
Minicourse on
Smoothed Analysis

Lecture Notes
Version 1.01

CA(I)

Cworst
A (n)

Cave
A (n)

Csmooth
A (n, σ1)

Csmooth
A (n, σ2)

instances from In

Heiko Röglin
roeglin@cs.rwth-aachen.de

Department of Computer Science
RWTH Aachen

Preface

These are the lecture notes for a minicourse on “Smoothed Analysis” given as part of
the “Randomized Algorithms” lecture in the summer term 2007 at RWTH Aachen. The
material presented in this course is mainly based on the following research papers:

• David Arthur and Sergei Vassilvitskii. Worst-case and smoothed analysis of
the ICP algorithm, with an application to the k-means method. In Proc.
of the 47th Ann. IEEE Symp. on Foundations of Computer Science (FOCS), pages
153–164, 2006.

• Rene Beier, Heiko Röglin, and Berthold Vöcking. The smoothed number of
Pareto optimal solutions in bicriteria integer optimization. In Proc. of the
12th Int. Conf. on Integer Programming and Combinatorial Optimization (IPCO),
2007. To appear.

I will be grateful for any suggestions on how to improve the lecture notes and also the
lecture itself.

June 14, 2007

Changes to Version 1.0:

• Minor change in Theorem 4.1.

• Proof of Theorem 4.2: 2|A|D → 4|A|D2.

2

Contents

1 Introduction 4

2 Mathematical Background 7
2.1 Notations . 7
2.2 Random Variables and Random Vectors . 7
2.3 Facts from Linear Algebra . 9

3 The Smoothed Number of Pareto Optimal Solutions 11
3.1 The Nemhauser/Ullmann Algorithm . 11
3.2 Probabilistic Input Model . 13
3.3 The Expected Number of Pareto Optimal Solutions 14

4 Smoothed Analysis of Local Search Heuristics 18
4.1 The Iterative Closest Point Algorithm . 18
4.2 Detailed Description of the ICP Algorithm 19
4.3 Smoothed Analysis of the ICP Algorithm 20

4.3.1 Case 1: Small changes in N . 21
4.3.2 Case 2: Large changes in N . 23
4.3.3 Putting the pieces together . 25

Bibliography 27

3

Chapter 1

Introduction

In the theory of algorithms, an algorithm is typically judged by its worst-case performance.
An algorithm with good worst-case performance is the ideal case because it performs well
on all possible inputs. On the other hand, a bad worst-case performance does not nec-
essarily imply that the algorithm performs also badly in practice. The most prominent
example is probably the simplex algorithm for solving linear programs. For most deter-
ministic pivot rules that have been suggested, examples are known showing that in the
worst case the simplex algorithm can take an exponential number of steps, but the sim-
plex algorithm is still one of the most competitive algorithms for solving linear programs
in practice. It is fast and reliable even for large-scale instances and for the pivot rules
that have been shown to require an exponential number of iterations in the worst case.
Examples on which the simplex algorithm needs many iterations occur only very rarely in
practice. This behavior is by no means an exceptional property of the simplex algorithm.
There are many other examples of algorithms that perform badly in the worst case but
quite well in practice, including algorithms for the knapsack problem and local search
heuristics for various problems.

This might motivate to study the average-case performance rather than the worst case
performance. But average-case analyses are often problematic because it is not clear how
to choose a “reasonable” probability distribution on the set of inputs. Many average-
case analyses assume a uniform distribution on the set of inputs. However, for most
problems, instances chosen uniformly at random do not reflect typical instances. For
example, linear programs that are obtained by choosing each coefficient in the constraint
matrix uniformly at random are typically very different from linear programs that occur in
practical applications. Hence, if one shows that an algorithm works well on such random
linear programs, it can still perform badly on typical linear programs that occur in practical
applications. Therefore, average-case analyses tend to yield too optimistic results.

In order to capture the behavior of algorithms on practical inputs better than it is
possible by a worst-case or average-case analysis alone, Spielman and Teng introduce a
hybrid of these two models, which they call smoothed analysis [ST04]. The input model
in a smoothed analysis consists of two steps. In the first step, an adversary specifies an
arbitrary input. After that, in the second step, this input is slightly perturbed at random.
The idea behind this input model is that instances that occur in practical applications
typically have a special structure, which depends on the concrete application, but that
they are also subject to some random influences. The adversary can specify, for example,
an arbitrary linear program with a certain structure, which is only slightly perturbed in
the second step.

One natural way of perturbing linear programs is to add a Gaussian random variable
to each coefficient. The magnitude of this perturbation is parametrized by the standard
deviation σ. We assume that also in general the perturbation is parametrized by some
value σ such that no perturbation occurs for σ = 0, and the (expected) magnitude of the
perturbation grows with σ. The smoothed running time of an algorithm depends on the

4

1. Introduction

CA(I)

Cworst
A (n)

Cave
A (n)

Csmooth
A (n, σ1)

Csmooth
A (n, σ2)

instances from In

Figure 1.1: Illustration of the different complexity measures. The horizontal axis ranges
over the set of inputs of length n, for some fixed n. It is assumed that σ1 < σ2. Hence,
Csmooth
A (n, σ1) > Csmooth

A (n, σ2).

input size and the perturbation parameter σ, and it is defined to be the worst expected
running time that the adversary can achieve. To make this more precise, let A denote
an algorithm, let I denote an input for A, and let CA(I) denote a complexity measure of
algorithm A on input I, e. g., its running time on I. Let In denote the set of inputs of
length n. The worst-case complexity for inputs of length n is defined as

Cworst
A (n) = max

I∈In

(CA(I)) .

Given a probability distribution µn on In, the average-case complexity of A for inputs of
length n is

Cave
A (n) = EI∼µn [CA(I)] ,

where I ∼ µn means that I is a random instance chosen according to the distribution µn.
For an instance I and a magnitude parameter σ, let perσ(I) denote the random variable
that describes the instance obtained from I by a perturbation with magnitude σ, e. g., if I
is a linear program, then perσ(I) is the random linear program obtained from I by adding
a Gaussian random variable with standard deviation σ to each coefficient. The smoothed
complexity of algorithm A for inputs of length n and magnitude parameter σ is defined as

Csmooth
A (n, σ) = max

I∈In

E [CA (perσ(I))] .

These definitions are illustrated in Figure 1.1.
From the definition of smoothed complexity, one can see that it is a hybrid between

worst-case and average-case analysis and that one can interpolate between these kinds
of analyses by adjusting the parameter σ. For σ → 0, the analysis becomes a worst-
case analysis because the input specified by the adversary is not perturbed anymore. For
σ →∞, the analysis becomes an average-case analysis because the perturbation is so large
that the initial input specified by the adversary is not important anymore. We say that
the smoothed complexity of A is polynomial if Csmooth

A (n, σ) is polynomially bounded in n
and σ−1. If the smoothed complexity of an algorithm is polynomial, then one can hope
that the algorithm performs also well in practice, because worst-case instances might exist
but they are very fragile with respect to random influences.

