
Economical Caching∗

Matthias Englert
DIMAP and Dept. of Computer Science

University of Warwick, U.K.
englert@dcs.warwick.ac.uk

Heiko Röglin
Dept. of Computer Science

University of Bonn, Germany
heiko@roeglin.org

Jacob Spönemann
Institute of Transport Science

RWTH Aachen University, Germany
Jacob.Spoenemann@rwth-aachen.de

Berthold Vöcking
Dept. of Computer Science

RWTH Aachen University, Germany
voecking@cs.rwth-aachen.de

Abstract

We study the management of buffers and storages in environments with unpredictably
varying prices in a competitive analysis. In the economical caching problem, there is a storage
with a certain capacity. For each time step, an online algorithm is given a price from the
interval [1, α], a consumption, and possibly a buying limit. The online algorithm has to decide
the amount to purchase from some commodity, knowing the parameter α but without knowing
how the price evolves in the future. The algorithm can purchase at most the buying limit.
If it purchases more than the current consumption, then the excess is stored in the storage;
otherwise, the gap between consumption and purchase must be taken from the storage. The
goal is to minimize the total cost. Interesting motivating applications are, for example, stream
caching on mobile devices with different classes of service, battery management in micro hybrid
cars, and the efficient purchase of resources.

First we consider the simple but natural class of algorithms that can informally be described
as memoryless. We show that these algorithms cannot achieve a competitive ratio below

√
α.

Then we present a more sophisticated deterministic algorithm achieving a competitive ratio
of

1

W
(
1−α
eα

)
+ 1
∈
[√

α√
2

+

√
2− 1√

2
,

√
α√
2

+
1

3

]
,

where W denotes the Lambert W function. We prove that this algorithm is optimal and that
not even randomized online algorithms can achieve a better competitive ratio. On the other
hand, we show how to achieve a constant competitive ratio if the storage capacity of the online
algorithm exceeds the storage capacity of an optimal offline algorithm by a factor of logα.

1 Introduction

In many environments in which resources with unpredictably varying prices are consumed over
time, the effective utilization of a storage can decrease the cost significantly. Since decisions have
to be made without knowing how the price evolves in the future, storage management can naturally
be formulated as an online problem in such environments. In the economical caching problem each
time step is characterized by a price, a consumption, and a buying limit. In every such time step,
an online algorithm has to decide the amount to purchase from some commodity. The algorithm
can purchase at most the buying limit. If it purchases more than the current consumption, the

∗A preliminary version of this article appeared in Proc. of the 26th International Symposium on Theoretical
Aspects of Computer Science (STACS), pp. 385–396, 2009.
This work has been supported by the UMIC Research Centre, RWTH Aachen University and by the Centre for
Discrete Mathematics and its Applications (DIMAP), EPSRC award EP/D063191/1.

1

excess is stored in a storage of limited capacity; otherwise, the gap between consumption and
purchase must be taken from the storage.

This kind of problem does not only arise when purchasing resources like oil or natural gas, but
also in other interesting application contexts. Let us illustrate this by two examples, one from
the area of mobile communication and one dealing with the energy management in cars. The first
example is stream caching on mobile devices with different communication standards like GSM,
UMTS, WLAN. Since the price for transmitting data varies between the different standards and
since for moving devices it is often unclear which standard will be available in the near future, the
problem of cheaply caching a stream can be formulated in our framework. The second example is
battery management in micro hybrid cars. In addition to a conventional engine, these cars have
an electric motor without driving power that allows the engine to be restarted quickly after it had
been turned off during coasting, breaking, or waiting. The power for the electric motor is taken
from a battery that must be recharged by the alternator during drive. Since the effectiveness of
the conventional engine depends on the current driving situation, the question of when and by how
much to recharge the battery can be formulated as an economical caching problem.

Let α denote an upper bound on the price in any step that is known to the online algorithm.
Formally, an instance of the economical caching problem is a sequence σ1σ2 . . . in which every step
σi consists of a price βi ∈ [1, α], a consumption vi ≥ 0, and a buying limit `i ≥ vi. During step σi,
the algorithm has to determine the amount Bi ∈ [0, `i] to purchase. This amount has to be chosen
such that neither the storage load drops below zero nor the storage load exceeds the capacity of
the storage, which we can assume to be 1 without loss of generality. Formally, if Li−1 denotes the
storage load after step σi−1, then Bi must be chosen so that Li−1 +Bi−vi ∈ [0, 1]. The restriction
`i ≥ vi is necessary because otherwise covering the consumption might not be possible at all. The
economical caching problem without buying limits is the special case in which all buying limits are
set to infinity.

1.1 Our Results

It is rather easy to prove that the following simple algorithm achieves a competitive ratio of
√
α

(this also follows as a special case from Theorem 11): In every step σi with price βi ≤
√
α buy as

much as possible while adhering to the buying limit and the storage capacity. In all other steps
buy only as much as necessary to maintain a non-negative storage load.

This algorithm belongs to a more general natural class of algorithms, namely algorithms with
fixed buying functions. Given an arbitrary buying function f : [1, α] → [0, 1], we can define the
following algorithm: For every σi the amount to purchase is chosen such that the storage load
after the step is as close as possible to f(βi) taking into account the buying limit. For example,
the buying function f of the simple algorithm satisfies f(x) = 1 for x ≤

√
α and f(x) = 0 for

x >
√
α. Informally, algorithms with fixed buying functions can be seen as memoryless and vice

versa, in the sense that the action in each step does only depend on the characteristics of that step
and the current storage load. However, formally this intuitive view is incorrect since, due to the
continuous nature of the problem, an algorithm can encode arbitrary additional information into
the storage load. One of our results is a lower bound showing that there is no buying function that
gives a better competitive factor than

√
α.

Our main result, however, shows that this is not the best possible competitive factor. We
present a more sophisticated deterministic algorithm that achieves a competitive ratio of

r :=
1

W
(
1−α
eα

)
+ 1
∈
[√

α√
2

+

√
2− 1√

2
,

√
α√
2

+
1

3

]
,

where W denotes the principal branch of the Lambert W function (i.e., the inverse of f(x) = x · ex
satisfying W (z) ≥ −1 for all z ≥ −1/e). A proof that the competitive ratio r lies in the specified
interval is presented in Appendix A. We complement this result by a matching lower bound for

2

randomized algorithms, showing that our algorithm is optimal and that randomization does not
help. Our lower bounds hold even for the problem without buying limits.

Finally, we consider resource augmentation for the economical caching problem. We show that,
for every z ∈ {2, 3, 4, . . .}, there is a buying function algorithm achieving a competitive ratio of
z
√
α against an optimal offline algorithm whose storage capacity is by a factor of z − 1 smaller

than the storage capacity of the online algorithm. In particular, this implies that we obtain a
buying function algorithm that is e-competitive against an optimal offline algorithm whose storage
capacity is by a factor of dln(α)e smaller than the storage capacity of the online algorithm.

