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Abstract

We consider the problem of computing ε-approximate Nash equilibria in network
congestion games. The general problem is known to be PLS-complete for every ε > 0,
but the reductions are based on artificial and steep delay functions with the property
that already two players using the same resource cause a delay that is significantly
larger than the delay for a single player.

We consider network congestion games with delay functions such as polynomials,
exponential functions, and functions from queuing theory. We analyse which ap-
proximation guarantees can be achieved for such congestion games by the method of
randomised rounding. Our results show that the success of this method depends on
different criteria depending on the class of functions considered. For example, queu-
ing theoretical functions admit good approximations if the equilibrium load of every
resource is bounded away appropriately from its capacity.

1 Introduction

In recent years, there has been an increased interest in understanding selfish routing in
large networks like the Internet. Since the Internet is operated by different economic
entities with varying interests, it is natural to model these entities as selfish agents who
are only interested in maximising their own benefit. Congestion games are a classical
model for resource allocation among selfish agents. We consider the special case of net-
work congestion games, in which the resources are the edges of a graph and every player
wants to allocate a path between her designated source and target node. The delay of an
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and Communication Research Cluster (UMIC) established under the excellence initiative of the German
government. A preliminary version appeared in the Proceedings of the 15th International Colloquium on
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edge increases with the number of players allocating it, and every player is interested in
allocating a routing path with minimum delay.

Rosenthal [10] shows that congestion games are potential games and hence they always
possess Nash equilibria1, i.e. allocations of resources from which no player wants to deviate
unilaterally. Fabrikant et al. [5] show that the problem of computing a pure Nash equi-
librium can be phrased as a local search problem belonging to the complexity class PLS.
They show that it is already PLS-complete for the special case of network congestion games
if different players are allowed to have different source and target nodes. Ackermann et
al. [1] show that this result can even be extended to network congestion games with linear
delay functions. This implies that there is no efficient algorithm for computing pure Nash
equilibria, unless PLS ⊆ P. On the other hand, for symmetric network congestion games,
in which all players have the same source and the same target node, Nash equilibria can
be computed efficiently by solving a min-cost flow problem [5].

In many applications players incur some costs when they change their strategy. Hence,
it is reasonable to assume that a player is only interested in changing her strategy if this
decreases her delay significantly. This assumption leads to the notion of an ε-approximate
Nash equilibrium, which is a state in which no player can decrease her delay by more
than a factor of 1 + ε by unilaterally changing her strategy. For symmetric congestion
games, in which the strategy spaces of the players coincide, Chien and Sinclair [3] show
that ε-approximate equilibria can be computed by simulating the best response dynamics
for a polynomial (in the number of players and ε−1) number of steps. Unfortunately,
the problem of computing an ε-approximate Nash equilibrium is still PLS-complete for
every constant ε > 0 (and even every polynomial-time computable function ε) for general
congestion games [13] and even for network congestion games [12]. The delay functions
used in these reductions are quite artificial and steep with the property that already two
players using the same resource cause a delay that is significantly larger than the delay
for a single player. In this article, we study natural classes of delay functions such as
polynomials and functions from queuing theory, and we analyse which approximation
guarantees can be achieved for these functions by the method of randomised rounding [9].

1.1 Models and Method

A network congestion game is described by a directed graph G = (V,E) with m edges,
a set N of n players, a pair (si, ti) ∈ V × V of source and target node for each player
i ∈ N , and a non-decreasing delay function de : R≥0 → R≥0 for each edge e ∈ E. For
i ∈ N we denote by Pi the set of all paths from node si to node ti. Every player i has
to choose one path Pi from the set Pi and to allocate all edges on this path. For a state
S = (P1, . . . , Pn) ∈ P1 × . . . × Pn and an edge e ∈ E, we denote by ne(S) the number of
players allocating edge e in state S, i.e. ne(S) = |{i ∈ N | e ∈ Pi}|. The delay δi(S) to a
player i ∈ N in state S is defined as equal to the delay dPi(S) :=

∑
e∈Pi

de(ne(S)) of the
chosen path Pi in S. Every player wants to allocate a path with minimum delay. We say
that a state S is a Nash equilibrium if no player can decrease her delay by changing her
strategy. That is, if state S′ is obtained from S by letting one player i ∈ N change her
strategy, then the delay δi(S

′) is at least as large as the delay δi(S). A state S is said to

1In this article, the term Nash equilibrium always refers to a pure equilibrium.
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be an ε-approximate Nash equilibrium if δi(S) ≤ (1 + ε) · δi(S′) for every state S′ that is
obtained from S by letting one player i ∈ N change her strategy.