Spielman and Teng [ST04] show that the smoothed complexity of the simplex algorithm
is polynomial for a certain pivot rule. Since the invention of smoothed analysis by Spielman

5

1. Introduction

and Teng in 2001, many different results on the smoothed analysis of algorithms have
been obtained, including results on different algorithms for solving linear programs, local
search algorithms, various discrete optimizations problems, and the competitive ratio of
online algorithms. As Spielman and Teng’s analysis is very involved, we do not present it
here. After recalling some facts from probability theory and linear algebra in Chapter 2,
we present the smoothed analysis of a heuristic for the knapsack problem in Chapter 3
and the smoothed analysis of a local search heuristic for a pattern matching problem in
Chapter 4.

6

Chapter 2

Mathematical Background

In this chapter, we introduce some notations and review some facts from probability theory
and linear algebra. It is advisable to skim through this chapter and to read it in more
detail when it is referenced in Chapters 3 and 4.

2.1 Notations

For a natural number n ∈ N, we denote by [n] the set {1, . . . , n}. We use R+ to denote
the set {x ∈ R | x ≥ 0}. Given a vector x ∈ Rn, we use x1, . . . , xn to denote its entries,
i. e., we assume x = (x1, . . . , xn). Given two vectors x, y ∈ Rn, we denote by x · y their dot
product, i. e., x · y = x1y1 + · · ·+ xnyn. The norm ‖x‖ of a vector x ∈ Rn is always meant
to be its Euclidean norm, i. e., ‖x‖ =

√
x2

1 + · · ·+ x2
n =

√
x · x.

2.2 Random Variables and Random Vectors

The distribution FX : R → [0, 1] of a real-valued random variable X is the function defined
by FX(x) = Pr [X ≤ x] for all x ∈ R. If FX is differentiable, then the derivative fX : R →
R+ of FX is called the density function of X. For every x ∈ R, it holds

FX(x) = Pr [X ≤ x] =
∫ x

t=−∞
fX(t) dt .

For every a, b ∈ R with a ≤ b, we have

Pr [X ∈ [a, b]] =
∫ b

t=a
fX(t) dt .

This immediately yields the following observation.

Observation 2.1. Let X be a random variable whose density is bounded from above by
φ > 0, and let I = [a, a + ε] denote an arbitrarily fixed interval of length ε > 0. The
probability that X takes a value in the interval I is bounded from above by εφ.

In Chapter 4, we also encounter real-valued random vectors, i. e., vectors whose entries
are real-valued random variables. We always assume that the entries of a random vector
are independent random variables. Then the distribution of a d-dimensional random vector
X can be specified by a distribution FX : Rd → [0, 1] with

FX(x) = Pr [∀i ∈ [d] : Xi ≤ xi] =
∏
i∈[d]

Pr [Xi ≤ xi]

7

2. Mathematical Background

for all x ∈ Rd. The density function of a random vector X with independent entries is the
function fX : Rd → R+ with

fX(x) =
∏
i∈[d]

fXi(xi) (2.1)

for all x ∈ Rd, where fXi denotes the density of the random variable describing the i-th
entry of X. For every measurable set C ⊆ Rd, the probability of X falling into C can be
written as

Pr [X ∈ C] =
∫

C
fX(x) dx .

This implies the following generalization of Observation 2.1.

Observation 2.2. Let X be a random vector whose density is bounded from above by
φ > 0, and let C denote an arbitrarily fixed measurable set of volume ε > 0. The probability
that X takes a value in the interval I is bounded from above by εφ.

Of particular interest are Gaussian random variables and Gaussian random vectors.
A Gaussian random variable with expected value µ ∈ R and standard deviation σ > 0 has
density

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
. (2.2)

We call the expected value of a Gaussian random variable its mean or center. We also use
the terms d-dimensional Gaussian (random) vector and Gaussian (random) vector in Rd

with standard deviation σ to denote a d-dimensional vector whose entries are independent
Gaussian random variables with standard deviation σ. We say that a Gaussian vector in
Rd has center µ ∈ Rd if, for i ∈ [d], its i-th entry is a Gaussian random variable with mean
µi. Observation 2.2 yields the following result for Gaussian vectors.

Lemma 2.3. Suppose x ∈ Rd is a Gaussian vector with arbitrary center and standard
deviation σ. Then x lies in a fixed ball of radius ε with probability at most (ε/σ)d.

Proof. Due to Equations (2.1) and (2.2), the density of x has a maximum of (σ
√

2π)−d.
Furthermore, a ball with radius ε has a volume of less than (2ε)d because it is contained
in a hypercube with side length 2ε. Hence, the probability that x lies in such a ball is
bounded by (2ε)d · (

√
2πσ)−d < (ε/σ)d due to Observation 2.2.

Gaussian random vectors are sharply concentrated around their centers, as the follow-
ing lemma shows.

Lemma 2.4. Suppose x ∈ Rd is a Gaussian vector with center 0d and standard deviation
σ. Then, for every t ≥ 1,

Pr [‖x‖ > t] < dσ · exp
(
− t2

2dσ2

)
.

Proof. First we analyze a Gaussian random variable y with mean 0 and standard deviation

8

2.3. Facts from Linear Algebra

σ. For t ≥ 1, we obtain

Pr [|y| ≥ t] =
∫ ∞

z=t

2
σ
√

2π
exp

(
− z2

2σ2

)
dz

<

∫ ∞

z=t

z

σ
exp

(
− z2

2σ2

)
dz

=
1
σ

[
−σ2 · exp

(
− z2

2σ2

)]∞
z=t

= σ · exp
(
− t2

2σ2

)
.

Now we consider the Gaussian random vector x. If |xi| ≤ t/
√

d for all its entries i ∈ [d],
then ‖x‖ ≤ t. Hence, it follows

Pr [‖x‖ > t] ≤ Pr
[
∃i ∈ [d] : |xi| >

t√
d

]
< dσ · exp

(
− t2

2dσ2

)
.

From Lemma 2.4, we can conclude the following corollary.

Corollary 2.5. Suppose x ∈ Rd is a Gaussian vector with arbitrary center µ ∈ Rd and
standard deviation σ. Then, for every t ≥ 1,

Pr [‖x− µ‖ > t] < dσ · exp
(
− t2

2dσ2

)
.

2.3 Facts from Linear Algebra

For a finite set of vectors V = {v1, . . . , vn} ⊆ Rd, we denote by span(V) the set of vectors
that can be obtained as linear combinations of elements from V , i. e.,

span(V) =

{
u ∈ Rd

∣∣∣∣∣ ∃c1, . . . , cn ∈ R : u =
n∑

i=1

civi

}
.

Since Rd is a d-dimensional vector space, we can identify, for every set V ⊆ Rd, a subset
V0 ⊆ V with |V0| ≤ d such that every vector v ∈ V can be expressed as linear combination
of the vectors from V0. The following lemma shows that an appropriate choice of V0

guarantees that the coefficients in the linear combinations have absolute value at most 1.

Lemma 2.6. Let V ⊆ Rd denote a set of vectors with |V | ≥ d. Then there exists a subset
V0 ⊆ V with |V0| = d such that any v ∈ V can be expressed as v =

∑
u∈V0

cuvu for scalars
cuv ∈ [−1, 1].