1.2 Related Work

Although the economical caching problem is, in our opinion, a very natural problem with appli-
cations from various areas, it seems to have not been studied before in a competitive analysis.
However, the problem bears some similarities to the one-way-trading problem introduced by El-
Yaniv et al. [4]. In this problem, a trader needs to exchange some initial amount of money in
some currency (say, dollars) to some other currency (say, euros). In each step, the trader obtains
the current exchange rate and has to decide how much dollars to exchange. However, she cannot
exchange euros back to dollars.

El-Yaniv et al. first consider the scenario that an online algorithm knows in advance an inter-
val [m,M] from which all exchange rates are chosen. For this scenario they present a tight bound
of Θ(logϕ) on the competitive ratio achievable for the one-way-trading problem, where ϕ = M/m.
They also consider the scenario where only the ratio ϕ is known in advance but not the interval.
Also for this scenario they present a tight bound of Θ(logϕ) on the competitive ratio achievable.
The scenario that we consider for the economical caching problem corresponds to the first scenario
considered by El-Yaniv et al. in which the interval [m,M] is known in advance.

Results on variations of one- and two-way-trading can also be found in the book by Borodin
and El-Yaniv [1] and in a survey by El-Yaniv [3]. In the two-way-trading problem, the trader
can buy and sell in both directions. A related problem is portfolio management, which has been
extensively studied (see, e.g., [2, 7, 8]).

The special case of the economical caching problem in which consumption occurs only in the
last step can be viewed as a one-way-trading problem in which the trader does not start with
a fixed amount of dollars but has a fixed target amount of euros. From our proof it is easy to
see that our algorithm for the economical caching problem is strictly r-competitive on sequences
that are terminated by a step with consumption 1 and price α. Additionally, the sequences used
in the lower bound also have the property that they are terminated by such a step and that no
consumption occurs before the last step. Altogether, this implies that our algorithm is also optimal
for the one-way-trading problem with a fixed target amount and yields a strict competitive ratio
of r for that problem.

Englert, Vöcking, and Winkler [5] study the economical caching problem in a setting where
one unit of commodity is consumed in every step, no buying limit exists, and the price follows a
random walk on the integers between (known) lower and upper bounds α and β. Geulen, Vöcking,
and Winkler [6] investigate the economical caching problem using the notion of regret instead of
competitive ratio. There, an online algorithm can observe the actions of a set of experts and the
goal is to approximate the performance of the best of these experts.

1.3 Extensions

We can further generalize the economical caching problem. Each step may be characterized by a
consumption and a monotonically increasing price function pi(x) : [1, α] → R+, with pi(α) ≥ vi.
The price function has the following meaning: The algorithm can buy up to an amount of pi(x)
at rate at most x. The problem with a single price βi and a buying limit `i for each step σi is a
special case with pi(x) = 0 for x < βi and pi(x) = `i for x ≥ βi.

3

Such price functions appear, for example, implicitly in the stock market. At any given time,
all sell orders for a specific stock in the order book define one price function since for every given
price x there is a certain number of shares available with an ask price of at most x.

All our results also hold for this more general model. An (online) algorithm can transform
an instance for the general problem into an instance of the special problem on the fly: A step
with consumption vi and price function pi is transformed into a series of steps as follows: First we
determine the maximum rate we have to pay to satisfy the demand as β := inf{x | pi(x) ≥ vi}.
Then we generate the following steps (the upper value indicates the price, the middle value the
consumption, and the lower value the buying limit) 1

pi(1)
pi(1)

 1 + ε
pi(1 + ε)− pi(1)
pi(1 + ε)− pi(1)

 · · ·
 β − ε
pi(β − ε)− pi(β − 2ε)
pi(β − ε)− pi(β − 2ε)

 β
vi − pi(β − ε)

pi(β)− pi(β − ε)


for a small ε with (β − 1)/ε ∈ N. Finally, we append the following steps for the remaining prices β + ε

0
pi(β + ε)− pi(β)

 · · ·
 α− ε

0
pi(α− ε)− pi(α− 2ε)

 α
0

pi(α)− pi(α− ε)


for a small ε with (α− β)/ε ∈ N.

If ε is small, this transformation does not change the cost of an optimal offline algorithm
significantly and hence, our upper bounds on the competitive ratios still hold.

1.4 Preliminaries

The value

r :=
1

W
(
1−α
eα

)
+ 1

has specific properties which we use in our lower and upper bounds. The following observation
follows from the identity ln(−W (x)) = ln(−x)−W (x) and this choice of r.

Observation 1. For our choice of r,∫ α/r

1

1

α− x
dx = ln(α− 1)− ln

(
α− α

r

)
= ln

(
1− 1

α

)
− ln

(
1− 1

r

)
=

1

r
.

Using this, we can make a second observation.

Observation 2. For 1 ≤ y ≤ α, ∫ y

1

1

α− x
dx ≤ r − 1

r
· y

α− y
.

Proof. For 1 ≤ y ≤ α,

d

dy

(∫ y

1

1

α− x
dx− r − 1

r
· y

α− y

)
=

α− r · y
r · (α− y)2

.

Hence
∫ y
1

1/(α − x) dx − (r − 1)/r · y/(α − y) takes its maximum for y = α/r. Together with
Observation 1 this yields∫ y

1

1

α− x
dx− r − 1

r
· y

α− y
≤
∫ α/r

1

1

α− x
dx− 1

r
= 0 .

4

2 Lower Bounds

In Section 2.1 we prove that the online algorithm that we present in Section 3.2 achieves the best
possible competitive ratio. In Section 2.2 we show that the competitive ratio of every algorithm
with a fixed buying function is at least

√
α.

2.1 General Lower Bound

Theorem 3. The competitive ratio of any randomized online algorithm for the economical caching
problem is at least

r :=
1

W
(
1−α
eα

)
+ 1

.

This also holds for the economical caching problem without buying limits.

Proof. Let A denote an arbitrary randomized online algorithm. For every β ∈ [1, α/r], we construct
a sequence Σβ . This sequence starts with a series Σ′β of steps without a buying limit, without
consumption, and with prices decreasing from α/r to β. To be more precise, let the prices in this
series of steps be

α

r
,
α

r
− ε, α

r
− 2ε, . . . , β + ε, β,

for a small ε > 0 with (α/r − β)/ε ∈ N. Since we can choose the discretization parameter ε
arbitrarily small, we assume in the following that the prices decrease continuously from α/r to β
to avoid the cumbersome notation caused by discretization. Finally, the sequence Σβ is obtained
by appending one step without a buying limit, with consumption 1, and price α to Σ′β .

