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Abstract
Even though local search heuristics are the method of choice in practice for many

well-studied optimization problems, most of them behave poorly in the worst case.
This is in particular the case for the Maximum-Cut Problem, for which local search
can take an exponential number of steps to terminate and the problem of computing
a local optimum is PLS-complete. To narrow the gap between theory and practice,
we study local search for the Maximum-Cut Problem in the framework of smoothed
analysis in which inputs are subject to a small amount of random noise. We show that
the smoothed number of iterations is quasi-polynomial, i.e., it is bounded from above
by a polynomial in nlog n and φ where n denotes the number of nodes and φ denotes
the perturbation parameter. This shows that worst-case instances are fragile and it is
a first step in explaining why they are rarely observed in practice.

1 Introduction
The most successful algorithms for many well-studied optimization problems are based on
the ad hoc principle of local search: start with an arbitrary feasible solution and perform
some kind of local improvements until none is possible anymore. For many important
problems like the traveling salesman problem, clustering, and linear programming, local
search is the method of choice in practice. Its success, however, lacks a theoretical account.
The main reason for the considerable gap between experimental results and our theoretical
understanding is that for most problems worst-case analysis predicts that local search is
inefficient and can result in very bad solutions. It is not taken into account that worst-case
instances are often rather contrived and rarely observed in practice. This indicates that
the predominant theoretical measure of worst-case analysis is not well suited to evaluate
local search. It suggests to apply more realistic performance measures that help to advance
our understanding of this simple, yet powerful algorithmic technique.

We analyze the simple local search algorithm FLIP for the Maximum-Cut Problem.
An instance of this problem consists of an undirected graph G = (V,E) with edge weights
w : E → R. We call a partition (V1, V2) of the nodes V a cut and define its weight to be the
∗This research was supported by ERC Starting Grant 306465 (BeyondWorstCase).

1



total weight of the edges between V1 and V2. The FLIP algorithm starts with an arbitrary
cut (V1, V2) and iteratively increases the weight of the cut by moving one vertex from V1
to V2 or vice versa, as long as such an improvement is possible. It is well-known that any
locally optimal cut is a 2-approximation of a maximum cut (see, e.g., [12]). However, it
is also known that the problem of finding a locally optimal cut is PLS-complete and that
there are instances with cuts from which every sequence of local improvements to a local
optimum has exponential length [16].

To narrow the gap between these worst-case results and experimental findings, we
analyze the FLIP algorithm in the framework of smoothed analysis, which has been in-
vented by Spielman and Teng [17] to explain the practical success of the simplex method.
This model can be considered as a less pessimistic variant of worst-case analysis in which
the adversarial input is subject to a small amount of random noise and it is by now a
well-established alternative to worst-case analysis. In the model we consider, an adver-
sary specifies an arbitrary graph G = (V,E) with n nodes. Instead of fixing each edge
weight deterministically he can only specify for each edge e ∈ E a probability density
function fe : [−1, 1] → [0, φ] according to which the weight w(e) is chosen independently
of the other edge weights. The parameter φ ≥ 1/2 determines how powerful the adversary
is. He can, for example, choose for each edge weight an interval of length 1/φ from which
it is chosen uniformly at random. This shows that in the limit for φ → ∞ the adversary
is as powerful as in a classical worst-case analysis, whereas the case φ = 1/2 constitutes
an average-case analysis with uniformly chosen edge weights. Note that the restriction to
the interval [−1, 1] is merely a scaling issue and no loss of generality.

For a given instance of the Maximum-Cut Problem we define the number of steps of the
FLIP algorithm on that instance to be the largest number of local improvements the FLIP
algorithm can make for any choice of the initial cut and any pivot rule determining the
local improvement that is chosen if multiple are possible. Formally, this can be described
as the longest path in the transition graph of the FLIP algorithm. We are interested
in the smoothed number of steps of the FLIP algorithm. This quantity depends on the
number n of nodes and the perturbation parameter φ and it is defined as the largest
expected number of steps the adversary can achieve by his choice of the graph G and the
density functions fe. Our main result is the following theorem.

Theorem 1. The smoothed number of steps of the FLIP algorithm is bounded from above
by a polynomial in nlogn and φ.