Proof. We may assume without loss of generality that span(V) = Rd. Otherwise, if
span(V) is a k-dimensional subspace with k < d, the proof yields a set V0 with |V0| = k
that possesses the desired properties. Then we can add d − k arbitrary vectors to V0.
For an arbitrary point set X ⊆ Rd with |X| = d, we denote by S(X) the simplex with
vertices X ∪{0}. We choose V0 to be the subset of V of size d that maximizes the volume
of S(V0). This ensures that span(V0) = Rd. Hence, any given v ∈ V can be written as

9

2. Mathematical Background

0 w

u

H(X) x

v

S(V0)S(V1)

Figure 2.1: Definitions from the proof of Lemma 2.6: V0 = {w, u}, V1 = {w, v}, X =
{0, w}.

v =
∑

u∈V0
cuvu for some scalars cuv ∈ R. It remains to show |cuv| ≤ 1 for all u ∈ V0 and

v ∈ V .
Fix an arbitrary u ∈ V0 and an arbitrary v ∈ V . We denote by X the set V0 \ {u}

and by V1 the set X ∪ {v}. Due to the choice of the set V0, we know that the volume of
S(V1) cannot be larger than the volume of S(V0). Both simplices S(V0) and S(V1) contain
the face S(X), and hence they can be seen as cones with base S(X) and apexes u and
v, respectively. Let H(X) denote the hyperplane that passes through the points X ∪ {0},
i. e., the hyperplane that contains the face S(X) (see Figure 2.1 for an illustration of these
definitions). The volume of the cones S(V0) and S(V1) can be computed as

Vol(S(V0)) =
Vol(S(X)) · dist(u,H(X))

d

and
Vol(S(V1)) =

Vol(S(X)) · dist(v,H(X))
d

.

Since V0 is chosen to maximize the volume of S(V0), this implies that the distance
dist(v,H(X)) cannot be larger than the distance dist(u,H(X)), which in turn implies,
for any vector x that is orthogonal to H(x),∣∣∣∣∣∣x ·

∑
u∈V0

cuvu

∣∣∣∣∣∣ = |x · v| ≤ |x · u| . (2.3)

Since x is orthogonal to H(X), it is orthogonal to all u′ ∈ V0 \ {u}. Hence, Equation (2.3)
simplifies to |x · (cuvu)| ≤ |x · u|, which implies the lemma.

10

Chapter 3

The Smoothed Number of
Pareto Optimal Solutions

The knapsack problem is one of the classical NP-hard optimization problems. An instance
of the problem consists of a capacity and n objects, each of which having a profit and
a weight. The goal is to find a subset of the objects that obeys the capacity constraint
and maximizes the profit. To make this precise, let t ∈ R+ denote the capacity, let
p = (p1, . . . , pn) ∈ Rn

+ denote a vector of profits, and w = (w1, . . . , wn) ∈ Rn
+ a vector of

weights. The goal is to find a vector x = (x1, . . . , xn) ∈ {0, 1}n such that the objective
function

p · x = p1x1 + · · ·+ pnxn

is maximized under the constraint

w · x = w1x1 + · · ·+ wnxn ≤ t . (3.1)

The knapsack problem has been shown to be NP-hard by Karp in 1972 [Kar72]. Since
then it has attracted a great deal of attention, both in theory and in practice. Theoreticians
are interested in the knapsack problem because of its simple structure; it can be expressed
as a binary program with one linear objective function and only one linear constraint. On
the other hand, knapsack-like problems often occur in practical applications, and hence
practitioners have developed numerous heuristics for solving it. These heuristics work very
well on random and real-world instances of the knapsack problem, and they find optimal
solutions rather quickly. Hence, despite being NP-hard, the knapsack problem is easy to
solve in practice. In this chapter, we present one heuristic for the knapsack problem and
show that its smoothed complexity is polynomial.

3.1 The Nemhauser/Ullmann Algorithm

In the following, we use the term solution to denote a vector x ∈ {0, 1}n, and we say that a
solution is feasible if it obeys the capacity constraint given in (3.1). We say that a solution
x contains the i-th object if xi = 1. One näıve approach for solving the knapsack problem
is to enumerate all feasible knapsack solutions and to select the solution with maximum
payoff. Of course, this approach is not efficient as there are typically exponentially many
feasible solutions. In order to decrease the number of solutions that are enumerated, we
observe that a solution x cannot be optimal if it is dominated by another solution x′, i. e.,
if the profit of x′ is larger than the profit of x and the weight of x′ is smaller than the
weight of x. Hence, it suffices to enumerate only those solutions that are not dominated
by other solutions, the Pareto optimal solutions.

Definition 3.1. A solution x is called Pareto optimal if there does not exist a solution
x′ such that p · x ≤ p · x′ and w · x ≥ w · x′ with one inequality being strict. The Pareto
set is the set of all Pareto optimal solutions.

11

3. The Smoothed Number of Pareto Optimal Solutions

Nemhauser and Ullmann [NU69] propose an algorithm for enumerating the Pareto set
of a given knapsack instance. The running time of this algorithm is polynomially bounded
in the size of the instance and the size of the Pareto set. That is, the algorithm runs in
polynomial time on instances with a polynomial number of Pareto optimal solutions. It
is, however, easy to construct instances of the knapsack problem with exponentially many
Pareto optimal solutions. Hence, not surprisingly, the Nemhauser/Ullmann algorithm is
not polynomial in the worst case, but it works reasonably well in practice.

For a given knapsack instance with n objects, we consider, for i ∈ {0, . . . , n}, the
modified instance in which only the first i objects are allowed to be inserted into the
knapsack. We denote by P(i) the Pareto set of this modified instance, e. g., P(0) contains
only the solution 0n and P(n) is the Pareto set of the given instance. The algorithm that
Nemhauser and Ullmann propose computes the sets P(0), . . . ,P(n) inductively. Since
P(0) is easy to compute, we can assume that a set P(i − 1) is given and that the goal
is to compute P(i). Furthermore, we assume that the solutions in P(i − 1) are sorted in
non-decreasing order of their weights. We denote by P(i− 1) + i the set of solutions that
is obtained by adding the i-th object to each solution from P(i− 1). Due to the following
observation, P(i) must be a subset of P(i)′ = P(i− 1) ∪ (P(i− 1) + i).

Observation 3.2. Let x ∈ P(i). If x does not contain the i-th object, then x ∈ P(i− 1).
If x contains the i-th object, then the solution obtained from x by removing the i-th object
belongs to P(i− 1).

Since this observation implies that P(i) is a subset of P(i)′, the set P(i) can be com-
puted by computing P(i)′ and removing all solutions that are dominated by other solutions
from P(i)′. The set P(i)′ is obtained by merging the two sets P(i − 1) and P(i − 1) + i.
Both of these sets are sorted in non-decreasing order of weights due to our assumption on
P(i− 1). Hence, we can compute P(i)′ in linear time with respect to the size of P(i− 1)
such that it is also sorted in non-decreasing order of weights. Given this order of solutions
in P(i)′, the set P(i) of Pareto optimal solutions can be found in linear time. Summarizing,
the Nemhauser/Ullmann algorithm can be formulated as follows:

Algorithm 1 The Nemhauser/Ullmann algorithm

Set P(0) = {0n}.
for i = 1, . . . , n do

Merge P(i− 1) and P(i− 1) + i into P(i)′. . .
. . . such that P(i)′ is sorted in non-decreasing order of weights.