Due to the last step with consumption 1 and price α, we can assume that after a sequence of
the form Σβ algorithm A has an empty storage. Otherwise, we can easily modify A so that this
property is satisfied without deteriorating its performance. Given this assumption, the behavior of
algorithm A on sequences Σβ can be completely described in terms of a monotonically decreasing
buying function f : [1, α/r] → [0, 1] with the following meaning: after the subsequence Σ′β with
decreasing prices from α/r to β, the expected storage level of A is f(β). Let us remark that the
function f might depend on the discretization parameter ε. This is, however, not relevant for our
argument if we assume that a small but fixed ε > 0 is chosen. Using linearity of expectation, the
expected cost of A on Σβ can be expressed as

CA(Σβ) = Cf (β) = (1− f(β)) · α+ β · f(β) +

∫ α/r

β

f(x) dx.

The first term results from the fact that in the last step of Σβ algorithm A has to purchase an
expected amount of 1− f(β) for price α. The remaining term is illustrated in Figure 1.

In addition to the actual buying function f of algorithm A, we also consider the buying function
g defined by

g(x) = r ·
(

ln

(
1− x

α

)
− ln

(
1− 1

r

))
.

This buying function has the property that for all β ∈ [1, α/r]

Cg(β) = (1− g(β)) · α+ β · g(β) +

∫ α/r

β

g(x) dx = r · β,

5

α/rβ

f(β)

(α/r − ε) · (f(α/r − ε) − f(α/r))

(α/r − 2ε) · (f(α/r − 2ε) − f(α/r − ε))

(α/r − 3ε) · (f(α/r − 3ε) − f(α/r − 2ε))
0.2

0.4

0.6

α/rβ

f(β)

β · f(β)

∫ α/r
β f(x) dx

g(x)

Figure 1: The left figure illustrates the cost of algorithm A on the discrete sequence, and the right
figure illustrates the continuous approximation. The right figure also depicts the function g(x). In
this example, the adversary constructs Σβ , where β is the largest value with f(x) ≤ g(x). Since
the function f is monotone, it is integrable on the compact set [β, α/r], which in turn implies that
for ε→ 0 the cost on the discrete and continuous sequence coincide.

as shown by the following calculation:

(1− g(β))α+ β · g(β) +

∫ α/r

β

g(x) dx

= (1− g(β))α+ β · g(β) +

∫ α/r

β

r ·
(

ln

(
1− x

α

)
− ln

(
1− 1

r

))
dx

= (1− g(β))α+ β · g(β) +

[
r · (−α+ x)

(
ln

(
1− x

α

)
− 1

)]α/r
β

− r ·
(
α

r
− β

)
ln

(
1− 1

r

)
= (1− g(β))α+ β · g(β) + r ·

(
(−α+ β) ln

(
1− 1

r

)
− (−α+ β) ln

(
1− β

α

)
+

(
β − α

r

))
= (1− g(β))α+ β · g(β) + (α− β) · g(β) + r ·

(
β − α

r

)
= r · β.

Furthermore, g is a valid buying function as it is monotonically decreasing, g(α/r) = 0, and

g(1) = r ·
(

ln

(
1− 1

α

)
− ln

(
1− 1

r

))
= 1,

which follows from Observation 1.
In order to show the lower bound on A’s competitive ratio, we distinguish between two cases:

either f(x) > g(x) for all x ∈ [1, α/r] or there exists an x ∈ [1, α/r] with f(x) ≤ g(x). In the
former case, we set β = 1 and, according to the previous calculations, obtain that CA(Σ1) =
Cf (1) > Cg(1) = r. Since the cost of an optimal offline algorithm on Σ1 is 1, the competitive ratio
of algorithm A is bounded from below by r in this case. Now let us consider the case that there
exists an x ∈ [1, α/r] with f(x) ≤ g(x). In this case, we set

β = sup{x ∈ [1, α/r] | f(x) ≤ g(x)}.

Since f(x) ≥ g(x) for all x ≥ β, we obtain

CA(Σβ) = Cf (β) ≥ Cg(β) = rβ.

6

Combining this with the observation that the cost of an optimal offline algorithm on the sequence
Σβ is β implies that, also in this case, the competitive ratio of A is bounded from below by r.

The argument above shows only that no algorithm can be strictly r′-competitive for r′ < r (in
fact, it is easy to see that no algorithm can be strictly r′-competitive for r′ < α). However, the
assumption that A has an empty storage after each sequence Σβ allows us to repeat an arbitrary
number of sequences of this kind without affecting the arguments above, showing that no algorithm
can be better than r-competitive. Observe that the buying function of algorithm A can be different
in each repetition, which, however, cannot help to obtain a better competitive ratio because β is
adopted appropriately in each repetition.

2.2 Lower Bound for Algorithms with Fixed Buying Functions

Theorem 4. The competitive ratio of any online algorithm for the economical caching problem
with a fixed buying function is at least

√
α. This also holds for the economical caching problem

without buying limits.

Proof. Let us first consider an algorithm A with an arbitrary but monotonically decreasing buying
function f . We will later argue how to extend the proof to functions that are not necessarily
monotonically decreasing. We construct a sequence Σ on which A is at least

√
α-competitive as

follows: Σ starts with a sequence Σ′ that is similar to Σ′1 from the proof of Theorem 3 with the
only exception that we decrease the efficiency from α to 1. To be precise, in every step in this
sequence there is no consumption, no buying limit, and the prices are

α, α− ε, α− 2ε, . . . , 1 + ε, 1,

for a small ε with (α − 1)/ε ∈ N. As in the proof of Theorem 3, we simplify the notation by
assuming that the price decreases continuously from α to 1. The cost of A on this sequence is

q := 1 +

∫ α

1

f(x) dx.

Let us assume that f(1) = 1. Due to the construction of the sequence Σ this can only reduce the
cost of A on Σ. We can also assume that f(α) = 0 because if A purchases anything at price α, it
can easily be seen that A cannot be better than α-competitive.

Now we distinguish between two cases: if q ≥
√
α, then the sequence Σ is formed by appending

one step with price α, consumption 1, and no buying limit to Σ′. The cost of an optimal offline
algorithm on this sequence is 1, whereas the cost of A is q. Hence, in this case, algorithm A is at
least

√
α-competitive.

Now let us assume that q ≤
√
α. After the sequence Σ′, the price increases again from 1 to α

but this time with consumption. There still is no buying limit and the prices and consumptions
are as follows (the upper value indicates the price, the lower value the consumption):(

1 + ε
f(1)− f(1 + ε)

)(
1 + 2ε

f(1 + ε)− f(1 + 2ε)

)
· · ·
(

α− ε
f(α− 2ε)− f(α− ε)

)(
α

f(α− ε)

)
.