In order to compute approximate Nash equilibria, we use the method of randomised
rounding. Therefore, we first relax the network congestion game by replacing each player
by an infinite set of agents, each of which controls an infinitesimal amount of flow. To
be more precise, we transform the network congestion game into a multi-commodity flow
problem and we introduce a flow demand of 1 that is to be routed from node si to node

ti for every player i ∈ N . The resulting flow vector f ∈ R|E|≥0 induces delays on the edges.
The delay of edge e ∈ E is de(f) = de(fe), and the delay on a path P is the sum of
the delays of its edges, i.e. dP (f) =

∑
e∈P de(fe). A flow vector f is called a Wardrop

equilibrium [14] if for all commodities i ∈ N and all paths P1, P2 ∈ Pi with fP1 > 0 it
holds that dP1(f) ≤ dP2(f). It is well-known that Wardrop equilibria can be computed in
polynomial time using convex programming [2].

After relaxing the network congestion game and computing a Wardrop equilibrium f ,
as in [9] we compute a decomposition of the flow f into polynomially many paths. This is
done by iteratively taking an edge e with smallest flow f ie > 0, for some commodity i, and
finding the shortest paths from e to the source si and to the target ti (where edges have
to be followed in reverse direction to find the source). Only edges with non-zero flow for
commodity i are considered for the paths. Together with e these two shortest paths form
a path P from si to ti. We store the path P in a set Di and assign flow f iP = f ie to it.
Before repeating these steps we subtract f ie from all flows of commodity i on the edges in
P . This procedure obviously terminates after at most m paths have been found for each
commodity i ∈ N , and produces the decomposition containing the sets Di ⊆ Pi.

For fixed i the flows f iP can be interpreted as a probability distribution on the set Di.
Following the method of randomised rounding, we choose, according to these probability
distributions, independently for each player i a routing path from Di. In the following, we
analyse for several classes of delay functions the approximation guarantee of this approach.

1.2 Our Results

After the randomised rounding the congestion on an edge is a sum of independent Bernoulli
random variables whose expectation equals the flow on that edge in the Wardrop equi-
librium. By applying Chernoff bounds, we can find a small interval for each edge such
that it is unlikely that any congestion takes a value outside the corresponding interval. If
the delay functions are not too steep in these intervals, then the delays on the edges after
the rounding are neither much smaller nor much larger than the delays in the Wardrop
equilibrium. This implies that the resulting state is an ε-approximate Nash equilibrium
for some ε depending on the steepness of the delay functions. Due to the multiplicative
definition of approximate Nash equilibria, delay functions can be steeper in intervals in
which they take larger values in order to achieve the same ε.

In the literature on selfish routing, it is a common assumption that the delay functions
are polynomials with non-negative coefficients [4, 11]. Hence we start our investigations
with the question which properties polynomial delay functions need to satisfy in order to
guarantee that randomised rounding yields an ε-approximate Nash equilibrium with high
probability. We have argued that the delay functions must not grow too fast relative to
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their values. For polynomials de(x) =
∑g

j=0 a
e
jx
j with aej ≥ 0 and constant degree g this

implies that the offset ae0 must not be too small. More concretely the offset ae0 of the
polynomial must grow in the order of

ae0 ∈ Ω

(
lng(m)

ε2g+1

) g∑
j=1

aej ,

for the algorithm to find an ε-approximate Nash equilibrium with high probability.2 If, for
example, all delay functions are linear and an ε-approximate equilibrium for some constant
ε > 0 is to be obtained, then all delay functions must have the form de(x) = ae1x + ae0
where ae0 is sufficiently large in Ω(ae1 · ln(m)). A lower bound on ae0 is not unrealistic
since most network links have a non-negligible delay even if they are relatively uncrowded.
For example, in communication networks the offset corresponds to the sum of packet-
propagation delay and packet-processing delay, which should dominate the packet-queuing
delay if an edge is not dramatically overloaded.

