
Internet routing between autonomous systems: fast

algorithms for path tradingI

André Bergera,∗, Heiko Röglinb, Ruben van der Zwaana

aDepartment of Quantitative Economics, Maastricht University, P.O. Box 616,
NL–6200 MD Maastricht, The Netherlands

bDepartment of Computer Science, University of Bonn, Germany

Abstract

Routing traffic on the internet efficiently has become an important research
topic over the past decade. In this article we consider a generalization of the
shortest path problem, the path–trading problem, which has applications in
inter–domain traffic routing. When traffic is forwarded between autonomous
systems (ASes), such as competing internet providers, each AS selfishly
routes the traffic inside its own network. Efficient solutions to the path
trading problem can lead to higher global performance in such systems,
while maintaining the objectives and costs of the individual ASes. First, we
extend a previous hardness result for the path trading problem. Moreover,
we provide an algorithm that finds all Pareto-optimal path trades for a pair
of two ASes. While in principal the number of Pareto-optimal path trades
can be exponential, in our experiments this number was typically small. We
use the framework of smoothed analysis to give a theoretical explanation
for that fact. The computational results show that our algorithm yields far
superior running times and can solve considerably larger instances than a
previously known algorithm.

Keywords: Shortest Paths, Internet Routing, Smoothed Analysis

IAn extended abstract of this paper has appeared in the conference proceedings of
SEA 2011 [3].

∗Corresponding author: Phone: +31 433884894, Fax: +31 433882000
Email addresses: a.berger@maastrichtuniversity.nl (André Berger),

roeglin@cs.uni-bonn.de (Heiko Röglin), r.vanderzwaan@maastrichtuniversity.nl
(Ruben van der Zwaan)

Preprint submitted to Discrete Applied Mathematics October 30, 2014

1. Introduction

The Border Gateway Protocol (BGP) serves as the main routing proto-
col on the top level of the Internet and ensures network reachability among
autonomous systems (ASes). When traffic is forwarded from a source to a
destination, these ASes cooperate in order to provide the necessary infras-
tructure needed to ensure the desired services. However, ASes also compete
and therefore follow their individual strategies and policies when it comes to
routing the traffic within their own network. Such locally preferable rout-
ing decisions can be globally disadvantageous. Particularly, the way how
one AS forwards traffic and through which node another AS may therefore
receive the traffic can make a huge difference in the costs for that other
AS. Behaving selfishly usually means that an AS routes its traffic according
to the least expensive route, also known as hot-potato routing, without re-
garding the costs of the next AS in the BGP path. That ASes demonstrate
such behaviour is supported by the results of Teixeira et al. [18].

Quite a number of protocols have been suggested that require the ex-
change of information and coordination in order to overcome global subop-
timality, while at the same time improving the costs for each individual AS
[8, 9, 19]. Recently, Shavitt and Singer [14] considered the case where ASes
might be willing to trade traffic in such a way that the costs for both ASes
do not increase w.r.t. the hot-potato routing, and term this problem path
trading. They prove that the problem of deciding whether there is a feasi-
ble path trade is weakly NP-hard when two ASes are considered. Moreover,
they show that there is no constant-factor approximation algorithm for the
path trading problem unless P = NP . Further, they develop an algorithm
based on dynamic programming to find the “best” trading between a pair.
Lastly, they give experimental evidence that path trading can have benefits
to autonomous systems.

In this article we extend their work in several ways. First, we show
that path trading is also strongly NP-hard when an arbitrary number of
ASes is considered instead of just two ASes. This justifies the approach
taken by Shavitt and Singer as well as the approach taken in this paper
to concentrate on path trades between pairs of ASes. We then propose a
new algorithm for finding path trades between pairs of ASes that is based
on the concept of Pareto efficiency. We have implemented both, our al-
gorithm and the algorithm of Shavitt and Singer, and tested them on real
Internet instances stemming from [13]. Besides the added advantage that
our algorithm obtains all Pareto-optimal path trades, it is very fast and

2

has low memory consumption. As the problem is NP-hard, we cannot ex-
pect that the algorithm performs well on all possible inputs. However, in
order to support the experimental results we consider our algorithm in the
framework of smoothed analysis, which was introduced in 2001 by Spielman
and Teng [17] to explain why many heuristics with a bad worst-case perfor-
mance work well on real-world data sets. We show that even though there
are (artificial) worst-case instances on which the heuristic performs poorly,
it has a polynomial expected running time on instances that are subject to
small random perturbations. After its introduction, smoothed analysis has
been applied in many different contexts (see [16] for a nice survey).

Finding path trades can be viewed as an optimization problem with
multiple objectives that correspond to the costs of the different ASes. A
feasible path trade is then a solution that is in every objective at least as
good as the hot-potato routing. We say that such a path trade dominates
the hot-potato routing if it is strictly better in at least one objective. This
brings us to the well-known concept of Pareto efficiency or Pareto optimality
in multiobjective optimization: A solution is called Pareto-optimal if it is
not dominated by any other solution, that is, a solution is Pareto-optimal if
there does not exist another solution that is at least as good in all criteria
and strictly better in at least one criterion. We call the set of Pareto-optimal
solutions Pareto set or Pareto curve for short.

Then the question of whether there is a feasible path trade can simply be
formulated as the question whether the hot-potato routing is Pareto-optimal
or not. This immediately suggests the following algorithm to find a feasible
path trade: Enumerate the set of Pareto-optimal solutions, and then either
output that there is no path trade if the hot-potato routing belongs to the
Pareto set, or output a Pareto-optimal solution that dominates the hot-
potato routing if it is not Pareto-optimal. Also, finding the Pareto set gives
the flexibility to choose a solution based on preference. While some solutions
might offer great global gain, these trade-offs might be unreasonable from
a fairness perspective.