Let us call this sequence Σ′′. Observe that consumptions and prices are chosen such that A does
not purchase anything during the sequence Σ′′. The sequence Σ is formed by appending one step
with price α, consumption 1, and no buying limit to Σ′Σ′′. On this sequence, the optimal cost is
1+q: The optimal offline algorithm purchases an amount of 1 in the last step of Σ′ for price 1, and
then it purchases in every step of Σ′′ exactly the consumption. This way the storage is completely
filled after the sequence Σ′′ and no further cost is incurred in the final step. Similar arguments as
in the proof of Theorem 3 show that the cost during the sequence Σ′′ is q. Since algorithm A does

7

not purchase anything during Σ′′, it has to purchase an amount of 1 for the price of α in the final
step. Hence, its total cost is q + α. For q ≤

√
α, we have

q + α

q + 1
≥
√
α+ α√
α+ 1

=
√
α.

Since f(α) = 0, algorithm A has an empty storage after this sequence. Hence, we can repeat
this sequence an arbitrary number of times, proving the theorem.

If the buying function f is not monotonically decreasing, we can, for the purpose of this proof,
replace f by the monotonically decreasing function f∗(x) := sup{f(y) | y ≥ x}. An algorithm with
buying function f behaves the same as an algorithm with buying function f∗ on the sequences
constructed in this lower bound with respect to f∗.

3 Upper Bounds

To derive and analyze online algorithms for the economical caching problem, we first characterize
in Section 3.1 the cost of an optimal offline algorithm. In Section 3.2 we present an optimal online
algorithm. In Section 3.3 we study a resource augmentation model in which online algorithms are
allowed to utilize a storage that is larger than the storage of an optimal offline algorithm.

3.1 The Optimal Offline Algorithm

To describe an optimal offline algorithm it is useful to track the cost-profile of the storage contents.
For this, we define a monotonically decreasing function g(x) : [0, α]→ [0, 1] that is initialized with
g(x) := 1 and changes with each step. In the following, we denote the function g(x) after step σi
by gi(x) and the initial function by g0(x) = 1.

The intuition behind g(x) is that, assuming the storage of the optimal offline algorithm is
completely filled after step σi, a 1 − g(x) fraction of the commodity stored in the storage was
bought at a smaller price than x.

The change of g(x) from step to step follows two basic rules:

1. Consumption is satisfied as cheaply as possible, i.e., what we remove from the storage is what
we bought at the lowest price.

2. If we have stored something that was bought at a price larger than the current one, replace
it with commodity bought at the current price. That is, we revoke the decision of the past
to buy at the worse price in favor of buying at the current, better price.

Formalizing this yields the following definition

gi(x) :=

{
min{gi−1(x) + vi, 1} if x ≤ βi,
max{gi−1(x) + vi − `i, 0} if x > βi,

(1)

where bi is the price, vi is the consumption, and `i is the buying limit of step σi. Using this defini-
tion, we can characterize the cost of an optimal offline algorithm. As described above, consumption
is satisfied at the best possible price. This gives rise to the cost incurred in step σi, namely

Ci :=

∫ βi

0

max{gi−1(x) + vi − 1, 0} dx.

Figure 2 illustrates the cost-profile function. The following theorem justifies our definitions and
shows that the total cost of an optimal offline algorithm is indeed

∑
i Ci. This requires a formal

(slightly technical but straightforward) proof by induction.

8

0.13

0.33

0.5
0.56

0.83

1

1 3 5 6 7 α

v
i

1

1 3 5 6 7 α

`
i+

1

βi+1

Figure 2: The left figure illustrates how the function gi−1 is modified if step σi has consumption vi =
1/3 and a price of α. Initially (indicated by the thick lines), the storage contains (1-0.83) commodity
bought at a price of 1, (0.83-0.56) commodity bought at a price of 3, etc. The consumption vi is
satisfied by using everything that was bought at a price of 1 and part of the commodity that was
bought at a price of 3. Then, the storage is filled completely by buying vi commodity at a price
of α. This results in a new cost-profile function indicated by the dashed lines. The shaded area
corresponds to the cost Ci = 1 · (1− 0.83) + 3 · (vi − (1− 0.83)) of this step.
The right figure illustrates how the function gi is modified if step σi+1 has no consumption, a price
of βi+1, and a buying limit of `i+1. Up to a total amount of `i+1 of the commodity in the storage
that was bought at a price larger than βi+1 is replaced by commodity bought at price βi+1; in this
example all the commodity bought at price α and part of the commodity bought at price 7.
In general, the cost profile gi(x) is always a step function, left continuous, and equal to 1 in the
interval [0, 1].

Theorem 5. The cost of an optimal offline algorithm is exactly
∑
i Ci.

Proof. Let σ′ be a step with price α, no consumption and no buying limit. We slightly alter the
input sequence σ1σ2σ3 . . . to σ′σ1σ2σ3 This does not change the gi’s or Ci’s and it also does
not change the cost of an optimal offline algorithm because buying in the step σ′ (instead of some
other step σi) can only increase the total cost.

For y ∈ [0, 1] and j ∈ N, we consider the economical caching problem on the sequence σ′σ1 . . . σj
with the additional requirement that after step σj the storage level must be exactly y. We denote
by Ajy the cost of an optimal offline algorithm for this problem. We show that our definition of
gi(x) satisfies the invariant that for every y and every j

Ajy =

(j∑
i=1

Ci

)
+

∫ α

0

max{gj(x) + y − 1, 0} dx.

This implies the lemma because the optimal cost on a sequence σ′σ1 . . . σj is equal to Aj0, which is

equal to
∑j
i=1 Ci due to the invariant.

For j = 0, that is, after σ′ the invariant holds as the cost for A0
y is obviously αy for every y ∈

[0, 1]. Assume that the invariant holds for j and let us consider Aj+1
y for some y ∈ [0, 1]. There is

a y′ ∈ [0, 1] such that the optimal strategy for the sequence σ′σ1 . . . σj+1 that has storage level y
after σj+1 has storage level y′ after step σj . Since the storage level after step σj+1 must be y, the

9

storage level y′ cannot exceed y + vj+1. Hence, we can express Aj+1
y as

Aj+1
y = Ajy′ + βj+1 · (vj+1 + y − y′)

=

(j∑
i=1

Ci

)
+

∫ α

0

max{gj(x) + y′ − 1, 0} dx+ βj+1 · (vj+1 + y − y′). (2)

First, we determine the optimal choice for the storage level y′ after step σj . For this we
consider Aj+1

y as a function of y′. The storage level y′ is bounded from above by min{y+ vj+1, 1}
and from below by max{y + vj+1 − `j+1, 0} because otherwise it is not possible to reach a storage
level of y after step σj+1. We first ignore the buying limit and define Aj+1

y (y′) for every y′ ∈
[0,min{y + vj+1, 1}] according to (2).

Lemma 6. The function Aj+1
y (y′) is monotonically decreasing in the interval [0, 1−gj(βj+1)) and

monotonically increasing in the interval (1− gj(βj+1),min{y + vj+1, 1}].

Proof. The function gj is a step function and hence in general not invertible. To work around this,
we define the function g∗j (x) := sup{y | gj(y) ≥ x}.