P(i) = {x ∈ P(i)′ |6 ∃x′ ∈ P(i)′ : x′ dominates x}.
return x ∈ P(n) with p · x = max{p · y | y ∈ P(n) ∧ w · y ≤ t}.

For the purpose of illustration and a better understanding, let us take a different view
on the algorithm. For i ∈ [n], let fi : R → R be a mapping from weights to profits such
that fi(x) is the maximum profit over all solutions in P(i) with weight at most x. Observe
that fi is a non-decreasing step function changing its value only at those weights that
correspond to solutions from P(i). In particular, the number of steps of fi equals the
number of solutions in P(i). Figure 3.1 shows such a step function.

Now we describe how one can construct fi if fi−1 is known. Therefore, observe that
the set P(i− 1) + i corresponds to a function f+i

i−1 which is a copy of fi−1 that is shifted
by (wi, pi). The function fi is the upper envelope of the functions fi−1 and f+i

i−1 (see
Figure 3.2).

12

3.2. Probabilistic Input Model

fi
profit

weight

Figure 3.1: The dots correspond to solutions that contain only a subset of the first i
elements. Black dots correspond to solutions from P(i).

fi−1

pi

wi

profit

weight

f+i
i−1

{

{

profit

weight

fi

Figure 3.2: The function fi is the upper envelope of the functions fi−1 and f+i
i−1.

We have already argued that the time it takes to compute P(i) from P(i− 1) is linear
in the size of P(i− 1). This yields the following lemma.

Lemma 3.3. For i ∈ {0, . . . , n − 1}, we set q(i) = |P(i)|. The running time of the
Nemhauser/Ullmann algorithm is bounded from above by

O

(
n−1∑
i=0

q(i)

)
.

If the number q(i) of Pareto optimal solutions does not decrease with i, i. e., q(0) ≤
q(1) ≤ . . . ≤ q(n), then the running time of the Nemhauser/Ullmann algorithm simplifies
to O(n ·q(n)). That is, the running time depends linearly on the number of Pareto optimal
solutions.

3.2 Probabilistic Input Model

Our goal is to analyze the expected number of Pareto optimal solutions in a smoothed
input model in which an adversary specifies an arbitrary instance of the knapsack problem
which is subsequently perturbed at random. Since we are only interested in the number
of Pareto optimal solutions, the capacity is not important and we can assume that the
adversary specifies only the profits and weights of the objects. In our analysis it is not
necessary that both the profits and the weights are perturbed, and hence we strengthen
the adversary by assuming that only the weights are perturbed. As the running time

13

3. The Smoothed Number of Pareto Optimal Solutions

of the Nemhauser/Ullmann algorithm depends linearly on the number of Pareto optimal
solutions, a bound on the expected number of Pareto optimal solutions directly implies
a bound on the expected running time of the algorithm and hence on its smoothed com-
plexity.

In the introduction, we have argued that a linear program can be perturbed by adding
a Gaussian random variable to each coefficient. In principle, we can use the same pertur-
bation model also for the knapsack problem, that is, each weight is perturbed by adding an
independent Gaussian random variable. In this perturbation model, weights can, however,
become negative. In order to avoid this problem, we consider a more general perturbation
model. First of all, note that we can describe the two-step input model for linear programs
as a one-step model. Instead of saying that an adversary specifies a coefficient which is
perturbed by adding a Gaussian random variable with standard deviation σ, we say that
the adversary is allowed to choose a probability distribution for each coefficient according
to which it is chosen. In the input model for linear programs, the adversary is restricted
to probability distributions that correspond to Gaussian random variables with standard
deviation σ, that is, the adversary can only determine the mean of the random variables.

In our perturbation model for the knapsack problem, the adversary is not restricted
to Gaussian distributions. Of course, we cannot allow the adversary to specify arbitrary
distributions for the weights because this would allow deterministic inputs as a special
case. We restrict the adversary to distributions that can be represented by densities that
are bounded by some value φ. To make this formal, we assume that for each weight wi a
probability density fi : R → [0, φ] is given, and that each weight wi is chosen independently
according to density fi. The adversary could, for instance, choose for each coefficient an
arbitrary interval of length 1/φ from which it is chosen uniformly at random. The larger
the parameter φ is chosen, the more concentrated can the random variables be. Hence,
analogously to σ−1 for Gaussian distributions, the larger the parameter φ is chosen, the
closer is the smoothed analysis to a worst-case analysis. For Gaussian perturbations, we
have φ = (σ

√
2π)−1.

3.3 The Expected Number of Pareto Optimal Solutions

In this section, we show that the expected number of Pareto optimal solutions for the
knapsack problem is polynomially bounded in n and φ. As argued above, this directly
implies that the expected running time of the Nemhauser/Ullmann algorithm is polyno-
mially bounded in n and φ as well. For the sake of simplicity, we assume that all weights
lie in the interval [0, 1], that is, for all x /∈ [0, 1] and for all i ∈ [n], we have fi(x) = 0. Beier
et al. [BRV07] show that this restriction is not necessary, but we present only a simplified
version of their result here.

Theorem 3.4 ([BRV07]). For an instance of the knapsack problem with n objects whose
profits are specified arbitrarily and whose weights are chosen independently according to
densities f1, . . . , fn with fi : [0, 1] → [0, φ], the expected number of Pareto optimal solutions
is upper bounded by φn2 + 1.

Proof. We denote the set of Pareto optimal solutions by P and its size by q, i. e., q = |P|.
Every solution has a weight in the interval [0, n] because the weights of the objects lie in
the interval [0, 1]. Since in the probabilistic input model no two solutions have exactly the
same weight, we can partition the interval [0, n] into small intervals such that each of the
small intervals contains at most one Pareto optimal solution. Formally, we can write the

14

3.3. The Expected Number of Pareto Optimal Solutions

profit

weight

x∗
x̂

t

{Λ(t)

Figure 3.3: Definitions of the winner x∗, the loser x̂, and the random variable Λ(t).

expected number of Pareto optimal solutions as

E [q] = 1 + lim
k→∞

k−1∑
i=0

Pr
[
∃x ∈ P : w · x ∈

(
ni

k
,
n(i + 1)

k

]]
, (3.2)

where the additional 1 corresponds to the solution 0n. In order to estimate the probability
in (3.2), we consider the case that an arbitrary t ∈ [0, n] and an arbitrary ε > 0 are given,
and we bound the probability that there exists a Pareto optimal solution with weight in
the interval (t, t + ε]. Therefore, we define a random variable Λ(t) such that

Λ(t) ≤ ε ⇐⇒ ∃x ∈ P : w · x ∈ (t, t + ε] . (3.3)

In order to define Λ(t), we define the winner x∗ to be the most valuable solution
satisfying w · x ≤ t, i. e.,

x∗ = argmax{p · x | x ∈ {0, 1}n ∧ w · x ≤ t} .

For t ≥ 0, such a solution x∗ must always exist. We say that a solution x is a loser if it
has a higher profit than x∗ but does not satisfy the constraint w · x ≤ t. We denote by x̂
the loser with the smallest weight (cf. Figure 3.3), i. e.,

x̂ = argmin{w · x | x ∈ {0, 1}n ∧ p · x > p · x∗} .