This result significantly improves upon the exponential worst-case running time of the
FLIP algorithm. While a polynomial instead of a quasi-polynomial dependence on n would
be desirable, let us point out that the theorem is very strong in the sense that it holds for
all initial cuts and all pivot rules. The theorem shows that worst-case instances, on which
FLIP can take an exponential number of steps, are fragile and unlikely to occur in the
presence of a small amount of random noise. We see this as a first step in explaining why
the worst case is rarely observed in practice because instances that arise in practice are
often subject to some noise coming, e.g., from measurement errors, numerical imprecision,
rounding errors, etc. The noise can also model influences that cannot be quantified exactly
but for which there is no reason to believe that they are adversarial.
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1.1 Related Work

Since its invention, smoothed analysis has been successfully applied in a variety of contexts.
Two recent surveys [13, 18] summarize some of these results.

Local search methods for numerous optimization problems have been studied both in
theory and in practice. In particular, methods based on local search are very successful for
the TSP. One commonly used heuristic is k-Opt, which starts with an arbitrary tour and
replaces in each local improvement k edges of the current tour by k other edges. Usually
the 2-Opt heuristic needs a clearly subquadratic number of improving steps until it reaches
a local optimum and the computed solution is within a few percentage points of the global
optimum [11]. On the other hand it is known that even on two-dimensional Euclidean
instances 2-Opt can take an exponential number of steps to reach a local optimum [9].
Englert et al. [9] analyzed the smoothed number of local improvements of 2-Opt and proved
that it is polynomially bounded in the number of nodes and the perturbation parameter.

Another area in which local search methods are predominant is clustering. The k-
means method is one of the most widely used clustering algorithms that is very efficient
on real-world data (see, e.g., [5]), but exhibits exponential worst-case running time [19].
Arthur and Vassilvitskii initiated the smoothed analysis of the k-means method [3] that
culminated in a proof that the smoothed running time of the k-means method is poly-
nomial [2]. Arthur and Vassilvitskii [3] also showed that the smoothed running time of
the ICP algorithm for minimizing the difference between two sets of points is polynomial
while its worst-case running time is exponential.

Also for the Maximum-Cut Problem local search and in particular the FLIP algorithm
have been studied extensively. Not only instances are known on which there exist initial
cuts from which any sequence of local improvements to a local optimum has exponential
length, but it is also known that the problem of computing a locally optimal cut is PLS-
complete [16] even for graphs of maximum degree five [8].

The problem of computing a local optimum with respect to some local search algorithm
belongs to PLS if it is possible to compute in polynomial time the objective value of a given
solution, an initial feasible solution, and a better solution in the neighborhood of a given
locally non-optimal solution [14]. The PLS-completeness of the Maximum-Cut Problem
implies that one cannot efficiently compute a locally optimal cut, unless PLS ⊆ P. Also the
Maximum-Cut Problem has already been considered in the model of smoothed analysis.
Elsässer and Tscheuschner [8] showed that the smoothed number of steps of the FLIP
algorithm is polynomially bounded if the graph G has at most logarithmic degree. There
is, however, no analysis that can handle graphs of larger degree. The Maximum-Cut
Problem is not only interesting for itself, but it is also interesting because it is structurally
one of the easiest PLS-complete problems. It is used as a starting point for many PLS-
reductions so that the analysis of the FLIP algorithm might also shed some light on other
local search algorithms.

In recent years there has been an increased interest in the class PLS due to its connec-
tion to algorithmic game theory. For many games the problem of computing pure Nash
equilibria belongs to PLS and is often even PLS-complete. This is due to the fact that
better- and best-response dynamics followed by agents in a game can be interpreted as
variants of local search whose local optima are exactly the pure Nash equilibria. This
line of research has been initiated by Fabrikant et al. [10] who showed that for network
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congestion games the problem of computing a pure Nash equilibrium is PLS-complete.
Their proof has been simplified by Ackermann et al. [1] who gave a simple reduction from
the Maximum-Cut Problem.

Even the Maximum-Cut Problem itself has been formulated as a party affiliation game
in which agents (nodes) have to choose one of two sides and the edge weights are a measure
for how much two agents like or dislike each other [6]. Our result has direct consequences
for these games as well and shows that any sequence of better responses has with high
probability at most quasi-polynomial length if the edge weights are subject to random
noise. Since every local optimum is a 2-approximation, this implies in particular that
after a quasi-polynomial number of better responses the social value is at least half of the
optimal value. This is in contrast to the worst-case result of Christodoulou et al. [7] who
show that there are instances with exponentially long best response sequences after which
the social value is only a 1/n-fraction of the optimal value.

