjectured in [4] and posed as
an open problem. The conclusions in [4] also discuss the challenges in proving
such a result. While the different bins covered by DNF are not independent in
the random-order model, one main observation in our proof is that they are
identically distributed. Given this observation, the proof relies on analyzing the
expected overshoot of the first filled bin, where the overshoot is defined as the
total size of the items assigned to that bin minus its capacity 1. We show that
the expected overshoot is strictly less than 1. This proof strategy is analogous
to our analysis of the asymptotic average performance ratio [8] but the technical
details are quite different because instead of sampling with replacement the
harder setting of sampling without replacement has to be analyzed.

Since the random-order ratio of the dual harmonic algorithm DHk is 0.5 [4],
this result separates DNF from DHk in the random-order model, while their
performance cannot be distinguished in a worst-case analysis. This is interesting
because DHk was designed to guard against pathological worst-case inputs and
it is already discussed in [4] that one would expect DNF to perform better
than DHk on more realistic inputs. As an additional minor result, we prove
that DNF and DHk are also separated in terms of their asymptotic average
performance ratio by showing that this ratio is 0.5 for DHk while our lower
bound of 0.501 for DNF also carries over to this setting.

In contrast to this, we show for bin packing that next-fit, worst-fit, and smart-
next-fit do not perform better in the random-order setting and not even in the
i.i.d. setting than in the worst case. (For the random-order ratio of next-fit this
result was already known [9].)

Class Constrained Bin Packing and Covering We mention only the most
interesting results. For class constrained bin packing we can show that there
exists a sequence of algorithms whose asymptotic average performance ratios
tend to h∞ ≈ 1.691. h∞ is known in classical bin packing as the lower bound for
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bounded-space online-algorithms shown by C.C. Lee and D.T. Lee [12]. This is
far better than the competitive ratio of the best known algorithm 2.635 for class
constrained bin packing [7] and also beats the known lower bound for arbitrary
deterministic algorithms of 1.717 shown in [2] for the special case k = 2.

When we consider the random-order model, we find out that several algo-
rithms behave worse than in the case of i.i.d. sampling. Especially, we establish
a lower bound of 10/9 for the random-order ratio of all deterministic online-
algorithms. As far as we know, this is the first lower bound for arbitrary algo-
rithms w.r.t. to a probabilistic performance measure in the area of bin packing
and bin covering and its variants.

Furthermore, we consider the special case of unit sized items. We observe
again different behaviors of heuristics w.r.t. to the two considered performance
measures. Especially, a large class of “natural” algorithms performs asymptoti-
cally optimal, if the items are drawn i.i.d.

For class constrained bin covering we investigate the behavior of DNF and
FF2. We observe that the algorithms benefit a lot from random input – indepen-
dently of the considered probabilistic performance measure. We provide bounds,
which are logarithmic in k, for the performance of DNF w.r.t. both models. In
the case of unit sized items we show that FF2 behaves asymptotically optimal
in the random-order model, and therefore also for i.i.d. sampling. We use this
result to establish a 1/3-competitive algorithm in the random-order model for
general item sizes.

The main tools for proving these results are

– Markov chain arguments (e.g. estimates for the stationary distribution and
growth bounds for trajectories);

– couplings to compare stochastic processes and relating i.i.d. sampling with
the random-order model;

– concentration inequalities for – possibly dependent – random variables.

An overview on the used concentration bounds will be given in the full version
of the paper.

Intuitively one main reason why the two probabilistic measures lead to differ-
ent results in the case of class constrained bin packing is that in the random-order
model the number of different colors can grow with the length of the input se-
quence while it cannot grow arbitrarily with the input length if the items are
drawn i.i.d. with respect to some fixed distribution.

1.4 Algorithms

Let us describe the algorithms that we analyze in more detail. We start with
the (class constrained) bin packing problem. For this problem, the following
algorithms are relevant for our results.

– Next-Fit (NF): At each point of time one bin is open. NF assigns each
arriving item to the currently open bin if it can accommodate the item.
Otherwise it closes the currently open bin and opens a new bin to which the
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item is added. Here closing a bin means that no item will be assigned to this
bin in the future anymore.

– First-Fit (FF): FF never closes a bin, i.e., it keeps all bins open and assigns
each arriving item to the first bin that can accommodate it if such a bin
exists. Otherwise it opens a new bin and adds the item to it.