The second class that we study are exponential delay functions of the form de(x) =
αe · exp (x/βe) + γe. We show that in such a case for an ε-approximation to be achieved
with high probability, βe must grow in the order of

βe ∈ Ω

(
ln(m) · √χe

ε

)
,

where χe denotes the load of edge e in the Wardrop equilibrium and hence corresponds to
the expected congestion on e after the randomised rounding. Such exponential functions
grow very slowly as long as less than βe players allocate the edge, but they start growing
rapidly beyond this point. This reflects typical behaviour in practice, because one often
observes that the delay on a network link grows rather slowly with its congestion until some
overload point is reached after which the quality of the link deteriorates quickly. We show
that it is even possible to replace the exponential function up until βe by a polynomial.
To be precise, we show that if an ε-approximate equilibrium can be computed for two
functions by randomised rounding, then this is also the case for the function that takes
for every input the maximum of these functions.

Finally, we consider functions that arise when using queuing theory for modelling the
behaviour of network links. We consider the M/M/1 queuing model in which there is one
queue and the inter-arrival and service times of the packets are exponentially distributed.
A network of such queues constitutes a so-called Jackson network [6]. We take as delay
function the limiting behaviour of the sojourn time of a packet on the network link and
interpret the congestion on an edge as the rate of the packet arrival process. We show
that, in order to obtain an ε-approximate equilibrium with high probability, the rate µe
of the service process (corresponding to the capacity of the edge) must grow in the order
of

µe ∈ Ω

(
χe +

ln(m) · √χe
ε

)
.

Conversely, this result implies that it is sufficient if the equilibrium load χe is bounded
away from the capacity µe by some additive term of order only O(ln(m) · √µe/ε).

2In all asymptotic estimates ε tends to zero while all other variables approach infinity.
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Outline. In the remainder of this article we first state some preliminaries and illustrate
our approach. After that we give a sufficient condition on the delay functions that guaran-
tees that randomised rounding computes an ε-approximate equilibrium in polynomial time
with high probability. Then we analyse which restrictions this condition imposes when
applied to polynomial delay functions, exponential delay functions, and delay functions
from queuing theory. Finally, we prove a theorem for combined delay functions.

2 Preliminaries

The numberNe of players that use an edge e ∈ E after the rounding is a sum of independent
Bernoulli random variables whose expectation χe equals the flow on e in the Wardrop
equilibrium. We can use Chernoff bounds to identify, for each edge e, an interval [le, ue]
such that it is unlikely that Ne takes a value outside this interval. We choose these
intervals such that for x ∈ [le, ue] the delay de(x) of edge e lies between de(χe)/

√
1 + ε

and
√

1 + ε · de(χe).

Lemma 1. If for all e ∈ E it holds that Ne ∈ [le, ue] and de(χe)/
√

1 + ε ≤ de(x) ≤√
1 + ε · de(χe) for any x ∈ [le, ue], then the resulting state is an ε-approximate Nash

equilibrium.

Proof. Let S denote the state computed by the randomised rounding. Assume that a
path Pi is chosen for player i in S and that P ′i is a path with minimum delay after the
randomised rounding. From the definition of a Wardrop equilibrium it follows that in the
computed flow the delay Li on Pi is at most as large as the delay on P ′i because flow is
sent along Pi (otherwise the probability that path Pi is chosen would equal 0). Since the
delay on Pi increases at most by a factor of

√
1 + ε and the delay on P ′i decreases at most

by a factor of
√

1 + ε during the randomised rounding, we obtain

dPi(S)

dP ′i (S)
≤
√

1 + ε · Li
Li/
√

1 + ε
= 1 + ε ,

which proves the lemma.