Christodoulou et al. also show that if agents are allowed to play best responses in a
random order then already after one round, in which every agent has been activated at
least once, an 8-approximation is achieved. Awerbuch et al. [4] considered α-best response
dynamics in which agents only change their strategy if this increases their payoff by a
certain factor α. They prove that this α-best response dynamics reaches after a polynomial
number of steps a (2 + ε)-approximation if every player gets the chance to move at least
once every polynomial number of steps. While these positive results work only for certain
sequences of best responses, our positive result holds for any quasi-polynomial sequence
of better responses.

2 Outline of the Analysis
As mentioned before there are already a few results on smoothed analysis of local search.
There is, however, one fundamental difference between our analysis and the previous
ones. The previous analyses for the 2-Opt heuristic, the ICP algorithm, the k-means
method, and the Maximum-Cut Problem for graphs of logarithmic degree all rely on the
observation that on smoothed inputs with high probability for every locally non-optimal
solution every available local improvement results in a significant change of the potential
function. Together with bounds on the minimal and maximal potential value, this implies
that in expectation there cannot be too many local improvements.1

For the Maximum-Cut Problem the situation is different because even on smoothed
inputs it is very likely that there exists a locally non-optimal cut that allows local im-
provements that cause an exponentially small change of the potential. It is even likely
that there exist longer sequences of consecutive local improvements that all cause only a
small change of the potential. The reason for this is the large number of possible cuts.
While for any fixed cut it is unlikely that there exists an exponentially small local im-
provement, it is very likely that for one of the exponentially many cuts there exists such
an improvement.

1To be more precise, in one case of the analysis of the k-means method, one needs to consider three
consecutive local improvements to gain a significant change of the potential function. Also in the analysis
of the 2-Opt algorithm two steps are considered in order to improve the degree of the polynomial.
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On first glance the situation for the other problems is no different. There is, for ex-
ample, also an exponential number of different TSP tours. However, for determining the
amount by which the length of the tour decreases by a particular 2-Opt step, only the
lengths of the four involved edges are important and there is only a polynomial number
of choices for these four edges. If, on the other hand, one node changes its side in the
Maximum-Cut Problem, to determine the improvement one needs to know the configura-
tion of all nodes in its neighborhood. If the degree of the graph is at most logarithmic,
there is only a polynomial number of such configurations. However, in general there is an
exponential number.

As it is not sufficient anymore to analyze the potential change of a single step, our
analysis is based on considering longer sequences of ` consecutive steps for an appropriately
chosen `. Let us denote by ∆ the smallest improvement made by any sequence of `
consecutive local improvements for any initial cut. In order to analyze ∆, one could try
to use a union bound over all choices for the initial cut and the sequence of ` steps. There
are at most 2nn` such choices. Let us assume that an initial cut and a sequence of `
consecutive steps are given. Then we get a system of ` linear combinations of edge weights
that describe the potential increases that are caused by the ` steps. Each such linear
combination has the form

∑
e∈E λew(e) for some λe ∈ {−1, 0, 1}, where λe is 1 for edges

joining the cut, −1 for edges leaving the cut, and 0 for the other edges. For ε > 0, we would
like to bound the probability that all these linear combinations simultaneously take values
in the interval (0, ε], that is, they are all improvements by at most ε. A result from [15]
implies that this probability can be bounded from above by (εφ)r where r denotes the
rank of the set of linear combinations.

If we could argue that for any initial cut and any sequence of length ` the rank is
at least α` for some constant α > 0, then a union bound would yield that Pr [∆ ≤ ε] ≤
2n(nφαεα)`. Choosing ` = n, this would even be sufficient to prove an improved version
of Theorem 1 with only polynomial dependence on n. The problem is, however, that we
cannot guarantee that for any sequence of length n the rank is Ω(n). Indeed there are
sequences in which only few different nodes move multiple times such that the rank is only
poly-logarithmic. Hence with this approach Theorem 1 cannot be proved.

In order to reduce the factor 2n in the union bound, we make use of the following
observation: Consider a node v which moves at least twice and take the linear combina-
tion L obtained by adding up the linear combinations belonging to two consecutive moves
of node v. As after these two moves node v is in its original partition again, L contains only
weights belonging to edges between v and other nodes that have moved an odd number of
times between the two moves of node v. Therefore we only need to fix the configuration
of the active nodes reducing 2n to 2`. While this is no improvement for ` ≥ n, it proves
valuable when we consider subsequences of smaller length. If both moves of node v yield
an improvement in (0, ε], then L takes a value in (0, 2ε].