If there does not exist a solution x with p · x > p · x∗, then we set x̂ =⊥. Based on x̂, we
define the random variable Λ(t) as

Λ(t) =

{
w · x̂− t if x̂ 6=⊥,

⊥ if x̂ =⊥ .

Assume that there exists a Pareto optimal solution with weight in (t, t + ε], and let y
denote the Pareto optimal solution with the smallest weight in (t, t + ε]. Then y = x̂ and
hence Λ(t) = w · y − t ∈ (0, ε]. Conversely, if Λ(t) ≤ ε, then x̂ must be a Pareto optimal
solution whose weight lies in the interval (t, t+ε]. This yields Equivalence (3.3), and hence
we can write the expected number of Pareto optimal solutions as

E [q] = 1 + lim
k→∞

k−1∑
i=0

Pr
[
Λ
(

ni

k

)
≤ n

k

]
. (3.4)

It only remains to bound the probability that Λ(t) does not exceed ε. In order to
analyze this probability, we define a set of auxiliary random variables such that Λ(t) is

15

3. The Smoothed Number of Pareto Optimal Solutions

guaranteed to always take a value also taken by one of the auxiliary random variables.
Then we analyze the auxiliary random variables and use a union bound to conclude the
desired bound for Λ(t). Let i ∈ [n] be fixed arbitrarily. For j ∈ {0, 1}, we define

Sxi=j = {x ∈ {0, 1}n | xi = j} ,

and we define x∗,i to be

x∗,i = argmax{p · x | x ∈ Sxi=0 ∧ w · x ≤ t} .

That is, x∗,i is the winner among the solutions that do not contain the i-th element. We
restrict our attention to losers that contain the i-th element and define

x̂i = argmin{w · x | x ∈ Sxi=1 ∧ p · x > p · x∗,i} .

If there does not exist a solution x ∈ Sxi=1 with p · x > p · x∗,i, then x̂i is undefined, i. e.,
x̂i =⊥. Based on x̂i, we define the random variable Λi(t) by

Λi(t) =

{
w · x̂i − t if x̂i 6=⊥,

⊥ if x̂i =⊥ .

Summarizing, Λi(t) is defined similarly to Λ(t), but only solutions that do not contain
the i-th element are eligible as winners and only solutions containing the i-th element are
eligible as losers.

Lemma 3.5. For every choice of profits and weights, either Λ(t) =⊥ or there exists an
index i ∈ [n] such that Λ(t) = Λi(t).

Proof. Assume that Λ(t) 6=⊥. Then there exists a winner x∗ and a loser x̂. Since x∗ 6= x̂,
there must exist an index i ∈ [n] with x∗i 6= x̂i. Since all weights are positive and w · x∗ <
w · x̂, there must even exist an index i ∈ [n] with x∗i = 0 and x̂i = 1. We claim that
for this index i, Λ(t) = Λi(t). In order to see this, we first observe that x∗ = x∗,i. This
follows because x∗ is the solution with the highest profit among all solutions with weight
at most t, and since it belongs to Sxi=0 it is in particular the solution with the highest
profit among all solutions that do not contain the i-th element and have weight at most
t. Since x∗ = x∗,i, by similar arguments it follows that x̂ = x̂i. This directly implies that
Λ(t) = Λi(t).

Lemma 3.6. For every i ∈ [n] and every ε ≥ 0,

Pr
[
Λi(t) ∈ (0, ε]

]
≤ φε .

Proof. In order to prove the lemma, it suffices to exploit the randomness of the weight
wi. Therefore, assume that all other weights are fixed arbitrarily. Then the weights of all
solutions from Sxi=0 and hence also the solution x∗,i are fixed. If the solution x∗,i is fixed,
then also the set of losers {x ∈ Sxi=1 | p · x > p · x∗,i} is fixed. Since the weight wi affects
all solutions from Sxi=1 in the same manner, the solution x̂i does not depend on wi. This
implies that, given the fixed values of the weights wj with j 6= i, we can rewrite the event
Λi(t) ∈ (0, ε] as w · x̂i− t ∈ (0, ε] for a fixed solution x̂i. For a constant κ ∈ R depending on
the fixed values of the weights wj with j 6= i, we can rewrite this event as wi ∈ (κ, κ + ε].
By Observation 2.1, the probability of this event is upper bounded by φε.

16

3.3. The Expected Number of Pareto Optimal Solutions

Combining Lemmas 3.5 and 3.6 yields

Pr [Λ(t) ≤ ε] ≤ Pr
[
∃i ∈ [n] : Λi(t) ∈ (0, ε]

]
≤

n∑
i=1

Pr
[
Λi(t) ∈ (0, ε]

]
≤ φnε .

Combining this with (3.4) yields

E [q] = 1 + lim
k→∞

k−1∑
i=0

Pr
[
Λ
(

ni

k

)
≤ n

k

]

≤ 1 + lim
k→∞

k−1∑
i=0

φn2

k

= 1 + φn2 .

Finally, we obtain the following result on the running time of the Nemhauser/Ullmann
algorithm.

Corollary 3.7. For an instance of the knapsack problem with n objects whose profits
are specified arbitrarily and whose weights are chosen independently according to densities
f1, . . . , fn with fi : [0, 1] → [0, φ], the expected running time of the Nemhauser/Ullmann
algorithm is upper bounded by O(φn3).

17

Chapter 4

Smoothed Analysis of
Local Search Heuristics

A common and often successful approach to tackle NP-hard optimization problems is local
search. A local search algorithm usually computes an initial feasible solution by some
simple heuristic and then performs local improvements until a locally optimal solution is
found. For many local search heuristics examples are known on which they perform very
poorly, both with respect to running time and approximation ratio. On the other hand,
many of these heuristics yield good solutions rather quickly in practice, suggesting that
considering only the worst case is not the appropriate perspective for most local search
algorithms.

Currently, we are aware of two papers on the smoothed complexity of local search
algorithms. Both papers consider geometric problems in which the input consists of a set
of points in the Euclidean space. Arthur and Vassilvitskii [AV06] analyze the smoothed
complexity of local search algorithms for pattern matching and clustering, and Englert
et al. [ERV07] analyze the smoothed complexity of the 2-Opt heuristic, a simple and
commonly used heuristic for the Euclidean TSP. All these analyses rely essentially on the
same observation, namely that in perturbed instances the smallest improvement made by
any of the possible local improvements is relatively large. This in turn implies that the
number of local improvement steps cannot be very large. In this chapter, we present the
analysis of the pattern matching algorithm in detail.

4.1 The Iterative Closest Point Algorithm

One problem that often arises in the field of computer vision is image registration, which
is the process of merging data from different images into a common “coordinate system”.
Image registration is used extensively in medical imaging, where it is common to have
images from different sources that need to be combined appropriately. Another application
area is the processing of satellite images, e. g., finding an arrangement of two satellite
images of overlapping regions.