– Best-Fit (BF): BF never closes a bin, i.e., it keeps all bins open and assigns
each arriving item to the fullest bin that can accommodate it if such a bin
exists. Otherwise it opens a new bin and adds the item to it.

– Worst-Fit (WF): WF never closes a bin, i.e., it keeps all bins open and
assigns each arriving item to the bin with the most space remaining if this
bin can accommodate it. Otherwise it opens a new bin and adds the item to
it.

– Smart-Next-Fit (SNF): SNF works similarly to NF. It assigns each arriving
item to the currently open bin Z if this bin can accommodate the item.
Otherwise it opens a new bin Z ′ and adds the item to it. It retains as new
current bin whichever of Z and Z ′ has the most space remaining.

– HARMONICM : HARMONICM is an algorithm designed for classical bin
packing. It partitions the interval (0, 1] into the subintervals

(0, 1/M ], (1/M, 1/(M − 1], . . . , (1/2, 1].

This partition induces also a partition of the set of items into M classes.
HARMONICM packs items from different classes into different bins and it
runs NF independently for each class. That is, it packs exactly j items from
the interval (1/j + 1, 1/j] into a bin.

– CS [A]: A technique often used to generate algorithms for class constrained
bin packing is the ColorSets-approach. The ColorSets-approach wants to
apply an algorithm A, which is designed for classical bin packing, to class
constrained bin packing. In order to do this, it groups the colors according
to their first arrival in groups of size k and then applies A separately to each
group. Popular examples are CS [NF], CS [FF] and CS [BF] (see e.g. [14, 16]).

While in NF there is only one and in HARMONICM only M open bins at each
point of time, in FF, BF, and WF all bins are kept open during the whole input
sequence. We say that an algorithm is an `-bounded space algorithm if on any
input and at each point of time it has at most ` open bins.

Now we describe the relevant algorithms for the (class constrained) bin cov-
ering problem.

– Dual Next-Fit (DNF): DNF packs all arriving items into the same bin until
the bin is filled. Then the next items are packed into a new bin until this
bin is filled, and so on.

– FF2: The algorithm FF2 is for the class constrained bin covering problem
with unit sized items only. It adds each arriving item to the first bin for
which it is suitable. To define the notion of suitable, consider a bin that
contains already items with k − t different colors. If this bin contains fewer
than B − t items, every item is suitable. Otherwise, if the number of items
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is exactly B − t, an item is only suitable if it has a color that is not yet
contained in the bin.

– Dual Harmonic DHM : The algorithm DHM is the adaption of HARMONICM
to classical bin covering. The interval (0, 1] is partitioned into the subinter-
vals (0, 1/M), [1/M, 1/(M−1), . . . , [1/2, 1). This partition again induces also
a partition of the set of items into M classes. DHM packs items from differ-
ent classes into different bins and it runs DNF independently for each class.
That is, it uses exactly j items from the interval [1/j, 1/(j − 1)) to cover a
bin.

In Section 2 we discuss our results on classical bin packing and bin covering
in detail, followed by Section 3 and 4 on class constrained bin packing and bin
covering, respectively.

2 Classical Bin Packing and Covering

We start by showing that the trivial greedy algorithm for the classical bin cov-
ering problem performs strictly better in the random-order model than in the
worst case. This statement confirms the conjecture given in [4]. Furthermore, to
the best of our knowledge this is the first positive result on the random-order
ratio of bin packing and covering (and its variations) since the celebrated result
of Kenyon [10].

Theorem 1. We have RR(DNF) ≥ 1/2 + 1/1000.

DNF is a monotone algorithm in the sense that decreasing the size of items
or deleting them only does harm to the algorithm. We see this as follows: Let I =
(a1, . . . , an) and I ′ = (a1, . . . , ai−1, a

′
i, ai+1, . . . , an) with a′i < ai. We simulate

deleting an item by setting a′i equal to zero. Let f(aj) denote the number of the
bin aj is assigned to if DNF performs on I and f ′(aj) if DNF performs on I ′,
respectively. If j ≤ i it is obvious that we have f(aj) = f ′(aj). If j > i we can
show via induction that f(aj) ≥ f ′(aj). Therefore, we have DNF(I ′) ≤ DNF(I).