Let y′ ≥ 0 and ε > 0 be arbitrary such that y′ < y′+ε < 1−gj(βj+1). The following calculation,
which is illustrated in Figure 3, shows that Aj+1

y (y′) ≥ Aj+1
y (y′ + ε):

Aj+1
y (y′)−Aj+1

y (y′ + ε)

= ε · βj+1 +

∫ α

0

max{gj(x) + y′ − 1, 0} −max{gj(x) + y′ + ε− 1, 0} dx

= ε · βj+1 − ε · g∗j (1− y′)−
∫ g∗j (1−y

′−ε)

g∗j (1−y′)
gj(x) + y′ + ε− 1 dx

≥ ε · βj+1 − ε · g∗j (1− y′)−
∫ g∗j (1−y

′−ε)

g∗j (1−y′)
ε dx

= ε · βj+1 − ε · g∗j (1− y′ − ε)
≥ 0.

For the first inequality in line four we used the fact that gj(x) ∈ [1 − y′ − ε, 1 − y′] for every x ∈
(g∗j (1−y′), g∗j (1−y′−ε)). The second inequality in the last line follows from g∗j (1−y′−ε) ≤ βj+1,
which in turn follows from 1− y′ − ε > gj(βj+1).

Let y′ ≤ min{y + vj+1, 1} and ε > 0 be arbitrary such that y′ > y′ − ε > 1 − gj(βj+1). The
following calculation, which is illustrated in Figure 4, shows that Aj+1

y (y′) ≥ Aj+1
y (y′ − ε):

Aj+1
y (y′)−Aj+1

y (y′ − ε)

= −ε · βj+1 +

∫ α

0

max{gj(x) + y′ − 1, 0} −max{gj(x) + y′ − ε− 1, 0} dx

= −ε · βj+1 + ε · g∗j (1− y′ + ε) +

∫ g∗j (1−y
′)

g∗j (1−y′+ε)
gj(x) + y′ − 1 dx

≥
∫ g∗j (1−y

′)

g∗j (1−y′+ε)
gj(x) + y′ − 1 dx

≥ 0.

For the first inequality in line four we used the fact that g∗j (1 − y′ + ε) ≥ βj+1, which follows
from 1 − y′ + ε < gj(βj+1). The second inequality in the last line follows because gj(x) ∈ [1 −
y′, 1− y′ + ε] for every x ∈ (g∗j (1− y′ + ε), g∗j (1− y′)).

10

1− y′

1 g∗j (1− y′) α

gj

1− y′

1− y′ − ε

gj(βj+1)

1 g∗j (1− y′) g∗j (1− y′ − ε) βj+1
α

gj

Figure 3: The left figure illustrates the term
∫ α
0

max{gj(x) + y′ − 1, 0} dx in (2). The right figure
illustrates the case y′ < y′ + ε < 1 − gj(βj+1). The size of the shaded area in the right figure

equals ε · g∗j (1− y′) +
∫ g∗j (1−y′−ε)
g∗j (1−y′)

gj(x) + y′ + ε− 1 dx.

gj(βj+1)

1− y′ + ε

1− y′

1 βj+1

g∗j (1− y′ + ε)

g∗j (1− y′) α

gj

Figure 4: This figure illustrates the case y′ > y′ − ε > 1 − gj(βj+1). The size of the shaded area

equals ε · g∗j (1− y′ + ε) +
∫ g∗j (1−y′)
g∗j (1−y′+ε)

gj(x) + y′ − 1 dx.

Since the function Aj+1
y (y′) is continuous, Lemma 6 implies that this function is minimized

for y′ = 1 − gj(βj+1). However, since y′ is bounded from above by y + vj+1 and from below by
y + vj+1 − `j+1, we have to set

y′ := max{min{y + vj+1, 1− gj(βj+1)}, y + vj+1 − `j+1}

to minimize the cost Aj+1
y (y′).

In order to prove the invariant for j + 1, we have to show that

Aj+1
y (y′) = Ajy′ + βj+1 · (vj+1 + y − y′) =

(j+1∑
i=1

Ci

)
+

∫ α

0

max{gj+1(x) + y − 1, 0} dx,

which is, due to the invariant for j, equivalent to showing that

Cj+1 = βj+1 · (vj+1 + y − y′)

+

∫ α

0

max{gj(x) + y′ − 1, 0} dx−
∫ α

0

max{gj+1(x) + y − 1, 0} dx. (3)

11

In the right-hand side of this equation, we can replace the upper integration limit α by βj+1, i.e.,
we can rewrite the right-hand side as

βj+1 · (vj+1 + y − y′) +

∫ βj+1

0

(max{gj(x) + y′ − 1, 0} −max{gj+1(x) + y − 1, 0}) dx. (4)

To see this we distinguish between two cases: either y′ ≤ 1− gj(βj+1) or y′ = y + vj+1 − `j+1.

• Let y′ ≤ 1− gj(βj+1). Then, for x > βj+1,

gj(x) + y′ − 1 ≤ gj(x)− gj(βj+1) ≤ 0

and

gj+1(x) + y − 1 ≤ gj(βj+1) + vj+1 − `j+1 + y − 1

≤ vj+1 − `j+1 + y − y′ ≤ 0.

Hence, for x > βj+1, both maxima in (3) equal 0.

• Let y′ = y + vj+1 − `j+1. Then, for x > βj+1,

gj+1(x) + y − 1 = gj(x) + vj+1 − `j+1 + y − 1 = gj(x) + y′ − 1.

Hence, for x > βj+1, the two maxima in (3) coincide and cancel out.

We can further rewrite (4) as∫ βj+1

0

(max{gj(x)− 1,−y′} −max{gj+1(x)− 1− vj+1,−y − vj+1}) dx

=

∫ βj+1

0

(max{gj(x)− 1,−y′} −max{min{gj(x) + vj+1, 1} − 1− vj+1,−y − vj+1}) dx

=

∫ βj+1

0

(max{gj(x)− 1,−y′} −max{min{gj(x)− 1,−vj+1},−y − vj+1}) dx

=

∫ βj+1

0

−min{1− gj(x), y′} dx+

∫ βj+1

0

min{max{1− gj(x), vj+1}, y + vj+1} dx. (5)

Due to our choice of y′, the first integral equals∫ βj+1

0

−min{1− gj(x),max{min{y + vj+1, 1− gj(βj+1)}, y + vj+1 − `j+1}} dx

=

∫ βj+1

0

−min{1− gj(x), y + vj+1} dx.

Hence, (5) can be rewritten as∫ βj+1

0

(−min{1− gj(x), y + vj+1}+ min{max{1− gj(x), vj+1}, y + vj+1}) dx

=

∫ βj+1

0

max{gj(x) + vj+1 − 1, 0} dx = Cj+1,

which proves the theorem.