In many situations this problem boils down to translating (and possibly rotating or
scaling) a given point set A ⊆ Rd until it is as close as possible to another given point set
B ⊆ Rd. To make this more precise, the goal is to find a translation x ∈ Rd and a function
N : A → B such that the potential

Φ =
∑
a∈A

‖a + x−N(a)‖2

is minimized.
This problem is NP-hard, and Besl and McKay propose a local search algorithm for

finding approximate solutions, the Iterative Closest Point (ICP) algorithm [BM92]. This

18

4.2. Detailed Description of the ICP Algorithm

algorithm starts with an arbitrary translation and improves it consecutively until a locally
optimal solution is found. One iteration of this algorithm consists of two phases. In the
first phase, every point a ∈ A is assigned to its nearest neighbor in B given the current
translation x ∈ Rd. In the second phase a new translation x′ ∈ Rd is computed that
minimizes the potential for the assignment made in the first phase.

In practical applications it has been observed that the ICP algorithm typically reaches a
locally optimal solution quickly. Contradicting these observations, Arthur and Vassilvitskii
show that the worst-case running time of the ICP algorithm is fairly bad.

Theorem 4.1 ([AV06]). For every d ∈ N and every n ∈ N, there exist point sets A ⊆ Rd

and B ⊆ Rd with |A| = |B| = n for which the ICP algorithm requires Ω((n/d)d+1)
iterations.

In order to reconcile the theoretical results with the observations made in practice,
Arthur and Vassilvitskii analyze the ICP algorithm on perturbed instances and show that
its smoothed complexity is polynomial. They assume that the position of each point
corresponds to a Gaussian random vector whose center can be specified by an adversary.

Theorem 4.2 ([AV06]). Let the elements in A and B be independent Gaussian vectors in
Rd with centers of norm at most 1 and standard deviation σ. Then the expected running
time of the ICP algorithm is polynomially bounded in d, |A|, |B|, and σ−1.

4.2 Detailed Description of the ICP Algorithm

The main difficulty in the aforementioned image registration problem is that neither the
translation x nor the correspondence N between the points in A and B is known in
advance. If the translation x is fixed, the potential Φ is minimized by choosing, for all
a ∈ A, N(a) to be the point in B that is closest to a + x. Conversely, if the assignment
N is fixed, a translation x that minimizes the potential Φ can be found efficiently, as the
following reasoning shows.

Definition 4.3. Let S ⊆ Rd be an arbitrary finite set of points. The center of mass of S
is defined as

C(S) =
1
|S|
∑
s∈S

s .

Lemma 4.4. Let S ⊆ Rd be an arbitrary finite set of points, and let x ∈ Rd be an arbitrary
point. Then ∑

s∈S

‖s− x‖2 =
∑
s∈S

‖s− C(S)‖2 + |S| · ‖C(S)− x‖2 .

Proof. Let x′ = C(S). The lemma follows from the following calculation:∑
s∈S

‖s− x‖2 =
∑
s∈S

(s− x) · (s− x)

=
∑
s∈S

((s− x′) + (x′ − x)) · ((s− x′) + (x′ − x))

=
∑
s∈S

(s− x′) · (s− x′) +
∑
s∈S

(x′ − x) · (x′ − x) + 2
∑
s∈S

(s− x′) · (x′ − x)

=
∑
s∈S

‖s− x′‖2 + |S| · ‖x′ − x‖2 + 2(x′ − x) ·
∑
s∈S

(s− x′)︸ ︷︷ ︸
=0

.

19

4. Smoothed Analysis of Local Search Heuristics

Lemma 4.5. For a fixed assignment N : A → B, the potential Φ is minimized by choosing
the translation

x =
1
|A|

∑
a∈A

(N(a)− a) .

Proof. We define the multiset S = {N(a)− a | a ∈ A} and write the potential Φ as

Φ =
∑
a∈A

‖a + x−N(a)‖2 =
∑
s∈S

‖x− s‖2 .

Due to Lemma 4.4, we have

Φ =
∑
s∈S

‖s− C(S)‖2 + |S| · ‖C(S)− x‖2 .

The first term in this summation is not affected by the translation x. Hence, in order
to minimize the potential, it suffices to choose a translation x that minimizes the second
term, which is the case for

x = C(S) =
1
|S|
∑
s∈S

s =
1
|A|

∑
a∈A

(N(a)− a) .

Based on Lemma 4.5, we can formulate the ICP algorithm as follows:

Algorithm 2 The ICP algorithm

1: Choose an arbitrary starting translation x ∈ Rd.
2: repeat
3: for all a ∈ A do Set N(a) to the point in B that is closest to a + x.
4: Set the translation to x = 1

|A|
∑

a∈A(N(a)− a).
5: until N and x remain unchanged in steps 3 and 4.

If ties occur in step 3 of the ICP algorithm, they can be broken arbitrarily. It is
only important that they are broken in a consistent manner, i. e., once a tie is broken in
favor of one point in B, it must always be broken in favor of that point. This ensures
that whenever a point a ∈ A changes its assigned point N(a) in step 3, the potential Φ
strictly decreases. Furthermore, due to Lemma 4.5, if the translation is changed in step 4,
then the potential decreases strictly as well. This implies that no assignment N : A → B
can appear twice during the execution of the ICP algorithm. Since there are only |B||A|
different assignments, the ICP algorithm must terminate after a finite number of iterations,
where we use the term iteration to denote a consecutive execution of steps 3 and 4.

4.3 Smoothed Analysis of the ICP Algorithm

In this section, we prove Theorem 4.2, that is, we show that the expected number of
iterations of the ICP algorithm is polynomially bounded if all points are chosen according
to Gaussian random vectors.

The important part of the proof is to show that every iteration of the ICP algo-
rithm decreases the potential by a polynomially large amount 1/poly(|A|, |B|, d, σ−1) with

20

4.3. Smoothed Analysis of the ICP Algorithm

high probability. Combining this with the observation that the potential is polynomially
bounded after the first iteration with high probability yields the desired polynomial bound
on the expected number of iterations. In order to show that every iteration of the ICP
algorithm decreases the potential by a polynomially large amount, we distinguish between
two cases: either at most 2d points a ∈ A change their assigned point N(a) in B, or at
least 2d points change their assignment.

4.3.1 Case 1: Small changes in N

Let k ∈ N be a constant to be defined later. In this section, we analyze the case that at
most k points change their assignment in step 3. In the following we say that a multiset
B′ is a subset of B (denoted as B′ ⊆ B) if it contains only points from B. Each of these
points can, however, be contained more than once in B′. We say that B′ is a size-k subset
if it contains at most k points, counting multiplicities. For two multisets B1, B2 ⊆ B, we
denote by B1∩B2 the multiset in which the multiplicity of each element is the minimum of
its multiplicities in B1 and B2. We denote by B1+B2 the multiset in which the multiplicity
of each element is the sum of the multiplicities in B1 and B2. By B1 −B2 we denote the
multiset in which the multiplicity of each element is the difference of the multiplicities in
B1 and B2 if this difference is positive and 0 otherwise.

Definition 4.6. A point set B ⊆ Rd is (k, δ)-sparse if no pair of distinct size-k multisets
B1, B2 ⊆ B satisfies ∥∥∥∥∥∥

∑
b∈B1

b−
∑
b∈B2

b

∥∥∥∥∥∥ ≤ δ .