It follows from the monotonicity of DNF that we can assume without loss
of generality that we deal with instances I that can be packed perfectly into
OPT(I) bins. Especially, we have OPT(I) = S(I), where S(I) denotes the total
size of all items in I.

Since DNF is 1/2-competitive, we know that the algorithm covers, indepen-
dently of Iσ, at least bOPT(I)/2c many bins. For i ∈ [1 : bOPT(I)/2c] let Si(I

σ)
denote the total size of items in the i-th covered bin if we apply DNF to Iσ. We
define the overshoot for the i-th bin as Ri(I

σ) := Si(I
σ)− 1.

Then, the proof of the theorem is based on two pillars. At first, we show that
the overshoot is identically distributed:

Lemma 2. The random variables Ri(I
σ), where 1 ≤ i ≤ bOPT(I)/2c, are iden-

tically distributed.
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Then, we can express the random-order ratio in terms of the overshoot. Let
W (Iσ) denote the total size of the items in the last bin, which is not covered.
We have

OPT(I) = DNF(Iσ) · 1 +

DNF(Iσ)∑
i=1

Ri(I
σ) +W (Iσ)

= DNF(Iσ) +

bOPT(I)/2c∑
i=1

Ri(I
σ) +

DNF(Iσ)∑
i=bOPT(I)/2c+1

Ri(I
σ) +W (Iσ)

≤ DNF(Iσ) +

bOPT(I)/2c∑
i=1

Ri(I
σ) + (DNF(Iσ)− bOPT(I)/2c) + 1

≤ 2 DNF(Iσ)−OPT(I)/2 + 2 +

bOPT(I)/2c∑
i=1

Ri(I
σ).

Applying expectation values to both sides and using the previous lemma, we
obtain

OPT(I) ≤ 2E [DNF(Iσ)]−OPT(I)/2 + 2 +
1

2
OPT(I)E [R1(Iσ)] .

It follows that

E [DNF(Iσ)]

OPT(I)
≥ 3

4
− 1

4
· E [R1(Iσ)]− 1

OPT(I)
. (1)

The second pillar is to give an upper bound for the overshoot. A similar
statement in case of items that are drawn i.i.d. was shown in our paper [8]. At
that time we used elementary counting and covering arguments. This time we
apply concentration inequalities that lead to a simplified proof with a stronger
bound – even if the resulting bound is still close to the worst case.

Lemma 3. Let (Ij)j be an arbitrary sequence of instances with

lim
j→∞

OPT(Ij) =∞ and RR(DNF) = lim inf
j→∞

E
[
DNF(Iσj )

]
OPT (Ij)

.

Then, if j is sufficiently large we have

E
[
R1(Iσj )

]
≤ 1− 34

100e3
·
(

1− exp

(
−121

420

))
≈ 0.99576.

Combining this upper bound with (1) yields a lower bound of approximately
0.501 for DNF if the items arrive in random order. The lower bound is comple-
mented by an upper bound of 2/3 for the random-order ratio in [8].

The behavior of DNF in the random-order model is in contrast to the be-
havior of NF in classical bin packing: Coffman et al. [9] showed in 2008 that
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RR(NF) = 2, which is equal to its worst-case performance. We will refine this
statement and show that the algorithms NF, SNF and WF for classical bin pack-
ing do not behave better than in the worst case even if the items are sampled in
an i.i.d. manner.

Proposition 4. For A ∈ {NF,SNF,WF} we have AAPR(A) = RR(A) = 2.

Furthermore, also the dual harmonic algorithm DHk for bin covering does
not improve on the worst case if the items are drawn i.i.d.

Proposition 5. We have AAPR(DHk) = 1/2.

3 Class Constrained Bin Packing

3.1 Results for General Item Sizes

As already mentioned in the introduction a popular approach to deal with
class constrained bin packing is the ColorSets-approach. We show that there
are algorithms based on this approach, that behave remarkably well in the
case of items that are drawn i.i.d. Let t1 = 1 and ti+1 = ti(ti + 1). We set∑∞
i=1

1
ti

=: h∞ ≈ 1.691. h∞ is known in bin packing as the famous lower bound
for bounded-space online algorithms for the classical bin packing problem proved
by C.C. Lee and D.T. Lee in [12]. The following statement shows that there is
a sequence of ColorSets-based algorithms whose performance tends to h∞. Fur-
thermore, no algorithm based on this idea could behave better.