The aforementioned algorithm only works when the Pareto set is small
because otherwise the computation becomes too time consuming. Our ex-
periments show that the number of Pareto-optimal path trades is indeed
small and that despite the NP-hardness result by Shavitt and Singer we
can solve this problem efficiently in practice for two ASes.

For path trading between an arbitrary number of ASes, however, there
is little hope for obtaining such a result: We show that our strong NP-

3

hardness result implies that this problem cannot be solved efficiently even
in the framework of smoothed analysis.

Related Work. The potential benefits of collaboration between neighboring
ASes and the necessary engineering framework were first introduced by
Winick et al. [19]. They consider the amount of information that needs to
be shared between the ASes in order to perform mutually desirable path
trades and how to limit the effect of path trades between neighboring ASes
on the global flow of traffic. The first heuristics for path trading to improve
the hot-potato routing were evaluated by Majahan et al. [9]. Majahan
et al. also developed a routing protocol that provides evidence that path
trading can improve global efficiency in Internet routing. Other related
work in the area of improving the global performance while maintaining
the objectives of the different ASes has been done by Yang et al. [20], Liu
and Reddy [8], and by Quoitin and Bonaventure [11]. Since ASes usually
compete, one cannot expect them to reveal their complete network and cost
structure when it comes to coordinating the traffic between the ASes. This
aspect is considered in the work by Shrimali et al. [15], using aspects from
cooperative game theory and the idea of Nash bargaining. Goldenberg et
al. [6] develop routing algorithms in a similar context to optimize global
cost and performance in a multihomed user setting, which extends previous
work in that area [1, 5, 12].

2. Model and Notation

The model is as follows. We have the Internet graph G = (V,E), where
every vertex represents a point/IP address. Further, there are k ASes and
the vertex set V is partitioned into mutually disjoint sets V1, . . . , Vk, where
Vi represents all points in AS i. We denote by Ei all edges within AS i, that
is, the set of edges E is partitioned into E1, . . . , Ek, and the set of edges
between different ASes. The graph G is undirected, and each edge e ∈ E
has a length `(e) ∈ R≥0. The traffic is modeled by a set of requests R, where
each request is a triple (s, t, c), where s ∈ V and t ∈ V are source and sink
nodes, respectively, and c ∈ R≥0 is the cost of the corresponding request.
The BGP protocol associates with each request a sequence of ASes which
specifies the order in which the request has to be routed through the ASes.
Since most of the paper is about the situation between two ASes, we leave
this order implicit. The cost of routing a request with cost c through edge e
is `(e) · c. For simplicity, the costs of routing a packet between two ASes are

4

assumed to be zero, but each request can be routed at most once from an
AS to the next AS. The input for Path Trading consists of the graph G
and requests as described previously. We denote by n the number of nodes
in V .

For a given graph G and a request (s, t, c) we say that a path P is valid if
it connects s to t and visits the ASes in the order that is associated with this
request by the BGP protocol. This means, in particular, that every valid
path goes through every AS at most once. A solution to Path Trading is
a mapping that maps each request (s, t, c) ∈ R to a valid path from s to t in
graph G. Let us assume that the requests in R are (s1, t1, c1), . . . , (sr, tr, cr)
and that the paths P1, . . . , Pr have been chosen for these requests. Then
AS i incurs costs on all edges in Ei, i.e., it incurs a total cost of

r∑
j=1

(
cj ·

∑
e∈Pj∩Ei

`(e)
)
. (1)

The hot-potato route of a request (s, t, c) is defined to be the concate-
nation of shortest path routes for the ASes it goes through. To be precise,
assume that the BGP protocol associates the route i1, . . . , im with s ∈ Vi1
and t ∈ Vim with this request. Then AS i1 sends the request from s to the
vertex s2 ∈ Vi2 that is closest to s along the shortest path. Then AS i2
sends the request from s2 to the vertex s3 ∈ Vi3 that is closest to s2 along
the shortest path, and so on. The complete hot-potato route for request
(s, t, c) is then the concatenation of these paths. Note that the hot-potato
route is not necessarily unique, and in the following we will assume that
some hot-potato route is chosen for each request.

Consequently, the costs of the hot-potato routing that an AS i incurs are
equal to Equation 1, where the paths P1, . . . , Pr are the hot-potato paths.
We call a solution to Path Trading a path trade. Moreover, if the costs
for all involved ASes are less than or equal to their hot-potato costs, then
we call it a feasible path trade. In the following, let [n] be the set of integers
{1, ..., n}. For a vector x ∈ Rn, let xi be the i-th component of x.

3. Complexity Results

Our first result is about the complexity of Path Trading and extends
the weak NP-hardness result of Shavitt and Singer [14]. The proof uses a
reduction from 3-Partition.

5

A BA1 Am

...

...

x y

x0

x1

y0

y1

0

0 0

W W

mW

si

vi
m

ri
m

ui
m

qi
m

vi
1

ri
1

ui
1

qi
1

t i

ti
0

ti
1

0

0 0

0
0

bi
bi bi

Figure 1: This figure depicts the reduction from 3-Partition to Path Trading in
Theorem 1.

Theorem 1. Finding a feasible path trade apart from the hot-potato routing
is strongly NP-hard.

Proof. We will prove the statement by a reduction from the following version
of 3-Partition. An instance of 3-Partition consists of a multiset S =
{b1, . . . , b3m} of 3m positive integers, where

∑3m
i=1 bi = mW for some integer

W and for every i it holds that W/4 < bi < W/2. The problem is to
determine whether there exists a partition of S into m subsets of size three
such that the elements in every subset add up to W . This problem is
strongly NP-hard, i.e. it is NP-hard even if all the numbers bi are bounded
by a polynomial in m.