3 A Sufficient Condition on the Delay Functions

In this section, we present a sufficient condition on the delay functions that guarantees
that an ε-approximate Nash equilibrium can be computed by randomised rounding in
polynomial time. We will make use of the following Chernoff bounds.

Lemma 2 ([8]). Let X1, . . . , Xn be independent random variables with Pr [Xi = 1] = pi
and Pr [Xi = 0] = 1− pi for each i ∈ {1, . . . , n} and let the random variable X be defined
as
∑n

i=1Xi.

• If µ ≥ E [X] and 0 ≤ δ ≤ 1, then Pr [X > (1 + δ) · µ] ≤ exp
(
− δ2µ

3

)
.

• If µ ≤ E [X] and 0 ≤ δ ≤ 1, then Pr [X < (1− δ) · µ] ≤ exp
(
− δ2µ

3

)
.
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We make two assumptions on the delay functions to avoid case distinctions and to keep
the statement of the next theorem simple. We assume that each delay function is defined
on R and w.l.o.g. we set de(x) = de(0) for x < 0. Additionally, we assume that the delay
function never equals zero, i.e. de(x) > 0 for all x ∈ R. The latter condition is reasonable
since in practice the delay of a network link never drops to zero.

For an edge e, let χe in the following denote the expected congestion, which equals the
flow on edge e in the Wardrop equilibrium.

Theorem 3. Using the method of randomised rounding, it is possible to compute an ε-
approximate Nash equilibrium of a network congestion game with high probability in poly-
nomial time if for each edge e ∈ E and for all x ∈ [0,max{6 ln(4m), χe +

√
3 ln(4m) · χe}]

de(x)

de(x−
√

6 ln(4m) · x)
≤
√

1 + ε . (1)

Proof. Following the arguments in Section 2, we define an interval Ie := [le, ue] for each
edge e such that, after the randomised rounding, the congestion Ne lies in this interval
with probability at least 1− 1

2m and such that de(ue)/de(χe) ≤
√

1 + ε and de(χe)/de(le) ≤√
1 + ε. Given these properties, one can easily see that after the randomised rounding and

with probability at least 1/2, Ne ∈ Ie for all edges e. If this event occurs, then the resulting
state is an ε-approximate Nash equilibrium due to Lemma 1. Since the failure probability
is at most 1/2, repeating the randomised rounding, say, n times independently yields an
exponentially small failure probability.

For an edge e, we set

Ie = [le, ue] =
[
χe −

√
3 ln(4m) · χe,max{6 ln(4m), χe +

√
3 ln(4m) · χe}

]
.

Since le ≥ χe −
√

6 ln(4m) · χe, Inequality (1) and the monotonicity of de imply

de(χe)

de(le)
≤ de(χe)

de(χe −
√

6 ln(4m) · χe)
≤
√

1 + ε .

If χe ≥ 3 ln(4m), then ue = χe +
√

3 ln(4m) · χe and

de(ue)

de(χe)
≤
de(χe +

√
3 ln(4m) · χe)

de(χe)
≤
√

1 + ε ,

where the last inequality follows by setting x to χe +
√

3 ln(4m) · χe in Inequality (1) and
by using the monotonicity of the delay function de. If χe ≤ 3 ln(4m), then ue = 6 ln(4m)
and

de(ue)

de(χe)
≤ de(6 ln(4m))

de(0)
≤
√

1 + ε ,

where the last inequality follows directly from (1) by setting x = 6 ln(4m). Altogether,
this implies that we have achieved the desired properties that de(ue)/de(χe) ≤

√
1 + ε and

de(χe)/de(le) ≤
√

1 + ε.
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It remains to analyse the probability with which the congestion Ne of an edge e takes on
a value in the interval Ie defined above. Since the congestion Ne is the sum of independent
Bernoulli random variables, we can apply the Chernoff bound stated in Lemma 2, yielding

Pr [Ne < le] =Pr

[
Ne <

(
1−

√
3 ln(4m)

χe

)
χe

]

≤ exp

−1

3

(√
3 ln(4m)

χe

)2

χe

 =
1

4m
.