In the following we show that if B is (k, δ)-sparse, then every iteration in which N
changes for at most k points yields a significant change of the translation, which in turns
implies a significant potential drop. Then it only remains to show that B is likely to be
(k, δ)-sparse for an appropriately chosen δ.

Lemma 4.7. Consider two consecutive iterations of the ICP algorithm, and let x1 and x2

denote the translations after the first and second iteration, respectively. Then the potential
decreases during the second iteration by at least |A| · ‖x1 − x2‖2.

Proof. As in the proof of Lemma 4.5, we write the potential after the execution of step 3
of the second iteration as

Φ =
∑
s∈S

‖s− C(S)‖2 + |A| · ‖C(S)− x1‖2

for S = {N(a) − a | a ∈ A}, where N : A → B denotes the assignment made during the
second iteration. In step 4 of the second iteration, the translation x2 is set to C(S) which
yields a potential of

Φ′ =
∑
s∈S

‖s− C(S)‖2 .

Hence, the potential drops by at least

Φ− Φ′ = |A| · ‖C(S)− x1‖2 = |A| · ‖x2 − x1‖2 .

21

4. Smoothed Analysis of Local Search Heuristics

Lemma 4.8. Let A ⊆ Rd and B ⊆ Rd be point sets, and suppose that B is (k, δ)-sparse.
Every iteration of the ICP algorithm (except for the first one) in which the assignment
N : A → B changes for at most k points results in a potential drop of at least δ2/|A| or in
the termination of the algorithm.

Proof. Let N1 denote the multiset N(A) = {N(a) | a ∈ A} before the iteration of the ICP
algorithm, and let N2 denote the multiset N(A) after the iteration. We are only interested
in the points b ∈ B that change their multiplicity during the iteration. Therefore, we
define N0 = N1 ∩ N2 to be the multiset of the common elements. Furthermore, we set
B1 = N1 −N2 and B2 = N2 −N1, which yields N1 = N0 + B1 and N2 = N0 + B2. If N
changes for at most k points in A, then B1 and B2 are each of size at most k. If B1 and
B2 are both empty, then the translation does not change during the iteration, and hence
the ICP algorithm terminates after the next iteration.

Otherwise, B1 and B2 must be distinct size-k multisets of B. Since B is (k, δ)-sparse,
it follows ∥∥∥∥∥∥

∑
b∈B1

b−
∑
b∈B2

b

∥∥∥∥∥∥ > δ .

Let x1 and x2 denote the translations before and after the iteration, respectively. For
i ∈ {1, 2}, the translation xi can be written as

xi =
1
|A|

∑
b∈N0

b +
∑
b∈Bi

b−
∑
a∈A

a

 .

Hence,

‖x1 − x2‖ =
1
|A|

∥∥∥∥∥∥
∑
b∈B1

b−
∑
b∈B2

b

∥∥∥∥∥∥ >
δ

|A|
.

Due to Lemma 4.7, this implies that the potential decreases by at least δ2/|A| during the
iteration.

Now it only remains to show that the point set B is likely to be (k, δ)-sparse.

Lemma 4.9. Let the elements in B be independent Gaussian vectors in Rd with standard
deviation σ. Then B is not (k, δ)-sparse with probability at most |B|2k(δ/σ)d.

Proof. We fix two distinct size-k multisets B1, B2 ⊆ B and bound the probability that
‖y‖ ≤ δ for y =

∑
b∈B1

b −
∑

b∈B2
b. Then a union bound over all possible choices of B1

and B2 yields the lemma.
We have y =

∑
b∈B cbb for some integer coefficients cb. Since B1 and B2 are distinct,

there exists some b for which cb 6= 0. We assume that all points b′ ∈ B \ {b} are already
fixed and use only the randomness of the point b. Under this assumption, we can write
‖y‖ ≤ δ as ‖cbb − y′‖ ≤ δ for a fixed y′ depending on the b′ ∈ B \ {b}. Hence, the event
‖y‖ ≤ δ occurs if and only if b falls into a ball of radius δ/|cb| with center y′/cb. Due to
Lemma 2.3, we can upper bound the probability of this event by (δ/σ)d.

Since there are at most |B|2k choices for the sets B1 and B2, the lemma follows from
a union bound.

22

4.3. Smoothed Analysis of the ICP Algorithm

b

b′

{ε
a

v
b+b′

2

Figure 4.1: Illustration of Definition 4.10. The point a is ε-centered between b and b′, and
v is the unit vector in the direction b′ − b.

{ε

x

{ε

Figure 4.2: White dots are points in A, and black dots are points in B. (A,B) is (5, ε)-
centerable but not (6, ε)-centerable.

4.3.2 Case 2: Large changes in N

Now we consider iterations of the ICP algorithm in which the assignment N : A → B
changes for more than k points. The idea is that in these iterations at least one point
decreases the potential significantly when its assignment is changed.

Definition 4.10. Given points a, b, b′ ∈ Rd, we say that a is ε-centered between b and b′

if a is within ε/2 of the hyperplane bisecting b and b′.

Let v denote the unit vector in the direction b′− b, i. e., v = (b′− b)/‖b′− b‖, and let b
denote the point (b+b′)/2 (see Figure 4.1). Recall from linear algebra that a ·v−b ·v is the
distance of the point a from the hyperplane with normal vector v that passes through the
point b. This is the hyperplane bisecting b and b′, and hence we can phrase Definition 4.10
as follows: A point a is ε-centered between b and b′ if and only if

a · v ∈
(

b + b′

2

)
· v ± ε

2
. (4.1)

Definition 4.11. Let A ⊆ Rd and B ⊆ Rd be point sets. We say that (A,B) is (k, ε)-
centerable if there exist distinct elements a1, . . . , ak ∈ A, (not necessarily distinct) ele-
ments b1, . . . , bk ∈ B and b′1, . . . , b

′
k ∈ B, and a translation x ∈ Rd such that ai + x is

ε-centered between bi and b′i for all i ∈ [k] (see Figure 4.2).

If a point a ∈ A changes its assignment N(a) during one iteration of the ICP algorithm
from a point b ∈ B to a point b′ ∈ B, and if a + x is not ε-centered for the translation
x ∈ Rd before or after the iteration, then the translation must have changed during the
iteration by at least ε/2, yielding a potential drop of at least |A| · ε2/4 due to Lemma 4.7.

23

4. Smoothed Analysis of Local Search Heuristics

{ε

b1

b′
1

b2

b′
2

a1

a2

0
X

Sj

S ′
j{

{

dε

ε

Figure 4.3: Definitions in the proof of Lemma 4.13.

Lemma 4.12. Let A ⊆ Rd and B ⊆ Rd be point sets such that (A,B) is not (k, ε)-
centerable. Every iteration of the ICP algorithm (except for the first one) in which the
assignment N : A → B changes for at least k points results in a potential drop of at least
|A| · ε2/4.

Proof. Consider one iteration of the ICP algorithm in which at least k points change their
assignment, and let a1, . . . , ak ∈ A denote k distinct points from A whose assignment is
changed. Let b1, . . . , bk and b′1, . . . , b

′
k be the original and new points from B to which

the ai’s are assigned. Since (A,B) is not (k, ε)-centerable, there exists an i ∈ [k] such
that ai + x is not ε-centered between bi and b′i, where x denotes the translation after the
iteration. That is, ai +x has a distance of more than ε/2 from the hyperplane H bisecting
bi and b′i. Let x′ denote the translation before the iteration. We know that ai + x′ is on
the same side of H as bi and that ai + x is on the same side of H as b′i. Combining these
observations implies ‖x − x′‖ > ε/2. Hence, due to Lemma 4.7, the potential decreases
during the iteration by at least |A| · ε2/4.