We call a sequence of length ` a k-repeating sequence if at least d`/ke different nodes
move at least twice. Given a k-repeating sequence of length `, we argue that the rank of
the set of linear combinations constructed in the above way is at least d`/(2k)e. One can
then show that with high probability any k-repeating sequence yields an improvement in
the order of 1/(φnΘ(k)). Then we argue that any sequence of 5n consecutive improvements
must contain a subsequence that is Θ(logn)-repeating. Together this implies Theorem 1.
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Let us make one remark about the number 2n of initial cuts that we have to consider.
One might be tempted to conjecture that the factor 2n in the union bound can be avoided
if only the cut the FLIP algorithm starts with is considered instead of every possible
cut. However, then our analysis would not be possible anymore. We break the sequence
of steps of the FLIP algorithm into subsequences of length n each and argue that each
such subsequence yields a significant improvement. Hence, not only the initial cut the
FLIP algorithm starts with needs to be considered but also the initial cut of each of these
subsequences.

3 Analysis
We want to show that each sequence of 5n consecutive steps yields a big improvement
with high probability. Throughout the analysis, we need a parameter k, which we choose
to be k = d5 log2 ne.

Definition 2. We call a sequence of ` ∈ N consecutive steps k-repeating if at least d`/ke
different nodes move at least twice in that sequence.

As already explained in the outline, for each two consecutive moves of a node we can
obtain a linear combination which only contains edges to active nodes. We first show a
lower bound for the rank of the set of these linear combinations.

Lemma 3. Let S be a k-repeating sequence of length ` with an arbitrary starting config-
uration. Consider the union of sets of linear combinations obtained by adding the linear
combinations of two consecutive moves of a node which moves multiple times. Then the
rank of these linear combinations is at least d`/(2k)e.

Proof. Let S be a k-repeating sequence of length `. We construct an auxiliary graph
G′ = (V,E′) in the following way: Let D ⊆ V be the set of nodes which move at least twice
in the sequence S. Define n(v) as the number of occurences and πv(i) as the position of the
ith occurence of a node v ∈ V in the sequence S. For a vertex v ∈ D and 1 ≤ i < n(v),
let Lv(i) be the sum of the linear combinations corresponding to the moves πv(i) and
πv(i+ 1). For any Lv(i), let Eiv be the set of edges {v, w} connecting v with all nodes w
which occur in Lv(i), i.e., all nodes w which move an odd number of times between πv(i)
and πv(i + 1). For every vertex v ∈ D and every 1 ≤ i < n(v), the set Eiv is not empty
because Li(v) cannot be zero in every component as it is the sum of two improving steps.
Set Ev =

⋃
iE

i
v and E′ =

⋃
v∈D Ev.

Claim 1. Let T ⊆ D. If every node v ∈ T has a neighbor u ∈ V \ T in the graph G′,
then there are indices 1 ≤ iv < n(v) for all v ∈ T such that the linear combinations
{Lv(iv) : v ∈ T} are linearly independent.

Proof. Let v ∈ T , u ∈ V \T a neighbor of v in the graph G′ and iv such that {u, v} ∈ Eivv .
The edge {u, v} cannot be covered by any node in T \ {v}. Hence it does not occur in any
linear combination Lv′(i), v′ ∈ T \ {v}. As this argument holds for every v ∈ T , the linear
combinations selected this way must be linearly independent.
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Claim 2. There exists a subset T ⊆ D with |T | ≥ |D|/2 and 1 ≤ iv < n(v), v ∈ T, such
that the linear combinations {Lv(iv) : v ∈ T} are linearly independent.

Proof. We first assume that G′ is connected. Choose an arbitrary root r ∈ D and calculate
a BFS tree in G′ rooted at r. Define V0 and V1 as the sets of nodes whose (unique) path
to r in B contains an even or odd number of edges, respectively. Let T be the bigger of
the two sets V0 ∩D and V1 ∩D. Then |T | ≥ |D|/2. Each node v ∈ Vi \ {r}, i ∈ {0, 1}, has
a neighbor in V1−i, namely the neighbor on the path to r in B. The node r has a neighbor
in V1 since Eir 6= ∅ for every 1 ≤ i < n(r), i.e., V1 cannot be empty.