Theorem 6. Let ε > 0 be arbitrary. Choosing M sufficiently large, we have

AAPR(CS [HARMONICM ]) ≤ h∞ + ε.

Furthermore, let A be an arbitrary algorithm for classical bin packing, then we
have

AAPR(CS [A]) ≥ h∞.

To show the upper bound we want to compare the performance of the algo-
rithm CS [HARMONICM ] with the performance of the algorithm HARMONICM
in the case we ignore the colors. Lee and Lee proved in [12] that the asymptotic
competitive ratio of HARMONICM for classical bin packing is upper bounded
by h∞ + ε for ε > 0 arbitrary, if we choose M sufficiently large.

We observe that the number of opened bins differs by at most M · QF (n)
many bins. Here, QF (n) denotes the number of different drawn colors among
the first n drawn items. But QF (n) grows sublinearly in expectation. There-
fore, asymptotically the performance of CS [HARMONICM ] coincides with the
performance of HARMONICM in classical bin packing.

For the lower bound we construct a distribution F as follows: The multiset
of items I contains large items and small items. The large items are as follows:
For each (i, j) ∈ [k]2 there will be an item of size 1

ti+1 + β of color (i− 1)k + j,
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where β > 0 is sufficiently small. Furthermore, I contains lots of small items
of different colors. Choosing the small items appropriately the order of the first
arrival of the colors is 1, . . . , k2 with high probability. Then, CS [A] will pack the
items of size 1

ti+1 + β separately. The statement then follows from the work of
Lee and Lee.

In the random-order model things are more complicated: We can show that it
is not possible for ColorSets-based algorithms and FF to achieve a performance
of h∞.

Proposition 7. Let A be an arbitrary algorithm for classical bin packing. Then
we have RR(CS [A]) ≥ 2, even in the special case k = 2. Furthermore, we show
that RR(FF) ≥ 2.

Furthermore, we are able to establish a non-trivial lower bound for the per-
formance of an arbitrary online-algorithm in the random-order model. As far as
we know this is the first asymptotic lower bound for a probabilistic performance
measure in the field of bin packing/bin covering and its variants.

Theorem 8. Let A be an arbitrary online-algorithm for class constrained bin
packing. Then we have RR(A) ≥ 10/9.

The idea of the proof is to construct an instance I that contains items of colors
of the two types small and large. The total size of all items of a small color
is close to zero, while the total size of all items of a large color is close to 1.
Furthermore, for each color there are lots of tiny items. If the items arrive in
random order, there will be lots of tiny items in the beginning. This forces the
algorithm to decide which colors to put in the same bin without the possibility to
learn, which color is small and large. Therefore, there will be a constant fraction
of bins opened by the algorithm that are nearly empty.

3.2 The Special Case of Unit Sized Items

Now we want to consider the case of unit sized items. We observe the same
behavior of algorithms as in the case of general item sizes. If the items are
drawn i.i.d. a large class of natural algorithms performs asymptotically optimal,
but in the random-order model their performance is worse.

Proposition 9. CS [NF] and every algorithm that opens a new bin only if it is
forced, is optimal if the items are drawn i.i.d.

Proposition 10. We have RR(CS [NF]) = 2.

Proposition 11. We have RR(FF) ≥ 1.5.

Finally, we want to mention that bounded-space algorithms perform poorly
for class constrained bin packing, even on random input with unit sized items.
This is in contrast to classical bin packing.

Proposition 12. Consider class constrained bin packing with unit sized items
and parameters B and k. Let A be an arbitrary bounded-space online-algorithm.
Then we have RR(A),AAPR(A) ∈ Ω(B/k).
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4 Class Constrained Bin Covering

We start with a simple result on bounded-space algorithms for the class con-
strained bin covering problem. While in the classical bin covering problem, even
the trivial 1-bounded space algorithm is best possible w.r.t. the competitive
ratio, in the class constrained variant those algorithms behave poorly.

Proposition 13. Let A be a bounded-space algorithm. Then A is not competitive
w.r.t. the competitive ratio.