Lemma 4.13. Let the elements in A and B be independent Gaussian vectors in Rd with
standard deviation σ, and assume k ≥ d. The probability that (A,B) is (k, ε)-centerable
is bounded from above by

(|A||B|2)k

(
(d + 1)ε

σ

)k−d

.

Proof. We select (not necessarily distinct) elements b1, . . . , bk ∈ B, b′1, . . . , b
′
k ∈ B, and

distinct elements a1, . . . , ak ∈ A, estimate the probability that they satisfy the conditions
given in Definition 4.11, and apply a union bound over all possible choices of these elements.
The bi’s and b′i’s can be placed arbitrarily. We use only the randomness of the ai’s.

For i ∈ [k], let vi denote the unit vector in the direction b′i − bi. Without loss of
generality, we assume that V0 = {v1, . . . , vd} satisfies the condition given in Lemma 2.6.
We denote by X ⊆ Rd the set of translations x ∈ Rd such that ai + x is ε-centered
between bi and b′i for all i ∈ [d]. Given x1, x2 ∈ X, it follows from Equation (4.1) that
|(x2 − x1) · vi| ≤ ε for all i ∈ [d].

Let j ∈ {d + 1, . . . , k} be chosen arbitrarily. From Lemma 2.6 it follows that vj can be
expressed as vj =

∑d
i=1 cijvi with |cij | ≤ 1, so it follows |(x2 − x1) · vj | ≤ dε. Therefore,

X is contained in a slab Sj with height dε in the direction of vj . The position of this slab
is independent of the random vectors yd+1, . . . , yk.

On the other hand, aj + x is ε-centered between bj and b′j only if x is contained in a
slab S ′j centered at (bj +b′j)/2−aj with height ε in the direction of vj . Only if the slabs Sj

24

4.3. Smoothed Analysis of the ICP Algorithm

and S ′j intersect for every j ∈ {d + 1, . . . , k}, a common translation x ∈ Rd can be found
such that ai + x is ε-centered between bi and b′i for all i ∈ [k] (see Figure 4.3). The slabs
Sj and S ′j can only intersect if aj ·vj lies in a certain fixed interval of length (d+1)ε. This
happens with probability at most (d + 1)εσ−1. Since the events that Sj and S ′j intersect
are independent for j = d + 1, . . . , k, the probability that Sj and S ′j intersect for every
j ∈ {d+1, . . . , k} can be bounded from above by ((d+1)ε/σ)k−d. Since there are at most
(|A||B|2)k possible choices for the ai’s, bi’s and b′i’s, this implies the lemma.

4.3.3 Putting the pieces together

Now we are ready to prove Theorem 4.2. For the sake of simplicity, we do not attempt to
minimize the degree of the polynomial.

Proof of Theorem 4.2. Ezra, Sharir, and Efrat [ESE06] prove that, in the worst case, the
number of iterations of the ICP algorithm is bounded from above by κ(|A| · |B| · d)d for a
sufficiently large constant κ. Let p = κ−1(|A| · |B| · d)−d, k = 2d, δ = σ|B|−4 · p1/d, and
ε = σ((d + 1) · |A|2 · |B|4)−1 · p1/d.

In the following, we define three failure events. If one of these events occurs, our
analysis fails and we can estimate the number of iterations only by its worst-case bound
κ(|A| · |B| · d)d.

• The first failure event is the event that B is not (k, δ)-sparse. Due to Lemma 4.9,
this happens with probability at most

|B|2k

(
δ

σ

)d

= |B|4d

(
1
|B|4

· p1/d

)d

= p .

• The second failure is the event that (A,B) is (k, ε)-centerable. Due to Lemma 4.13,
this happens with probability at most

(|A||B|2)k

(
(d + 1)ε

σ

)k−d

= (|A||B|2)2d

(
1

|A|2|B|4
· p1/d

)d

= p .

• The third failure event is the event that there exists a point a ∈ A with ‖a‖ > D,
where D = 1+

√
2dσ2 ln(|A|dσ/p). This event can only occur if one Gaussian random

vector from A deviates from its center by more than D − 1. Due to Corollary 2.5,
the probability of this event is bounded from above by

|A| · dσ · exp
(
−(D − 1)2

2dσ2

)
= p .

If none of the three failure events occurs, the potential φ is bounded from above by
4|A|D2 after the first iteration, it decreases by at least

δ2

|A|
=

σ2

|A| · |B|8
· p2/d

in each iteration in which at most 2d points from A change their assignment due to
Lemma 4.8, and it decreases by at least

|A| · ε2

4
=

σ2

4(d + 1)2|A|3 · |B|8
· p2/d

25

4. Smoothed Analysis of Local Search Heuristics

in each iteration in which at least 2d points from A change their assignment due to
Lemma 4.12. This implies that the number of iterations of the ICP algorithm is bounded
by a polynomial q(|A|, |B|, d, σ−1) if none of the failure events occurs.

Let T denote the number of iterations of the ICP algorithm and let F denote the union
of the three failure events. Combining all arguments yields the following upper bound on
the expected value of T :

E [T] = Pr [¬F] ·E [T | ¬F] + Pr [F] ·E [T | F]

≤ E [T | ¬F] + 3p · κ(|A| · |B| · d)d

≤ q(|A|, |B|, d, σ−1) + 3 .

26

Bibliography

[AV06] David Arthur and Sergei Vassilvitskii. Worst-case and smoothed analysis of the
ICP algorithm, with an application to the k-means method. In Proc. of the 47th
Ann. IEEE Symp. on Foundations of Computer Science (FOCS), pages 153–164,
2006.

[BM92] Paul J. Besl and Neil D. McKay. A method for registration of 3-d shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–256, 1992.

[BRV07] Rene Beier, Heiko Röglin, and Berthold Vöcking. The smoothed number of
Pareto optimal solutions in bicriteria integer optimization. In Proc. of the 12th
Int. Conf. on Integer Programming and Combinatorial Optimization (IPCO),
2007. to appear.

[ERV07] Matthias Englert, Heiko Röglin, and Berthold Vöcking. Worst case and proba-
bilistic analysis of the 2-Opt algorithm for the TSP. In Proc. of the 18th ACM-
SIAM Symp. on Discrete Algorithms (SODA), pages 1295–1304, 2007.

[ESE06] Esther Ezra, Micha Sharir, and Alon Efrat. On the ICP algorithm. In Proc. of
the 22nd ACM Symp. on Computational Geometry (SoCG), pages 95–104, 2006.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–
104. Plenum Press, New York, 1972.

[NU69] George L. Nemhauser and Zev Ullmann. Discrete dynamic programming and
capital allocation. Management Science, 15:494–505, 1969.

[ST04] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms:
Why the simplex algorithm usually takes polynomial time. Journal of the ACM,
51(3):385–463, 2004.

27