From an instance for 3-Partition we will construct an instance of Path
Trading such that there exists a feasible path trade apart from the hot-
potato routing in that instance if and only if there exists a solution to the
instance of 3-Partition.

The instance will consist of m + 2 ASes A, B, and A1, . . . , Am. There
is one request (x, y, 1) where x ∈ A and y ∈ B, which has to be routed
through the ASes in the order A, A1, . . . , Am, B. In the AS A the node
x is connected to two boundary nodes x0 and x1, where the weight of the
edge xx0 is 0 and the weight of the edge xx1 is mW . Moreover, the node
y in the AS B is connected to two boundary nodes y0 and y1 with edges of
weight 0. In addition, there is a unique path that connects x0 and y0 going
through the ASes A1, . . . , Am and using one edge of weight W in each AS,
and there is a unique path that connects x1 and y1 going through the ASes
A1, . . . , Am and using one edge of weight 0 in each AS.

We note that the request (x, y) can only be routed in two different ways:
6

under the hot-potato strategy it is routed via x0 and y0 and A incurs a cost
of 0, while each Aj incurs a cost of W . The second option is to route the
request via x1 and y1 with a cost of mW for A and a cost of 0 for each Aj.

In addition to the above request, there will be 3m additional requests,
each corresponding to one element in the multiset S. For each bi ∈ S there
will be a request (si, ti, 1), where si ∈ B and ti ∈ A that has to be routed
in the order B, Am, . . . , A1, A. For each AS Aj, there will be four nodes
qji , r

j
i , u

j
i , v

j
i ∈ Aj together with three edges: qji r

j
i and ujiv

j
i of weight 0 and

ujir
j
i of weight bi. For 1 ≤ j ≤ m − 1, vji is connected to uj+1

i and rji is
connected to qj+1

i . Finally, ti is connected to u1i with an edge of weight 0
via the node t0i and to q1i with an edge of weight bi via the node t1i , and si
is connected to rmi . See Figure 1 for an overview of the nodes, edges, and
requests.

Under the hot-potato strategy any request (si, ti) is routed through the
nodes si, r

m
i , q

m
i , . . . , r

1
i , q

1
i , t

1
i , ti for a cost of 0 for each Aj and for a cost

of bi for A. Thus the total cost of all requests (si, ti) for AS A is mW .
Each request (si, ti) can also be “rerouted in Aj” by using the edge rjiu

j
i .

This increases the cost of Aj by bi and decreases the cost of A by bi when
compared to the hot-potato strategy. It is straightforward to see that in any
reasonable path trade every request (si, ti) goes through at most one edge
rjiu

j
i because otherwise the costs for some ASes can be decreased without

increasing the costs for other ASes.
In order to finish the proof, we first assume that there exists a solu-

tion S1, . . . , Sm to the instance of 3-Partition, i.e.
⋃m

j=1 Sj = S and∑
bi∈Sj

bi = W for every 1 ≤ j ≤ m. The corresponding path trading solu-

tion that deviates from the hot-potato strategy is to route the request (x, y)
via x1 and y1 with an increase in cost of mW for A and a decrease in cost
of W for each Aj. Moreover, each request (si, ti) is rerouted in that Aj for
which bi ∈ Sj. Thus each Aj saves a cost W from the rerouting of (x, y)
and has an increase in cost of

∑
bi∈Sj

bi = W . Moreover, since each request

(si, ti) is rerouted in some Aj, the AS A will save a total of mW in cost,
but has an increase in cost of mW from the rerouting of (x, y). Thus this
is a feasible rerouting scheme.

Finally, assume that there exists a feasible rerouting scheme of all re-
quests. If the request (x, y) is rerouted, then certainly there is an increase
in cost of mW for A and a decrease in cost of W for each Aj. Since the
rerouting scheme is feasible, the only way for A to also save at least mW in
cost is to have all requests (si, ti) be routed to ti via t0i , i.e. each (si, ti) has

7

to be rerouted in some Aj. We let Sj = {bi : bi is rerouted in Aj}. Since
each Aj has saved a cost of W through the rerouting of (x, y), we have that∑

bi∈Sj
bi ≤ W for each j because otherwise the costs for Aj would be larger

than in the hot-potato routing. Due to the premise that W/4 < bi < W/2
for all i the only way to achieve all the reroutings while maintaining feasi-
bility for all the ASes Aj is if |Sj| = 3 and

∑
bi∈Sj

bi = W for all j. Thus
we get a solution to the instance of 3-Partition in this case. Now, if on
the other hand one request (si, ti) is rerouted in some Aj, then Aj has an
additional cost of bi and since the only way for Aj to save cost is to reroute
(x, y), we are back in the first case. This finishes the proof.

Note, that in the above proof the edges of length W , mW , and bi can be
replaced by paths of W , mW , and bi edges of length 1, respectively, which
shows that the version of path trading where edges are only allowed to have
length 0 or 1 is also strongly NP-hard. Moreover, as the following corollary
shows, the proof can also be adapted in such a way that a 3-Partition
exists if and only if a path trade exists that is strictly better than the hot
potato routing.

Corollary 1. It is strongly NP-hard to decide whether there exists a feasible
path trade that is for all ASes strictly better than the hot-potato routing.

Proof. We use the same reduction as in the proof of Theorem 1 and adjust
edge lengths as follows: We set `(xx1) = mW − 1/2, and for all i ≤ 3m
and for all j ≤ m, we set `(rjiu

j
i) = bi − 1

5
. Additionally, we set `(y0y) = 1.