If G′ is not connected, perform the algorithm on every connected component which
contains a node from D. As we select at least half of the nodes belonging to D from every
connected component, the inequality |T | ≥ |D|/2 still holds. Claim 1 can be used to show
the existence of the |T | linearly independent linear combinations.

As S is k-repeating, there are at least d`/ke nodes in D. Using Claim 2, we obtain
a set T with size |T | ≥ d`/ke/2, i.e., |T | ≥ d`/(2k)e since |T | is integral. This yields the
lemma.

Lemma 4. Denote by ∆(`) the smallest improvement made by any k-repeating sequence
of length ` where every step increases the potential with an arbitrary starting configuration.
Then for any ε > 0,

Pr [∆(`) ≤ ε] ≤ (2n)`(2φε)d`/(2k)e.

Proof. We first fix a k-repeating sequence of length `. As there are ` steps in this sequence,
there are at most n` choices for the sequence. We will use a union bound over all these n`
many choices and over all possible starting configurations of the nodes that are active in
the sequence. This gives the additional factor of 2` since at most ` nodes can move.

For a fixed starting configuration and a fixed sequence, we consider a node v which
moves at least twice and linear combinations L1 and L2 which correspond to two consec-
utive moves of node v. As after these two moves node v is in its original partition again,
the sum L = L1 +L2 contains only weights belonging to edges between v and other nodes
that have moved an odd number of times between the two moves of node v. In particular,
L contains only weights belonging to edges between active nodes, for which we fixed the
starting configuration.

Only if L ∈ (0, 2ε], both L1 and L2 can takes values in (0, ε]. Hence it suffices to
bound the probability that L ∈ (0, 2ε]. Due to Lemma 3, the rank of the set of all linear
combinations constructed like L is at least d`/(2k)e. We can apply Lemma B.3.1 of [15] to
obtain a bound of (2εφ)d`/(2k)e for the probability that all these linear combinations take
values in (0, 2ε]. (Note: A simplified version of this lemma together with a proof can be
found in the appendix.) Together with the union bound this proves the claimed bound
on ∆(`).

Lemma 5. Denote by ∆ := min
1≤`≤5n

∆(`) the minimum improvement by any k-repeating
sequence of length at most 5n where every step increases the potential, starting with an ar-
bitrary starting configuration. Then ∆ is a lower bound for the improvement any sequence
of 5n steps makes.

7



This holds due to the fact that every sequence of 5n steps contains a k-repeating
subsequence, which we will prove later. Under the assumption that this lemma holds, we
can prove Theorem 1 by showing that ∆ does not get too small with high probability.

Proof (Theorem 1). As every cut contains fewer than n2 edges and every edge weight is in
the interval [−1, 1], the weight of every cut is in [−n2, n2]. If the minimum improvement
any sequence of length 5n makes is at least ∆, then the number of steps is bounded by
T ≤ 2n2/∆, i.e., Pr [T ≥ t] ≤ Pr

[
∆ ≤ 2n2/t

]
for every t > 0.

To simplify the notation, let ζ = 4φn2(2n)2k = φ · nO(logn). For i ≥ 2, let ti = ζi. By
Lemma 4 we know that for every i ≥ 2,

Pr [T ≥ ti] ≤ Pr
[
∆ ≤ 2n2

ti

]
≤

5n∑
`=1

Pr
[
∆(`) ≤ 2n2

ti

]
≤

5n∑
`=1

(2n)`
(

2φ2n2

ζi

)d`/(2k)e

≤
5n∑
`=1

(
(2n)2k · 4φn2

ζi

)d`/(2k)e

≤
5n∑
`=1

(1
i

)d`/(2k)e
≤
∞∑
`=0

2k
(1
i

)`
− 2k

= 2k
( 1

1− 1/i − 1
)

= 2k
i− 1 .

The bound T ≤ 2n is trivial as no configuration of the nodes can occur twice. Together
with ti+1 − ti = ζ, we obtain

E [T ] =
2n∑
t=1

Pr [T ≥ t] ≤ 2ζ +
2n∑
i=2

ti+1−1∑
t=ti

Pr [T ≥ t] ≤ 2ζ +
2n∑
i=2

ti+1−1∑
t=ti

Pr [T ≥ ti]

≤ 2ζ +
2n∑
i=2

ζ · 2k
i− 1 ≤ ζ(2 + 2k(log(2n) + 1)) = ζ ·O(n logn) = φ · nO(logn).