If χe ≥ 3 ln(4m), then ue = χe +
√

3 ln(4m) · χe, for which we obtain

Pr [Ne > ue] =Pr

[
Ne >

(
1 +

√
3 ln(4m)

χe

)
χe

]

≤ exp

−1

3

(√
3 ln(4m)

χe

)2

χe

 =
1

4m
.

If χe ≤ 3 ln(4m), then ue = 6 ln(4m), for which we obtain

Pr [Ne > ue] =Pr [Ne > (1 + 1) · 3 ln(4m)]

≤ exp

(
−1

3
· 3 ln(4m)

)
=

1

4m
.

Altogether, this implies that Pr [Ne /∈ Ie] ≤ Pr [Ne < ue] + Pr [Ne > le] ≤ 1/2m, as de-
sired.

4 Analysis of Classes of Delay Functions

In this section we analyse which conditions Theorem 3 imposes when applied to polynomial
delay functions, exponential delay functions, and delay functions from queuing theory.

4.1 Polynomial Delay Functions

We consider polynomial delay functions with non-negative coefficients and constant degree
g. That is, the delay function has the form d(x) =

∑g
j=0 ajx

j , where aj ≥ 0 for j ∈
{0, . . . , g − 1} and ag > 0. Since the coefficients are non-negative, the function d is non-
decreasing. To fulfil the assumption that the delay function never equals zero, we also
assume that a0 > 0.

Theorem 4. A polynomial delay function d with degree g and non-negative coefficients
satisfies Condition (1) in Theorem 3 for all x ∈ R≥0 if

a0 ≥
((1 + ε)g2 · 6 ln(4m))g

(
√

1 + ε− 1)2g+1

g∑
j=1

aj = Θ

(
lngm

ε2g+1

) g∑
j=1

aj . (2)
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Proof. To establish the theorem we show that (2) implies Inequality (1) from Theorem 3 for
any x ≥ 0. In the following, we assume g > 0 because for constant functions Inequality (1)
is trivially satisfied.

In order to show that Inequality (1) is satisfied we use two upper bounds on the
function

f(x) =
d(x)

d(x−
√

6 ln(4m) · x)
,

of which one is monotonically increasing and the other is monotonically decreasing. We
show that the upper bounds are chosen such that their minimum is bounded from above
by
√

1 + ε for every x ≥ 0. Since d is non-decreasing and we assumed that d(x) equals
d(0) for any x ≤ 0, we obtain, for every x ≥ 0,

f(x) =
d(x)

d(x−
√

6 ln(4m) · x)
≤ d(x)

d(0)
=

1

a0
d(x) . (3)

The second upper bound on f(x) is presented in the following lemma.

Lemma 5. For all x > g2 · 6 ln(4m),

f(x) ≤ 1

1− g
√

6 ln(4m)
x

.

Proof. Since the second derivative of any polynomial with non-negative coefficients is
greater or equal to 0, the delay function is convex. The fact that the first order Taylor
approximation of a convex function is always a global underestimator yields, for x ≥ 0,

d(x−
√

6 ln(4m) · x) ≥ d(x)−
√

6 ln(4m) · x · d′(x) . (4)

The lower bound in (4) is positive for x > g2 · 6 ln(4m) because

d(x)−
√

6 ln(4m) · x · d′(x) =
d(x)√
x

(√
x−

√
6 ln(4m) · xd

′(x)

d(x)

)
≥ d(x)√

x

(√
x−

√
g2 · 6 ln(4m)

)
> 0 ,

where the second to the last inequality follows because xd′(x)/d(x) is the so-called elasticity
of d, which can readily be seen to be upper bounded by g for polynomials with degree g
and non-negative coefficients. Hence, for x > g2 · 6 ln(4m), we obtain

d(x)

d(x−
√

6 ln(4m) · x)
≤ d(x)

d(x)−
√

6 ln(4m) · x · d′(x)