12

3.2 The Optimal Online Algorithm

Our optimal r :=
(
W
(
1−α
eα

)
+1
)−1

-competitive algorithm is based on the functions gi(x) introduced
in Section 3.1. Note that an online algorithm can compute gi(x) since the function is solely based
on information from the current and past steps. Let the storage level of the online algorithm after
step σi be denoted by Li. The initial storage load is L0 = 0. Our algorithm bears some similarity
with the following “threat-based” policy for one-way trading defined in [4]: In every step, convert
just enough dollars to ensure that the desired competitive ratio would be obtained if in all following
steps the exchange rate were equal to the worst possible rate. Our algorithm for the economical
caching problem can be described as follows: In every step, the algorithm buys just enough to
ensure that it would be strictly r-competitive if after the current step only one more step with
consumption 1 and price α occurred that terminated the sequence.

This algorithm can be made explicit as follows: For each step σi of the input sequence with
price βi, buying limit `i, and consumption vi ≤ `i, the algorithm buys

Bi := vi + r ·
∫ α/r

1

gi−1(x)− gi(x)

α− x
dx

at rate βi. The storage level after this step is

Li = Li−1 + r ·
∫ α/r

1

gi−1(x)− gi(x)

α− x
dx.

Lemma 7. The algorithm above is admissible, that is, it does not buy more than the buying limit
and after every step the storage level lies between 0 and 1.

Proof. In a step σi, the algorithm buys

Bi = vi + r ·
∫ α/r

1

gi−1(x)− gi(x)

α− x
dx

= vi + r ·
∫ βi

1

gi−1(x)−min{gi−1(x) + vi, 1}
α− x

dx

+ r ·
∫ α/r

βi

gi−1(x)−max{gi−1(x) + vi − `i, 0}
α− x

dx

≤ vi + r ·
∫ α/r

βi

gi−1(x)−max{gi−1(x) + vi − `i, 0}
α− x

dx

≤ vi + r ·
∫ α/r

βi

`i − vi
α− x

dx

≤ vi + r ·
∫ α/r

1

`i − vi
α− x

dx = `i,

where the last equation follows from Observation 1.
The storage level after step σi is

Li = Li−1 + r ·
∫ α/r

1

gi−1(x)− gi(x)

α− x
dx = L0 + r ·

∫ α/r

1

g0(x)− gi(x)

α− x
dx

= r ·
∫ α/r

1

1− gi(x)

α− x
dx = 1− r ·

∫ α/r

1

gi(x)

α− x
dx,

where we used Observation 1 to obtain the last equation. This storage level is obviously at most 1.
On the other hand,

Li = 1− r ·
∫ α/r

1

gi(x)

α− x
dx ≥ 1− r ·

∫ α/r

1

1

α− x
dx = 0,

13

where the last step follows again from Observation 1.
Finally, let us observe that Bi is non-negative. From the definition of gi it follows that gi(x) ≤

gi−1(x) + vi for every x. Hence,

Bi ≥ vi + r ·
∫ α/r

1

−vi
α− x

dx = 0,

where the last equality is due to Observation 1.

Theorem 8. The algorithm above is r := 1

W
(

1−α
eα

)
+1

-competitive.

Proof. To prove the theorem we show that, on any sequence, the cost of the algorithm above is at
most r times the cost of the optimal offline algorithm plus α. Since α is independent of the input
sequence, this proves the theorem.

We already characterized the cost of an optimal offline algorithm in Section 3.1. The next step
in our proof is to bound the Ci’s from below. By Theorem 5, this yields a lower bound on the cost
of an optimal offline algorithm, which is necessary for proving the desired competitive ratio.

Lemma 9. For every step σi with βi ≤ α/r,

Ci +

∫ α/r

0

(gi(x)− gi−1(x)) dx = βi · vi −
∫ α/r

βi

min{`i − vi, gi−1(x)} dx.

For every step σi with βi > α/r,

Ci +

∫ α/r

0

(gi(x)− gi−1(x)) dx ≥ α

r
· vi.

Proof. For βi ≤ α/r, the lemma follows from the following calculation:

Ci +

∫ α/r

0

(gi(x)− gi−1(x)) dx

= Ci +

∫ βi

0

min{vi, 1− gi−1(x)} dx−
∫ α/r

βi

min{`i − vi, gi−1(x)} dx

=

∫ βi

0

(min{vi, 1− gi−1(x)}+ max{gi−1(x) + vi − 1, 0}) dx

−
∫ α/r

βi

min{`i − vi, gi−1(x)} dx

=

∫ βi

0

vi dx−
∫ α/r

βi

min{`i − vi, gi−1(x)} dx

= βivi −
∫ α/r

βi

min{`i − vi, gi−1(x)} dx.

14

For βi > α/r, the lemma follows from the following calculation:

Ci +

∫ α/r

0

(gi(x)− gi−1(x)) dx

= Ci +

∫ α/r

0

min{vi, 1− gi−1(x)} dx

=

∫ α/r

0

(min{vi, 1− gi−1(x)}+ max{gi−1(x) + vi − 1, 0}) dx

+

∫ βi

α/r

max{gi−1(x) + vi − 1, 0} dx

=

∫ α/r

0

vi dx+

∫ βi

α/r

max{gi−1(x) + vi − 1, 0} dx

≥ α

r
· vi.

The only remaining part in the proof is to bound the cost of our algorithm from above. For
this, observe that the cost that our algorithm incurs in step σi is exactly βi ·Bi.

Lemma 10. For every step σi with βi ≤ α/r,

βi ·Bi + α(Li−1 − Li) ≤ r
(
βi · vi −

∫ α/r

βi

min{`i − vi, gi−1(x)} dx
)
.

For every step σi with βi > α/r,

βi ·Bi + α(Li−1 − Li) ≤ α · vi.

Proof. By using the definition of Bi, we obtain

βi ·Bi + α(Li−1 − Li)

= βi ·
(
vi + r ·

∫ α/r

1

gi−1(x)− gi(x)

α− x
dx

)
+ α(Li−1 − Li)

= βi ·
(
vi + r ·

∫ α/r

1

gi−1(x)− gi(x)

α− x
dx

)
− α · r ·

∫ α/r

1

gi−1(x)− gi(x)

α− x
dx

= βivi + (βi − α) · r ·
∫ α/r

1

gi−1(x)− gi(x)

α− x
dx.

If βi ≤ α/r,

βivi + (βi − α) · r ·
∫ α/r

1

gi−1(x)− gi(x)

α− x
dx

= βivi + (α− βi) · r ·
(∫ βi

1

min{v, 1− gi−1(x)}
α− x

dx−
∫ α/r

βi

min{`i − vi, gi−1(x)}
α− x

dx

)
≤ βivi + (α− βi) · r ·

(
v ·
∫ βi

1

1

α− x
dx−

∫ α/r

βi

min{`i − vi, gi−1(x)}
α− x

dx

)
≤ rβivi − (α− βi) · r ·

∫ α/r

βi

min{`i − vi, gi−1(x)}
α− x

dx

≤ r
(
βivi −

∫ α/r

βi

min{`i − vi, gi−1(x)} dx
)
,

15

where the correctness of the second to last step follows due to Observation 2.
If βi > α/r,

βivi + (βi − α) · r ·
∫ α/r

1

gi−1(x)− gi(x)

α− x
dx

= βivi + (α− βi) · r ·
∫ α/r

1

min{v, 1− gi−1(x)}
α− x

dx

≤ βivi + (α− βi) · r · vi ·
∫ α/r

1

1

α− x
dx

≤ α · vi,

where the correctness of the last step follows due to Observation 1.