Any 3-partition still gives rise to a feasible path trade in the same way as
in the proof of Theorem 1. In this path trade, AS A reduces its costs by
1/2 compared to the hot-potato routing, every AS Aj reduces its costs by
3/5, and B reduces its costs by 1.

To argue that any valid path trade apart from the hot-potato routing
gives rise to a 3-partition, observe that in any such path trade, request (x, y)
has to be rerouted as otherwise none of the other requests can be rerouted
either. So assume that request (x, y) is rerouted. Then every request (si, ti)
has to be rerouted in one of the ASes A1, . . . , Am as otherwise, AS A would
incur increased costs compared to the hot-potato routing.

Again let Sj = {bi : bi is rerouted in Aj}. Since all bi are positive inte-
gers, the condition that W/4 < bi implies that bi −W/4 ≥ 1/4 and hence
W/4 < bi − 1/5. As

∑
bi∈Sj

(bi − 1/5) ≤ W for each j, this implies that
each Sj can contain at most three elements. As there are 3m elements
in total, this implies that each Sj contains exactly three elements. Since

8

∑
bi∈Sj

(bi − 1/5) =
(∑

bi∈Sj
bi
)
− 3/5 ≤ W and every bi is integer, we also

have that
∑

bi∈Sj
bi ≤ W . As the total sum of elements is mW , this implies

that for every j, we have
∑

bi∈Sj
bi = W .

4. Our Algorithm and Smoothed Analysis

Given the above theorems, in order to develop fast algorithms, we con-
centrate on path trading between two ASes, and will now present our al-
gorithm for this case. As mentioned before, this algorithm is based on
the concept of Pareto efficiency and it enumerates all Pareto-optimal path
trades. In the worst case the number of Pareto-optimal solutions can be
exponential, but our experiments suggest that on real-world data usually
only a few solutions are Pareto-optimal. To give a theoretical explanation
for this, we apply the framework of smoothed analysis. The algorithm is a
dynamic program that adds the requests one after another, keeping track
of the Pareto-optimal path trades of those requests that have already been
added.

For a request (s, t, c), a path P from s to t, and i ∈ {1, 2}, we denote
by Ci(P) the costs incurred by AS i due to routing the request along path
P . To keep the notation simple, assume in the following discussion w.l.o.g.
that s ∈ V1 and t ∈ V2. We denote by P(s, t) the set of all Pareto-optimal
valid paths from s to t. Remember that a path is valid if it starts at s,
terminates at t, and does not go back to V1 after leaving V1 for the first
time. Such a path P belongs to P(s, t) if there does not exist another valid
path that induces strictly lower costs for one AS and not larger costs for
the other AS than P . We assume that in the case that there are multiple
paths that induce for both ASes exactly the same costs, only one of them
is contained in P(s, t).

Let P ∈ P(s, t) be some Pareto-optimal path and let v ∈ V1 be the
boundary node at which the path leaves AS 1. Then the subpaths from s
to v and from v to t must be shortest paths in AS 1 and AS 2, respectively.
Otherwise, P cannot be Pareto-optimal. Hence, the number of Pareto-
optimal paths in P(s, t) is bounded from above by the number of boundary
nodes of AS 1 that connect to AS 2. For each pair s ∈ V1 and t ∈ V2, the
set P(s, t) can be computed in polynomial time.

Our algorithm first computes the set P1 of Pareto-optimal path trades
for only the first request (s1, t1, c1). This is simply the set P(s1, t1). Based
on this, it computes the set P2 of Pareto-optimal path trades for only the
first two requests, and so on. Thus the elements in Pi are tuples (P1, . . . , Pi)

9

where each Pj is a valid path for the jth request. Our algorithm can be
implemented using a modification of the Nemhauser/Ullmann algorithm for
the knapsack problem [10].

Algorithm 1 Algorithm to compute the Pareto set

P1 = P(s1, t1);
for i = 2 to r do
Pi = {(P1, . . . , Pi) | (P1, . . . , Pi−1) ∈ Pi−1, Pi ∈ P(si, ti)};
Remove all solutions from Pi that are dominated by other solutions

from Pi.
If Pi contains multiple solutions that induce for both ASes exactly the

same costs, then remove all but one of them.
end for
return Pr

Theorem 2. For i ∈ [r], the set Pi computed by Algorithm 1 is the set of
Pareto-optimal path trades for the first i requests. In particular, the set Pr

is the set of Pareto-optimal path trades for all requests. Algorithm 1 can be
implemented to run in time O(n log n ·

∑r
i=1 |Pi|+ nr|E| log n)

Proof. Let us first argue that Pi is the set of Pareto-optimal path trades
for the first i requests. For i = 1, it follows from the definition that
P1 = P(s1, t1) is the set of Pareto-optimal path trades for the first re-
quest. Now let i > 2 and let (P1, . . . , Pi) be a Pareto-optimal path trade.
We first claim that then Pi must be from the set P(si, ti). This is because
if there was a dominating path Q ∈ P(si, ti), then (P1, . . . , Pi−1, Q) would
dominate (P1, . . . , Pi), contradicting the assumption that (P1, . . . , Pi) is a
Pareto-optimal path trade. By exactly the same argument one can argue
that (P1, . . . , Pi−1) has to be a Pareto-optimal path trade for the first i− 1
requests. Hence, after the first step in the for loop of Algorithm 1, the
set Pi is a superset of the set of Pareto-optimal path trades of the first i
requests. In the following two steps only dominated solutions are removed
and for every cost vector only one solution inducing it is kept. This guar-
antees that afterwards the set Pi contains exactly the Pareto-optimal path
trades of the first i requests. The most straightforward implementation of
the algorithm would yield a running time that is polynomial in n and the
cardinalities of Pi, but the degree of this polynomial would be larger than
the one claimed. We will argue now that an implementation reminiscent of

10

the Nemhauser/Ullmann algorithm for the knapsack problem [10] achieves
the claimed running time. For this, first of all observe that for each request
the set P(si, ti) can be computed by at most 2n shortest path computa-
tions as there are at most n boundary nodes. Each of these calculations can
be done, e.g., by Dijkstra’s algorithm in time O(|E| log n), yielding a total
running time of O(nr|E| log n) for the shortest path calculations.