In general, there is a logarithmic upper bound in k for the performance of
online algorithms. That is, the online version of this problem is strictly more
difficult than the classical problem. The following statement is a slight improve-
ment on the corresponding result in [6]. The proof uses the same technique, but
adjusts the choice of scenarios.

Proposition 14. The competitive ratio of any deterministic online algorithm

is at most
(
Hk−1 + 1− k−1

B

)−1
. If B = k this yields an upper bound of H−1k .

Now we begin to investigate the performance of heuristics w.r.t. probabilistic
performance measures. We start with the simple 1-bounded space algorithm
DNF.

Theorem 15. For unit sized items we have RR(DNF) ∈ Θ(log(k)−1). For gen-
eral item sizes we have AAPR(DNF) ∈ Θ(log(k)−1).

We see that in class constrained bin covering DNF benefits a lot from prob-
abilistic input. We have seen that bounded-space algorithms cannot be com-
petitive in the worst case and that there exists a logarithmic upper bound in
k for the performance of arbitrary online algorithms. If unit sized items arrive
in random order, even the simple 1-bounded-space algorithm DNF achieves a
competitive ratio that matches this bound.

Surprisingly it turns out that a FirstFit-approach is even optimal if unit sized
items arrive in random order:

Theorem 16. We have RR(FF2) = 1.

To prove the theorem at first we observe that the algorithm is monotone. There-
fore, we can assume that we deal with instances I that cover OPT(I) bins per-
fectly. Furthermore, the monotonicity of FF2 allows us to restart the algorithm
several times starting again with a single empty bin. Using this technique, we
divide the input I into |I|2/3 many sub-inputs containing each |I|1/3 many items.
Then we show that we can assume that the items in the sub-input are drawn
i.i.d. So we reduce the analysis in the random-order model to the case of i.i.d.
sampling.

Then, we construct a comparison Markov chain, which lower bounds the
number of covered bins of FF2 on the sub-inputs. The idea of the comparison
chain is as follows: We simulate the behavior of a modified FF2-algorithm on
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a special distribution F . We obtain F from drawing an item with color 1 with
probability (B− k+ 1)/B and an item with color i with probability 1/B, where
i ∈ {2, . . . , k}. The modified FF2-algorithm treats the first B − k + 1 items in a
bin as items of color 1. We can show that FF2 on an arbitrary (perfect-packing)
distribution F covers in expectation at least as many bins as the modified algo-
rithm in our comparison chain.

Finally, we use tools from the field of Markov chains to show that the growth
of open bins in the comparison chain is only sublinear in the number of items.
Plugging the pieces together we obtain that RR(FF2) = 1.

Theorem 16 allows us to give a simple online algorithm, which is 1/3-competi-
tive for general item sizes if the items arrive in random-order.

Corollary 17. There exists an 1/3-competitive algorithm in the random-order
model for the class constrained bin covering problem with general item sizes.

This also gives us an easy randomized algorithm for the offline case. To the
best of our knowledge this is the first offline algorithm presented for this problem.

Corollary 18. There is a randomized asymptotic 1/3-competitive algorithm for
class constrained bin covering in the offline case.

5 Conclusion and Further Research

We showed that the DNF algorithm for bin covering performs better in the
random-order model than in the worst case by providing a lower bound of 0.501
on its random-order ratio. This is the first bound better than the trivial bound
of 0.5. We think that it is an interesting open problem to close the gap between
the lower and upper bounds and we conjecture that the random-order ratio of
DNF equals the upper bound 2/3.

Furthermore, we studied class constrained bin packing and class constrained
bin covering in the random-order model and i.i.d. sampling. We saw that in
many cases heuristics benefit from the probabilistic input and can beat sev-
eral worst-case bounds. In class constrained bin packing we observed different
performances of algorithms in the two probabilistic models. The random-order
model allows us to restrict the number of similar items and to force a linear
number of different item types, while in the i.i.d. model the number of differ-
ent item types grows only sublinearly. This difference plays an important role
in class constrained bin packing, while it is not relevant in class constrained
bin covering. As far as we know in bin packing and bin covering there are no
other results known, where the performance of algorithms differ with respect to
the investigated performance measures. It would be interesting to find further
examples in this area, where algorithms perform differently, and to give formal
explanations why both performance measures coincide in other bin packing/bin
covering variants.
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