Due to Lemma 9 and Lemma 10,

βi ·Bi + α(Li−1 − Li) ≤ r
(
Ci +

∫ α/r

0

(gi(x)− gi−1(x)) dx

)
,

for every step σi. Summing over all steps yields

n∑
i=1

(βi ·Bi)− α(Ln − L0) ≤ r
(n∑
i=1

Ci +

∫ α/r

0

(gn(x)− g0(x)) dx

)
≤ r ·

n∑
i=1

Ci.

This concludes the proof of the theorem because the cost of our online algorithm is exactly
∑n
i=1(βi·

Bi), α(Ln − L0) ≤ α and, due to Theorem 5,
∑n
i=1 Ci is equal to the cost of an optimal offline

algorithm.

3.3 Resource Augmentation

In this section we present for every c > 1 an algorithm with a fixed buying function with a storage
capacity of dlogα/ log ce−1 that is c-competitive against an optimal offline algorithm with storage
capacity 1. In particular, this implies that for every z ∈ {2, 3, 4, . . .}, we have an algorithm with
storage capacity z − 1 that achieves a competitive ratio of z

√
α.

Let Li denote the storage load after step σi. The buying function B that we consider is defined
for every x ∈ [1, α] by

B(x) := max

{⌈
logα

log c

⌉
−
⌊

log x

log c

⌋
− 1, 0

}
.

For each step σi of the input sequence with price βi, buying limit `i, and consumption vi ≤ `i,
the algorithm buys

Bi := max{min{B(βi)− Li−1 + vi, `i}, 0}.

Hence, the storage load Li after the i-th step is Li−1 +Bi − vi. Again, we have to argue that the
algorithm is admissible, i.e., that 0 ≤ Li ≤ dlogα/ log ce − 1. For i = 0 this is obviously the case
since L0 = 0. For i ≥ 1, we observe that

Li = Li−1 +Bi − vi
= Li−1 + max{min{B(βi)− Li−1 + vi, `i}, 0} − vi
= max{min{B(βi), `i + Li−1 − vi}, Li−1 − vi}.

Now, on the one hand,

max{min{B(βi), `i + Li−1 − vi}, Li−1 − vi} ≥ min{B(βi), `i + Li−1 − vi} ≥ 0

16

due to the induction hypothesis Li−1 ≥ 0 and since B(βi) ≥ 0 and `i ≥ vi. On the other hand,

max{min{B(βi), `i + Li−1 − vi}, Li−1 − vi} ≤ max{B(βi), Li−1 − vi} ≤ dlogα/ log ce − 1

due to the induction hypothesis Li−1 ≤ dlogα/ log ce − 1 and since B(βi) ≤ dlogα/ log ce − 1.

Theorem 11. The above algorithm is c-competitive.

Proof. To prove the theorem, we use the functions gi(x) introduced in Section 3.1. Again, we can
characterize the cost of an optimal offline algorithm as

∑
i Ci.

In addition, we introduce functions fi(x) : [0, α] → [0, dlogα/ log ce − 1] defined by f0(x) := 0
and

fi(x) :=

{
min{fi−1(x) +Bi, Li} = Bi + min{fi−1(x), Li−1 − vi} if x ≤ βi,
fi−1(x) if x > βi.

Clearly, the cost of the online algorithm is equal to
∑
i βi · Bi. However, for our proof, we char-

acterize the cost in a different way that is similar to our characterization of the optimal cost. For
this, we define

Di :=

∫ βi

0

max{fi−1(x)− Li +Bi, 0} dx.

Lemma 12. For every j,
j∑
i=1

βi ·Bi =

∫ α

0

fj(x) dx+

j∑
i=1

Di.

Proof. We prove the lemma by induction over j. The lemma holds trivially for j = 0. For j ≥ 1
the lemma holds, as shown by the following calculation:

j∑
i=1

βi ·Bi

= βj ·Bj +

j−1∑
i=1

βi ·Bi

= βj ·Bj +

∫ α

0

fj−1(x) dx+

j−1∑
i=1

Di

= βj ·Bj +

∫ βj

0

fj−1(x) dx+

∫ α

βj

fj(x) dx+

j−1∑
i=1

Di

=

∫ βj

0

(fj−1(x) +Bj) dx+

∫ α

βj

fj(x) dx+

j−1∑
i=1

Di

=

∫ βj

0

(fj−1(x) +Bj −max{fj−1(x)− Lj +Bj , 0}) dx+

∫ α

βj

fj(x) dx+

j∑
i=1

Di

=

∫ βj

0

min{Lj , fj−1(x) +Bj} dx+

∫ α

βj

fj(x) dx+

j∑
i=1

Di

=

∫ α

0

fj(x) dx+

j∑
i=1

Di.

17

The goal is to relate Di to Ci in order to prove the theorem. More precisely, we show that, for
every i, Di ≤ c · Ci. This yields the theorem as

n∑
i=1

βi ·Bi =

∫ α

0

fj(x) dx+

n∑
i=1

Di

≤ α ·
(⌈

logα

log c

⌉
− 1

)
+

n∑
i=1

Di

≤ α ·
(⌈

logα

log c

⌉
− 1

)
+ c ·

n∑
i=1

Ci.

In order to show Di ≤ c · Ci, we exploit the following invariant.

Lemma 13. For every i and x ∈ [0, α/c], Li − fi(c · x)− 1 + gi(x) ≥ 0.

Proof. First of all, by induction over i, it is easy to see that fi(x) ≤ B(x) for every x ∈ [0, α].
Clearly f0(x) = 0 ≤ B(x). For i ≥ 1 with Bi = 0, we obtain, for every x ∈ [0, α], fi(x) ≤ fi−1(x) ≤
B(x). For i ≥ 1 with Bi > 0, we obtain, for every x ∈ [0, βi], fi(x) ≤ Bi+Li−1−vi ≤ B(βi) ≤ B(x)
and, for every x ∈ (βi, α], fi(x) = fi−1(x) ≤ B(x).

Using this fact, we show the invariant Li−fi(c ·x)−1+gi(x) ≥ 0 by induction over i. For i = 0,
we have L0−f0(c·x)−1+g0(x) = 0−0−1+1 = 0. Now assume that Li−1−fi−1(c·x)−1+gi−1(x) ≥ 0
holds. We have to show Li − fi(c · x)− 1 + gi(x) ≥ 0.