Now assume that all sets P(si, ti) have been computed. In order to speed
up the algorithm we will maintain the following invariant: when iteration i
of the for loop starts, the set Pi−1 is stored in a linked list that is sorted
in increasing order of C1(P). That is, we keep Pi−1 sorted according to
the costs of AS 1. Now let us look at the first step in the for loop. This
for loop creates for each path P ∈ P(si, ti) a copy of Pi−1 and adds P to
all elements of this copy. Hence, if Pi−1 is sorted, then without additional
effort also these copies are sorted. The total time that this step takes is
O(|Pi−1| · |P(si, ti)|) = O(n · |Pi−1|).

Now we have at most n copies of Pi−1 and we have to merge them
into a single sorted list. Once this sorted list is computed, duplicates and
dominated solutions can be removed by a single linear scan. Merging n
sorted lists of length |Pi−1| each can be accomplished in time O(n log n ·
|Pi−1|) by standard merging algorithms [7]. Adding up the running times
for all the iterations of the for loop yields the claimed bound.

The above theorem shows that the running time of Algorithm 1 largely
depends on the sizes of the Pareto sets. The algorithm of Shavitt and Singer
is a dynamic programming algorithm as well, but its running time depends
on the range of the possible utility values for both ASes, and this number
is in general larger than the size of the Pareto set. In the following we will
argue why the Pareto set is small for those instances that we consider. This
gives a theoretical justification of our fast running times for Algorithm 1
obtained later in Section 5.

We start by reviewing a result due to Beier et al. [2] who analyzed the
number of Pareto-optimal solutions in binary optimization problems with
two objective functions. They consider problems whose instances have the
following form: the set of feasible solutions S is a subset of {0, . . . , F}n for
some integers F and n, and there are two objective functions w(1) : S → R
and w(2) : S → R that associate with each solution x ∈ S two weights
w(1)(x) and w(2)(x) that are both to be minimized. While w(2) can be an
arbitrary function, it is assumed that w(1) is linear of the form w(1)(x) =
w1x1 + ...+ wnxn.

11

In a worst-case analysis, the adversary would be allowed to choose the
set of feasible solutions S, and the two objective functions w(1) and w(2).
In this setting there are choices S, w(1) and w(2), such that the number of
Pareto-optimal solutions is exponential. To make the adversary less pow-
erful and to rule out pathological instances, we assume that the adversary
cannot choose the coefficients w1, . . . , wn exactly. Instead he can only spec-
ify a probability distribution for each of them according to which it is chosen
independently of the other coefficients. Without any restriction, this would
include deterministic instances as a special case, but we allow only proba-
bility distributions that can be described by a density function that is upper
bounded by some parameter φ ≥ 1. We denote by fi : R≥0 → [0, φ] the
probability density according to which wi is chosen, and we assume that
the expected value of wi is in [0, 1]. The parameter φ describes the trade-
off between the number of Pareto-optimal solutions and the values that the
probability distributions can take. This relation is described in the following
theorem.

Theorem 3 (Beier et al., [2]). For any choice of feasible solutions S ⊆
{0, ..., F}n, any choice of w(2) and any choice of density functions f1, . . . , fn :
R≥0 → [0, φ], the expected number of Pareto-optimal solutions is bounded
by O(φn2F 2 logF).

Now we formulate our problem in terms of Theorem 3. For this, we
assume that all requests have positive integer costs. Let F denote an upper
bound on the maximal costs possible on any edge, e.g., F =

∑
(s,t,c)∈R c. Let

m = |E| and assume that the edges in E are ordered arbitrarily. Then each
path trade leads to a cost vector x ∈ {0, . . . , F}m where x1 denotes the total
cost of all requests that use the first edge in E, x2 denotes the total cost
of all requests that use the second edge in E, and so on. If two solutions
lead to the same cost vector, then it suffices to remember one of them, and
hence, we can assume that the set of possible path trades can essentially
be described by the set S ⊆ {0, . . . , F}m of possible cost vectors. Given
such a cost vector x ∈ {0, . . . , F}m, we can express the cost w(1)(x) of the
first AS simply as

∑
e∈E1

`(e)xe. The costs of the second AS can be defined
analogously, and so it looks like that Theorem 3 directly applies when we
perturb all edge lengths `(e) of edges e ∈ E1 as these edge lengths are the
coefficients in the linear objective function w(1). However, there is a small
twist. In Theorem 3 all coefficients in the linear objective function w(1)

are chosen randomly. Our objective function, however, does not contain
terms for the edges e ∈ E2. Or with other words the coefficients are 0 for

12

these edges. If we apply Theorem 3 directly, then also these zero coefficients
would be perturbed, which would destroy the combinatorial structure of the
problem as then suddenly the cost of the first AS would depend on what
happens on edges e ∈ E2.