=
1

1− xd′(x)
d(x)

√
6 ln(4m)

x

≤ 1

1− g
√

6 ln(4m)
x

,

which concludes the proof of the lemma.
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Let xε = (1+ε)g2·6 ln(4m)

((
√
1+ε)−1)2 . We show that, for x ≤ xε, the upper bound in (3) yields

f(x) ≤
√

1 + ε and that, for x ≥ xε, Lemma 5 implies f(x) ≤
√

1 + ε. Since the upper
bound in (3) is non-decreasing, it suffices to observe that d(xε)/a0 ≤

√
1 + ε, which follows

from
1

a0
d(xε) =

1

a0

g∑
j=0

ajx
j
ε = 1 +

1

a0

g∑
j=1

ajx
j
ε ≤ 1 +

xgε
a0

g∑
j=1

aj ≤
√

1 + ε ,

where the last inequality follows from (2) and we used the fact that xε ≥ 1 if g ≥ 1. Since
the upper bound on f(x) given in Lemma 5 is non-increasing and

1

1− g
√

6 ln(4m)
xε

=
√

1 + ε ,

the theorem follows.

As an example, for linear delay functions of the form d(x) = a1x + a0 and constant
ε, the above theorem implies that the offset of the function must grow in the order of
Ω(a1 · ln(m)).

4.2 Exponential Delay Functions

The lower bound on a0 in Theorem 4 is determined by the fact that we allow any input
value from the domain R≥0, which is a natural assumption. However, this means that the
bound is too restrictive in the case that the congestion is large, since then also the interval
in which the congestion falls is located at some point far to the right of the abscissa.
From the fact that the upper bound given in Lemma 5 is decreasing, we can see that in
these intervals only smaller values than needed in order to guarantee the approximation
factor ε are reached. Since this seems to be a typical characteristic of polynomials, this
raises the question whether Theorem 3 can also be applied to delay functions that grow
superpolynomially from a certain point on. The next theorem gives an affirmative answer.

Theorem 6. A delay function d of the form

d(x) = α · exp

(
x

β

)
+ γ

satisfies Condition (1) in Theorem 3 in some interval [0, u] if α > 0, γ ≥ 0, and β ≥
2
√
u · 6 ln(4m)/ ln(1 + ε).
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Proof. We have to show that all functions of the suggested form comply with (1). This
follows because, for x ∈ [0, u],

d(x)

d(x−
√

6 ln(4m) · x)
=

α · exp
(
x
β

)
+ γ

α · exp

(
x−
√

6 ln(4m)·x
β

)
+ γ

≤
α · exp

(
x
β

)
α · exp

(
x−
√

6 ln(4m)·x
β

)
= exp

(√
6 ln(4m) · x

β

)

≤ exp

(
ln(1 + ε)

2

)
=
√

1 + ε ,

which concludes the proof.

In Theorem 3 the upper bound ue is set to max{6 ln(4m), χe+
√

3 ln(4m) · χe}. When
substituting u accordingly in the lower bound on β we get that β must grow in the order
of

β ∈ Ω

(
ln(m) · √χe

ε

)
.

If ε is assumed to be constant then this implies that the delay function must grow very
slow up until some congestion value that is proportional to ln(m) · √χe. After this point
the function can have a rapid growth rate.

4.3 Delay Functions from Queuing Theory

In Kendall’s notation [7], we consider the M/M/1 queuing model. This means that the
queue is processed in a first-come first-served manner, the inter-arrival times at the queue
as well as the service times of the packets are exponentially distributed, and each network
link can process only one packet at each point in time.

The following basic theorem from queuing theory describes the limiting behaviour of
the sojourn time of a packet on a network link. This is the time that packet k, where
k tends to infinity, spends on that link in total until it arrives at the next node, i.e. it
includes the waiting time in the queue plus the service time of the packet. In the M/M/1
queuing model, the arrival of jobs is a Poisson process whose rate is denoted by λ, and the
processing of jobs is a Poisson process whose rate is denoted by µ. A basic assumption
that has to be fulfilled in order for the theorem to hold is that the occupation rate ρ = λ

µ is
strictly smaller than 1. Otherwise there would be more arrivals than the link can handle,
which would result in an unbounded growth of the queue.
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Theorem 7 ([7]). In an M/M/1 queuing system with arrival rate λ, service rate µ, and
in which ρ < 1 the limiting behaviour of the expected sojourn time is

E[S] =
1

µ− λ
.