What remains to show is Lemma 5, i.e., ∆ is a lower bound for the minimum im-
provement we make in any sequence of length 5n. Assume that it is not, then there is a
sequence of length 5n which does not contain any k-repeating subsequence. We show that
this is not possible because then more than n nodes would have to move in that sequence.

Definition 6. We call a sequence A1, . . . , Aq of sets a non-k-repeating block sequence of
length ` if the following conditions hold.

(i) For every 1 ≤ i < q, |Ai| = k.

(ii) 1 ≤ |Aq| ≤ k.

(iii)
∑q
i=1 |Ai| = `.

(iv) For every i ≤ j, the number of elements that are contained in at least two sets
from Ai, . . . , Aj is at most j − i.

We denote by nk(`) the cardinality of A1 ∪ . . . ∪ Aq minimized over all non-k-repeating
block sequences of length `.
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Proof (Lemma 5). It is easy to see that any sequence S of length ` which does not contain
a k-repeating subsequence corresponds to a non-k-repeating block sequence of length `
with d`/ke blocks if we subdivide S into blocks of length k. It then suffices to show that
there is no non-k-repeating block sequence of length 5n with at most n elements. In other
words, nk(5n) > n.

If n ≤ 3, then there are at least two blocks as 5n > k, but k = d5 log2 ne > n such that
the first condition of Definition 6 cannot be satisfied. Therefore we can assume n ≥ 4.

Let q = d5n/ke and let A1, . . . , Aq be a non-k-repeating block sequence of length 5n
with exactly nk(5n) different elements x1, . . . , xnk(5n) contained in A1∪ . . .∪Aq. Construct
an auxiliary graph H as follows: Introduce a vertex i ∈ V (H) for each set Ai. For an
element xi, let ρ(i) be the number of different sets which contain xi and let Ai1 , . . . , Aiρ(i)
(i1 < . . . < iρ(i)) be these sets. Define Pi = {{ij , ij+1} : 1 ≤ j < ρ(i)}. The edges
in Pi connect neighbored occurences of the element xi. Define then E(H) =

⋃̇nk(5n)
i=1 Pi

as the disjoint union of these edge sets. Note that we allow parallel edges. Define the
length of an edge {v, w} as |w − v|. Now we group the edges by their lengths: For
1 ≤ i ≤ dlog qe, let Ei = {{v, w} ∈ E(H) : 2i−1 ≤ |w − v| ≤ 2i}. Furthermore, we define
cuts Sj = {{v, w} ∈ E(H) : v ≤ j < w} for every 1 ≤ j < q.

For a cut Sj and some Ei, consider an arbitrary edge {v, w} ∈ Sj ∩ Ei: As this edge
has a length of at most 2i, we know that j − 2i < v,w ≤ j + 2i. Because A1, . . . , Aq
is a non-k-repeating block sequence, there can only be at most j + 2i − (j − 2i) ≤ 2i+1

elements which occur multiple times in Amax{j−2i,1}, . . . , Amin{j+2i,q}. By construction,
every element can generate at most one edge in Sj . Hence |Sj ∩ Ei| ≤ 2i+1.

On the other hand, every edge in Ei has a length of at least 2i−1. Therefore every edge
in Ei occurs in at least 2i−1 cuts. Thus we can bound the cardinality of Ei by

|Ei| ≤
1

2i−1

q−1∑
j=1
|Sj ∩ Ei| ≤

1
2i−1

q−1∑
j=1

2i+1 ≤ 4(q − 1)

= 4
(⌈ 5n
d5 logne

⌉
− 1

)
< 4 n

logn.

As the union of the Ei is a covering of E(H), we can bound the total number of edges by

|E(H)| ≤
dlog qe∑
i=1
|Ei| < 4 n

logndlog qe = 4 n

logn

⌈
log

⌈5n
k

⌉⌉
≤ 4n,

where the last inequality stems from⌈
log

⌈5n
k

⌉⌉
≤ log 5n

k
+ 1 ≤ log 5n

d5 logne + log 2 ≤ log 2n
logn ≤ logn

for n ≥ 4. This suffices to show nk(5n) > n because with every edge, the number of
different elements needed decreases by exactly 1. This yields