To avoid this side effect, we remodel the feasible region S. As argued
before, each solution leads to a cost vector x ∈ {0, . . . , F}m, but now we care
only about the part of the vector for E1. Let us define m′ = |E1| ≤ m. Then
each solution leads to a cost vector x ∈ {0, . . . , F}m′

that contains only the
costs of the first AS. Now of course different solutions can lead to the same
vector x if they differ only in the way how the traffic is routed in the second
AS. However, Theorem 3 allows completely general objective functions w(2),
which we exploit by defining w(2)(x) for a vector x ∈ {0, . . . , F}m′

to be the
smallest cost for the second AS that can be achieved with any solution
whose cost vector for the first AS results in x. This formulation implies the
following corollary.

Corollary 2. Given a path trading instance in which the edge lengths `(e)
for all e ∈ E1 are randomly chosen according to probability distributions that
satisfy the same restrictions as those in Theorem 3, the expected number of
Pareto-optimal solutions is bounded by O(φm2F 2 logF).

Given that the expected number of Pareto-optimal solutions is small, we
still have to show that Algorithm 1 computes the Pareto curve in expected
polynomial time. This will be established by the following Corollary.

Corollary 3. Algorithm 1 computes the Pareto curve in expected time
O(φnm2 · log n · rF 2 logF).

Proof. The corollary follows immediately from Theorem 2 and Corollary 2
when we observe that Corollary 2 does not only bound the expected number
of Pareto-optimal path trades for all requests, but that it also bounds for
each i the expected number qi of Pareto-optimal path trades for requests
1, . . . , i. Then linearity of expectation implies that the running time is
bounded by O(n log n·

∑r
i=1 E(qi)+nr|E| log n) = O(φnm2 log n·rF 2 logF).

The reason that we concentrate our efforts on path trading between two
ASes was the hardness result in Theorem 1. We can extend this result
and also show that there is no hope for Path Trading with an arbitrary
number of ASes to be solvable efficiently in the framework of smoothed
analysis.

13

Theorem 4. There is no smoothed polynomial time algorithm for Path
Trading with an arbitrary number of ASes, unless NP ⊆ BPP .

Proof sketch. We only present the main idea of the proof. Assume that
we have an algorithm A for Path Trading with an arbitrary number of
ASes whose running time in the model of smoothed analysis is bounded
with constant probability by a polynomial in the input size and the param-
eter φ. We claim that we can utilize this algorithm to solve the instances
in Corollary 1 with constant probability in polynomial time. This would
immediately imply that 3-Partition is in BPP .

The main idea is that the instances of Path Trading that we con-
struct in Corollary 1 are rather robust against small perturbations of the
edge lengths and satisfy the following two properties. If there exists a solu-
tion to the given 3-Partition instance, there exists a feasible path trade
in which the costs for each AS are smaller by at least some constant c com-
pared to the hot-potato routing. If there does not exist a solution to the
given 3-Partition instance, any path trade deviating from the hot-potato
routing increases the costs of at least one AS by at least a constant c′ and
is hence infeasible. Now we consider the smoothed scenario in which we
cannot precisely specify the edge lengths anymore, but only choose a prob-
ability density for each of them. We choose φ polynomially large in m
and assume that every edge length is chosen according to a uniform dis-
tribution from an interval of length 1/φ around the value that it gets in
the reduction in Corollary 1. Due to the aforementioned two properties,
an instance generated at random according to these density functions still
satisfies the property that there is a feasible path trade that is cheaper for
each AS than the hot-potato routing if and only if there exists a solution
to the 3-Partition instance if φ is sufficiently large. This is because the
uncertainty induced by the random choices of the edge lengths is smaller
than the constants c and c′.

Hence, we can solve 3-Partition as follows: apply the aforementioned
randomized reduction to the given instance, and then run algorithm A for
polynomially many steps. If it stops, which happens with constant prob-
ability, then we know whether or not there exists a solution to the given
3-Partition instance. Otherwise, we output yes or no with probability 1/2
each. This algorithm outputs the correct solution with probability larger
than 1/2.

14

5. Computational Results

In this section we present the experimental results about the perfor-
mance of our algorithm on the IP-level Internet graph from DIMES [13].
We compare it, in particular, with the performance of the dynamic program
used by Shavitt and Singer, and we answer the following questions:

• (Running time) How fast can we compute the Pareto curve? Algo-
rithm 1 is very fast and scales well.

• (Participation) How many ASes are involved in path trading? In our
experiments we see that almost all ASes can benefit from path trading.

• (Gain) How much do ASes gain by trading? The gains are typically
modest, around 5%.

The answers to these questions are, of course, depending on the assump-
tions we made. As Shavitt and Singer, we assume that traffic is symmetric,
i.e., the number of requests sent from AS A to AS B is the same as the
number of requests sent from AS B to AS A for every pair of ASes. This
assumption is not necessarily true, but it is common and used, e.g., in [14],
[9], and [15]. One could imagine that in real networks requests are not
evenly spread, but are more concentrated between popular ASes for exam-
ple. However, we can still see from our experiments that ASes have a good
chance of gaining from path trading as long as there is non-zero traffic in
both directions. Our second assumption is that each request between two
ASes has to be routed between two nodes that are chosen uniformly at ran-
dom from these ASes. Our third assumption is that all edges have length 1,
i.e., the number of hops is used to measure the costs of an AS for routing
a request. By absence of real data, we feel that this is a reasonable and
common assumption.

In the following subsection we present the details of the experimental
setup. The algorithm by Shavitt and Singer is named Algorithm 2. Then
we show and discuss the experimental results.

5.1. Experimental Setup

The test set-up for answering the questions differs slightly, and experi-
ments were performed on different data sets from DIMES [13].