In the following theorem we interpret the congestion as the arrival rate λ and we
assume that the considered link has a certain service rate µ.

Theorem 8. A delay function d of the form

d(x) =

{
1

µ−x if x < µ

∞ if x ≥ µ

satisfies Condition (1) in Theorem 3 in some interval [0, u] if

µ ≥ u+

√
6 ln(4m)u

(
√

1 + ε)− 1
.

Proof. Since x ≤ u and µ ≥ u we can use the finite part of d(x) to obtain

d(x)

d(x−
√

6 ln(4m) · x)
= 1 +

√
6 ln(4m) · x
µ− x

≤ 1 +

√
6 ln(4m) · u
µ− u

≤
√

1 + ε .

The first inequality follows from the fact that the function is monotonically increasing in
x and x ≤ u, while the second inequality follows directly from the lower bound on µ.

When setting u to ue, analogous to the case of the exponential functions, we obtain
that µ must grow in the order of

µ ∈ Ω

(
χe +

ln(m) · √χe
ε

)
.

By solving the above term to χe and assuming that ε is constant, we can conclude that the
equilibrium load χe of a link must be bounded away from its capacity µe by an additive
term of order only O(ln(m) ·√µe) so that our algorithm computes an ε-approximate Nash
equilibrium with high probability.

5 Combined Delay Functions

In the previous section we applied Theorem 3 to several classes of functions. In this section
we prove a general theorem showing that if two delay functions satisfy Condition (1) in
Theorem 3, then also their maximum satisfies this property. This allows us to combine
different types of delay functions. One weak point of Theorem 6 concerning exponential
functions is that it works only for exponential functions that grow very slow up until some
point proportional to

√
u ln(m)/ε. The following theorem allows us to combine such an

exponential function with a polynomial that satisfies Theorem 4. If we take the maximum
over these two functions, we obtain a function that grows polynomially until some point
and exponentially thereafter.
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Theorem 9. Let p and q denote two delay functions that satisfy Condition (1) in Theo-
rem 3 in some interval x ∈ [0, u]. Then the function

d(x) = max{p(x), q(x)}

also satisfies this condition for x ∈ [0, u].

Proof. Let x ∈ [0, u], x′ = x −
√

6 ln(4m) · x, and without loss of generality assume
d(x) = p(x). Since p satisfies (1) we know that p(x)/p(x′) ≤

√
1 + ε. Hence if d(x′) = p(x′),

then (1) follows immediately. If, however, d(x′) = q(x′) then q(x′) ≥ p(x′) and by the
definition of d(x) we obtain

d(x)

d(x′)
=
p(x)

q(x′)
≤ p(x)

p(x′)
≤
√

1 + ε .

The last inequality again holds because p satisfies (1).

6 Conclusions

In this article we have considered network congestion games with delay functions from
several different classes. We have identified properties that delay functions from these
classes have to satisfy in order to guarantee that an approximate Nash equilibrium can be
computed by randomised rounding in polynomial time. Additionally, we have presented a
method of combining these delay functions.

It remains an interesting open question to explore the limits of approximability further
and to close the gap between the PLS-completeness results and the positive results pre-
sented in this article. This could be done by either proving PLS-completeness of computing
approximate equilibria for more natural delay functions or by extending the positive re-
sults to larger classes of functions. We believe that techniques other than randomised
rounding are required for the latter. In particular, all bounds that we present on the
different parameters of the considered functions include a logarithmic term in the number
of edges. This term seems to be unavoidable when using Chernoff bounds to estimate the
probabilities of the randomised rounding. Whether it is an artefact of the techniques we
used or a real barrier, however, is not known to us.
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