From Li = Li−1+Bi−vi it follows that Li−fi(c·x)−1+gi(x) = Li−1+Bi−vi−fi(c·x)−1+gi(x).
1. Case: c · x ≤ βi.

Li−1 +Bi − vi − fi(c · x)− 1 + gi(x)

= min{gi−1(x)− 1 + vi, 0} −min{fi−1(c · x)− Li−1 + vi, 0} ≥ 0.

2. Case: x ≤ βi ≤ c · x. If gi−1(x)− 1 + vi ≤ 0,

Li−1 +Bi − vi − fi(c · x)− 1 + gi(x) = Li−1 +Bi − fi−1(c · x) + gi−1(x)− 1

≥ Li−1 − fi−1(c · x) + gi−1(x)− 1 ≥ 0.

If gi−1(x)− 1 + vi > 0,

Li−1 +Bi − vi − fi(c · x)− 1 + gi(x) = Li−1 +Bi − vi − fi−1(c · x)

≥ Li−1 + min{B(βi)− Li−1, `i − vi} − fi−1(c · x)

≥ min{B(βi)− fi−1(c · x), `i − vi}
≥ min{B(βi)− fi−1(βi), `i − vi}
≥ min{0, `i − vi} ≥ 0,

where the third step follows from the fact that fi(x) ≤ Li for every x ∈ [0, α].
3. Case: βi < x. If B(βi) − Li−1 + vi ≤ `i, then Bi = max{B(βi) − Li−1 + vi, 0} ≥

B(βi)− Li−1 + vi and

Li−1 +Bi − vi − fi(c · x)− 1 + gi(x) ≥ B(βi)− fi−1(c · x)− 1 + gi(x)

≥ B(βi)− fi−1(c · x)− 1

≥ B(βi)−B(c · x)− 1

≥ B(βi)−B(c · βi)− 1 = 0.

18

If B(βi)− Li−1 + vi > `i, then Bi = `i and

Li−1 +Bi − vi − fi(c · x)− 1 + gi(x)

= Li−1 + `i − vi − fi(c · x)− 1 + gi(x)

= Li−1 + `i − vi − fi−1(c · x)− 1 + max{gi−1(x) + vi − `i, 0}
≥ Li−1 − fi−1(c · x)− 1 + gi−1(x) ≥ 0.

Using this lemma we obtain

Di =

∫ βi

0

max{fi−1(x)− Li +Bi, 0} dx =

∫ βi

0

max{fi−1(x)− Li−1 + vi, 0} dx

≤
∫ βi

0

max{gi−1(x/c)− 1 + vi, 0} dx = c ·
∫ βi/c

0

max{gi−1(x)− 1 + vi, 0} dx

≤ c ·
∫ βi

0

max{gi−1(x) + vi − 1, 0} dx = c · Ci.

4 Acknowledgments

We would like to thank Mike Paterson for his suggestions regarding Theorem 14.

References

[1] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

[2] Thomas M. Cover and Erik Ordentlich. Universal portfolios with side information. IEEE
Transactions on Information Theory, 42(2):348–363, 1996.

[3] Ran El-Yaniv. Competitive solutions for online financial problems. ACM Comput. Surv.,
30(1):28–69, 1998.

[4] Ran El-Yaniv, Amos Fiat, Richard M. Karp, and G. Turpin. Optimal search and one-way
trading online algorithms. Algorithmica, 30(1):101–139, 2001.

[5] Matthias Englert, Berthold Vöcking, and Melanie Winkler. Economical caching with stochastic
prices. In SAGA, pages 179–190, 2009.

[6] Sascha Geulen, Berthold Vöcking, and Melanie Winkler. Regret minimization for online buffer-
ing problems using the weighted majority algorithm. In COLT, pages 132–143, 2010.

[7] David P. Helmbold, Robert E. Schapire, Yoram Singer, and Manfred K. Warmuth. On-line
portfolio selection using multiplicative updates. In ICML, pages 243–251, 1996.

[8] Erik Ordentlich and Thomas M. Cover. On-line portfolio selection. In COLT, pages 310–313,
1996.

A Bounds on the Competitive Ratio

Theorem 14. For any α ≥ 1,

1

W
(
1−α
eα

)
+ 1
∈
[√

α√
2

+

√
2− 1√

2
,

√
α√
2

+
1

3

]
.

19

Proof. We start by showing that
1

W
(
1−α
eα

)
+ 1
−
√
α√
2

(6)

is monotonically increasing in α. Let β := W
(
1−α
eα

)
+ 1. Note that β ∈ (0, 1]. Since

1− α
eα

= W
(1− α
eα

)
eW
(

1−α
eα

)
,

we get 1/α = 1 + (β − 1)eβ . Therefore (6) can be rewritten as

f(β) :=
1

β
− 1√

2 + 2(β − 1)eβ
.

The derivative of this is

f ′(β) =
−1

β2
+

βeβ

(2 + 2(β − 1)eβ)3/2
.

Since β decreases as α increases, it remains to show that this derivative is non-positive or, equiva-
lently, that

β2e2β/3 ≤ 2 + 2(β − 1)eβ . (7)

A series representation of the left hand side is β2
∑∞
k=0(2β/3)k/k! =

∑∞
k=2(2/3)k−2βk/(k−2)! and

a series representation of the right hand side is 2 + 2(β − 1)
∑∞
k=0 β

k/k! =
∑∞
k=2 2(k − 1)βk/k!.

Now (7) follows since (2/3)k−2/(k − 2)! ≤ 2(k − 1)/k! for all k ≥ 2.
To complete the proof of the theorem, we observe that f(1) = 1− 1/

√
2 and that in the limit,

as β approaches 0 from above, limβ↓0 f(β) = 1/3. To see the latter, we first apply the Taylor
expansion of ex and finally the Taylor expansion of 1/

√
1 + x (at x = 0).

lim
β↓0

(1

β
− 1√

2 + 2(β − 1)eβ

)
= lim

β↓0

(1

β
− 1√

2
∑∞
k=2

k−1
k! β

k

)
= lim

β↓0

(1

β
− 1

β
√

2
∑∞
k=2

k−1
k! β

k−2

)
= lim

β↓0

(1

β
− 1

β
√

1 + 2
∑∞
k=3

k−1
k! β

k−2

)

= lim
β↓0

(1

β
− 1

β

(
1−

∞∑
k=3

k − 1

k!
βk−2 +O

(∞∑
k=3

(k − 1

k!

)2
β2k−4

)))
= lim

β↓0

(∞∑
k=3

k − 1

k!
βk−3 −O

(∞∑
k=3

(k − 1

k!

)2
β2k−5

))
= lim

β↓0

(1

3
+

∞∑
k=4

k − 1

k!
βk−3 −O

(∞∑
k=3

(k − 1

k!

)2
β2k−5

))
=

1

3

20