15

Experimental set-up for “Running time”. In order to determine AS pairs
where there is potential for path trading and therefore a larger set of
Pareto-optimal solutions, we simulated a small number of requests for each
sufficiently connected pair, i.e. pairs for which there are at least two
ingress/egress nodes between the two networks (otherwise at least one net-
work has a unique path to route all requests).

To measure how many ASes could benefit from path trading, we simu-
lated 5 requests for each of the 4348 sufficiently connected AS pairs in either
direction. For comparing performance we selected a subset of 15 AS pairs
arbitrarily among the AS pairs that benefited from path trading.

For both algorithms, we need to calculate shortest paths beforehand.
Because of the large number of possible routings, many shortest paths need
to be computed. This was all done as part of the preprocessing, and all
shortest paths were stored in a hash-table for fast access for both algo-
rithms. In the following, this time is not included in the running times of
the algorithms.

Experimental set-up for “Participation” and “Gain”. The data set is very
large. Therefore, computing for all pairs of ASes how much could be gained
from path trading has some bottlenecks. The first bottleneck is the compu-
tation of shortest paths, since for large graphs the standard algorithms such
as Dijkstra run out of memory or are too slow. Since the development of
fast algorithms for shortest paths in Internet graphs is out of scope of this
paper, we used some other techniques to make this calculation feasible.

Consider the network of a single AS. We call a node a border node if it
shares edges with nodes outside its AS. For every pair of ASes, we select 100
nodes uniformly at random that are in both ASes and requests from an AS
to another AS can only go through these nodes. Secondly, from all other
border nodes we select 1000 nodes uniformly at random where requests
can originate from. These are reasonable restrictions since the goal of the
experiment is to see how path trading performs on real-life topologies of
ASes.

Figure 2 summarizes the characteristics of the network for these exper-
iments.

5.2. Experimental Results

Running time

Table 1 shows a comparison of the running times of our algorithm and
the algorithm of Shavitt and Singer. The running times are the total of

16

Size

Low Up # ASes

0 0 77
1 2 2210
3 5 4769
6 10 4123

11 25 4745
26 100 5590

101 200 1981
201 500 1635
501 1000 654

1001 2000 383
2001+ 420

(a) The number of nodes in each
AS, where # ASes indicates
how many ASes have at least
Low and at most Up nodes.

Border size

Low Up # ASes

0 0 897
1 2 4779
3 5 5456
6 10 4253

11 25 4506
26 100 4209

101 200 1084
201 500 760
501 1000 317

1001 2000 165
2001+ 161

(b) The number of outgoing
edges from ASes, where # ASes
indicates how many ASes have at
least Low and at most Up out-
going edges.

Shared border size

Low Up # AS pairs

0 0 872
1 2 32525
3 5 16188
6 10 10064

11 25 10052
26 100 8362

101 200 1656
201 500 1073
501 1000 407

1001 2000 177
2001+ 96

(c) The number of shared edges betwen
ASes, where # AS pairs indicates how
many pairs of ASes have at least Low
and at most Up shared edges.

Figure 2: The network characteristics of the internet graph used in the experiments for
“Gain” and “Participation”

17

the running time over the 15 selected pairs in seconds. As can be seen, the
running time of the algorithm of Shavitt and Singer quickly becomes very
high with an increasing number of requests. This confirms our observation
about the running times after the proof of Theorem 2.

Requests Our Shavitt’s and Singer’s Ratio
Algorithm (s) Algorithm (s) :

1 0.02 0.09 1: 4.50
5 0.19 6.04 1: 31.79
10 1.09 84.31 1: 77.35
15 2.38 270.87 1: 113.81
19 4.01 519.27 1: 129.49

Table 1: The performance of Algorithm 1 compared to Algorithm 2.

The memory usage is dominated by the number of Pareto optimal so-
lutions, and each Pareto optimal solution is represented as a tuple of two
integers. Figure 3 shows a graphical comparison of both algorithms. Not
only is our algorithm fast for few requests, it can handle up to ten times
more requests in the same time as the algorithm by Shavitt and Singer.

Participation and Gain

From Figure 4 we see that roughly 90% of all AS pairs profit from trad-
ing paths. While there are many assumptions underlying these experiments
that are not neccesarily realistic, this indicates that many ASes would ben-
efit from path trading in practice. The gains are modest, typically in the
range of 0− 10% and a small percentage has significantly higher gains, i.e.
more than 15%. Even when the number of possible ways to route to another
AS is limited, the gain is in the same range.

The running times are, again, very fast and the real bottleneck is the
calculation of shortest paths. In all cases computation time is at most
seconds discounting the shortest path computations.

18

100

200

300

400

500

600

R
u

n
n

in
g

 t
im

e
 (

s)

0

100

200

300

400

500

600

0 50 100 150 200 250

R
u

n
n

in
g

 t
im

e
 (

s)

Requests

Algorithm 1 Algorithm 2

Figure 3: Running times of both algorithms.

Gain # AS pairs %

0% 2601 9.39%
0− 4% 8096 29.23%
4− 10% 11933 43.08%
10− 15% 3584 12.94%
15− 20% 1009 3.64%

20%+ 478 1.73%

Figure 4: The number and percentage of AS pairs that had a certain amount of gain due
to path trades. # AS pairs and % are the number of AS pairs and the percentage of
AS pairs, respectively that reduced costs by Gain.

19

Shared border size
2 26 101 201+

Gain 25 100 200

0% 2126 390 32 53
0− 4% 5707 1776 295 318

4− 10% 6751 3586 756 840
10− 15% 1796 1171 283 334
15− 20% 464 359 92 94

20%+ 270 151 33 24

Figure 5: The number of AS pairs that had a certain amount of gain due to path trades
split by the number of shared edges. An entry of the table is the number of AS pairs
that reduced costs by Gain and that shared Shared border size many edges.