nk(5n) =
q∑
i=1
|Ai| − |E(H)| = 5n− |E(H)| > 5n− 4n = n.
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4 Concluding Remarks
In this paper we showed that the smoothed running time of the FLIP algorithm for the
Maximum-Cut Problem is polynomially bounded in nlogn and φ. For this purpose we
introduced the analysis of Θ(n) consecutive improvement steps, whereas former analyses
only looked at a constant number – normally one – of consecutive improvement steps.
Although we did not try to optimize the exponent in the running time, experiments
indicate that our proof ideas do not suffice to prove a polynomial bound because for
k = o(logn) there seem to exist very long non-k-repeating block sequences. Instead we
hope to trigger future research similar to Arthur and Vassilvitskii’s paper about the k-
means method [3]. They showed the non-polynomial bound nO(k) which inspired further
research leading to a polynomial bound by Arthur et al. [2]. We also hope that local search
algorithms for other PLS-hard problems can be analysed in a similar manner, especially
for problems arising from algorithmic game theory.
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A Proof of a Simplified Version of Lemma B.3.1 of [15]
We give a proof for a simplified version of Lemma B.3.1 of [15] which suffices for our
purposes in Lemma 4.
Lemma 7. Let X1, . . . , Xm be independent real random variables and, for 1 ≤ i ≤ m and
some φ ≥ 1, let fi : R→ [0, φ] denote the density of Xi. Furthermore, let λ1, . . . , λk ∈ Zm
be linearly independent row vectors. For i ∈ {1, . . . ,m} and fixed ε ≥ 0, we denote by
Ai the event that λi · X takes a value in the interval [0, ε], where X denotes the vector
X = (X1, . . . , Xm)T . Under these assumptions,

Pr
[
k⋂
i=1
Ai

]
≤ (εφ)k.

Proof. The main tool for proving the lemma is a change of variables. Instead of using the
canonical basis of them-dimensional vector space Rm, we use the given linear combinations
as basis vectors. To be more precise, the basis B that we use consists of two parts: it
contains the vectors λ1, . . . , λk and it is completed by some vectors from the canonical
basis {e1, . . . , em}, where ei denotes the i-th canonical row vector, i.e., eii = 1 and eij = 0
for j 6= i. Without loss of generality, we assume that B = {λ1, . . . , λk, ek+1, . . . , em}.

Let A = (λ1, . . . , λk, ek+1, . . . , em)T and let Φ: Rm → Rm be defined by Φ(x) = Ax.
Since B is a basis, the function Φ is a diffeomorphism. We define the vector Y =
(Y1, . . . , Ym) as Y = Φ(X). Let f : Rm → R denote the joint density of the entries of
X, and let g : Rm → R denote the joint density of the entries of Y . We can express the
joint density g as

g(y1, . . . , ym) = |det
∂

Φ−1| · f(Φ−1(y1, . . . , ym)),

where det∂ denotes the determinant of the Jacobian matrix of Φ−1.
The matrix A is invertible as B is a basis of Rm. Hence, for y ∈ Rm, Φ−1(y) = A−1y

and the Jacobian matrix of Φ−1 equals A−1. Thus, det∂ Φ−1 = detA−1 = (detA)−1.
Since all entries of A are integers, also its determinant must be an integer, and since it is
invertible, we know that detA 6= 0. Hence, |detA| ≥ 1 and |detA−1| ≤ 1. For y ∈ Rm, we
decompose Φ−1(y) ∈ Rm into Φ−1(y) = (Φ−1

1 (y), . . . ,Φ−1
m (y)). Due to the independence

of the random vectors X1, . . . , Xm, we have f(x1, . . . , xm) = f1(x1) · . . . · fm(xm). This
yields

g(y) ≤ f(Φ−1(y)) = f1(Φ−1
1 (y)) · . . . · fm(Φ−1

m (y)) ≤ φk · fk+1(Φ−1
k+1(y)) · . . . · fm(Φ−1

m (y))
≤ φk · fk+1(yk+1) · . . . · fm(ym)

as f1, . . . , fk are bounded from above by φ and the i-th row of A is ei for k < i ≤ m.
Hence, the probability we want to estimate can be upper bounded by

Pr
[
k⋂
i=1
Ai

]
=
∫

(y1,...,ym)∈[0,ε]k×(−∞,∞)m−k
g(y1, . . . , ym) d(y1, . . . , ym)

≤ (εφ)k ·
m∏

i=k+1

∫ ∞
−∞

fi(yi) dyi = (εφ)k,

where the last equation follows because fk+1, . . . , fm are density functions.
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