20

6. Conclusions

Despite that Path Trading is NP-hard, we developed an algorithm
that is fast in practice, which we explained theoretically by smoothed anal-
ysis. Our algorithm is robust, and gives great flexibility because it returns
the whole set of Pareto-optimal path trades.

Throughout the paper we assumed that ASes are truthful and share
their data. The real costs can, of course, be scaled to the interval [0, 1],
where 1 are the costs of the hot-potato routing [9]. This would keep the
real costs secret, but we would have a trade-off of relative gain and not
absolute cost savings. Lying could potentially increase the cost savings of
an AS, but no AS would be worse off than with hot-potato routing. Every
AS simply refuses any path trade that costs more than their hot-potato
strategy. Unfortunately, achieving a mechanism that is both truthful and
efficient seems impossible [14].

The most promising direction for further research is to use real traffic
data, and model this in an appropriate way to find out how large the real
gains are for ASes. From a theoretical perspective, extending Corollary 2
from two ASes to a fixed number of ASes would be interesting. There is a
generalization of the results by Beier et al. [2] to multiobjective optimization
problems with any constant number of objectives by Brunsch and Röglin [4]
that can even handle perturbations in which some coefficients can be de-
terministically set to zero. However, this generalization cannot be applied
directly to path trading with multiple ASes because only binary solution
sets S ⊆ {0, 1}n are considered.

Acknowledgements.. The authors would like to thank Tobias Brunsch for
proofreading this manuscript and for his helpful comments.

[1] A. Akella, B. Maggs, S. Seshan, A. Shaikh, and R. Sitaraman. A measurement-
based analysis of multihoming. In ACM SIGCOMM 2003 Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Communication
(SIGCOMM), pages pages 353–364, 2003.

[2] R. Beier, H. Röglin, and B. Vöcking. The smoothed number of pareto optimal solu-
tions in bicriteria integer optimization. In Integer Programming and Combinatorial
Optimization, 12th International Conference (IPCO), pages 53–67, 2007.

[3] André Berger, Heiko Röglin, and Ruben van der Zwaan. Path trading: Fast algo-
rithms, smoothed analysis, and hardness results. In SEA, pages 43–53, 2011.

[4] T. Brunsch and H. Röglin. Improved smoothed analysis of multiobjective optimiza-
tion. In Proceedings of the 44th symposium on Theory of Computing, STOC ’12,
pages 407–426, New York, NY, USA, 2012. ACM.

21

[5] R. Dai, D. O. Stahl, and A. B. Whinston. The economics of smart routing and
qos. In Group Communications and Charges; Technology and Business Models, 5th
COST264 International Workshop on Networked Group Communications (NGC),
pages 318–331, 2003.

[6] D.K. Goldenberg, L. Qiu, H. Xie, Y. R. Yang, and Y. Zhang. Optimizing cost
and performance for multihoming. In ACM SIGCOMM 2004 Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Communication
(SIGCOMM), pages 79–82, 2004.

[7] D. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching,
Third Edition. Addison-Wesley, 1997.

[8] Y. Liu and A.L.N. Reddy. Multihoming route control among a group of multihomed
stub networks. Computer Communications, 30(17):3335–3345, 2007.

[9] R. Mahajan, D. Wetherall, and T. Anderson. Negotiation-based routing between
neighboring isps. In 2nd Symposium on Networked Systems Design and Implemen-
tation (NSDI), pages 29–42, 2005.

[10] G.L. Nemhauser and Z. Ullmann. Discrete dynamic programming and capital allo-
cation. Management Science, 15(9):494–505, 1969.

[11] B. Quoitin and O. Bonaventure. A cooperative approach to interdomain traffic
engineering. In In Proceedings of EuroNGI, 2005.

[12] P. Sevcik and J. Bartlett. Improving user experience with route control. Technical
Report NetForecast Report 5062, NetForecast, Inc., 2002.

[13] Y. Shavitt and E. Shir. DIMES: let the internet measure itself. ACM SIGCOMM
Computer Communication Review, 35(5):71–74, 2005.

[14] Yuval Shavitt and Yaron Singer. Limitations and possibilities of path trading be-
tween autonomous systems. In INFOCOM, pages 1226–1234, 2010.

[15] G. Shrimali, A. Akella, and A. Mutapcic. Cooperative interdomain traffic engineer-
ing using nash bargaining and decomposition. In 26th IEEE International Confer-
ence on Computer Communications (INFOCOM), pages 330–338, 2007.

[16] D. A. Spielman and S.-H. Teng. Smoothed analysis: an attempt to explain the
behavior of algorithms in practice. Communications of the ACM, 52(10):76–84,
2009.

[17] D.A. Spielman and S.-H. Teng. Smoothed analysis of algorithms: why the simplex
algorithm usually takes polynomial time. Journal of the ACM, 51(3):385–463, 2004.

[18] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford. Dynamics of hot-potato routing
in ip networks. In International Conference on Measurements and Modeling of
Computer Systems (SIGMETRICS), pages 307–319, 2004.

[19] J. Winick, S. Jamin, and J. Rexford. Traffic engineering between neighboring do-
mains. Technical Report, 2002.

[20] Y.R. Yang, H. Wang H. Xie, A. Silberschatz, A. Krishnamurthy, Y. Liu, and E.L. Li.
On route selection for interdomain traffic engineering. IEEE Network, 19(6):20–27,
2005.

22

