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Abstract. k-means++ is a seeding technique for the k-means method
with an expected approximation ratio of O(log k), where k denotes the
number of clusters. Examples are known on which the expected approx-
imation ratio of k-means++ is Ω(log k), showing that the upper bound
is asymptotically tight. However, it remained open whether k-means++

yields an O(1)-approximation with probability 1/poly(k) or even with
constant probability. We settle this question and present instances on
which k-means++ achieves an approximation ratio of (2/3−ε) · log k only
with exponentially small probability.

1 Introduction

In the k-means problem we are given a set of data points X ⊆ Rd and the
objective is to group these points into k mutually disjoint clusters C1, . . . , Ck ⊆
X. Each of those clusters should contain only ‘similar points’ that are close
together in terms of Euclidean distance. In order to evaluate the quality of a
clustering, we assign a cluster center ci ∈ Rd to each cluster Ci and consider the
potential Φ =

∑k
i=1

∑
x∈Ci

‖x− ci‖2. The goal of the k-means problem is to find
clusters and cluster centers that minimize this potential.

Aloise et al. showed that the k-means problem is NP-hard, even for k =
d = 2 [2]. To deal with this problem in practice, several heuristics have been
developed over the past decades. Probably the “most popular” one [5] is Lloyd’s
algorithm [7], usually called the k-means method or simply k-means. Starting
with k arbitrary cluster centers, each data point is assigned to its nearest center.
In the next step each center is recomputed as the center of mass of the points
assigned to it. This procedure is repeated until the centers remain unchanged.

Though Vattani showed that the running time of k-means can be exponential
in the number of input points [8], speed is one of the most important reasons
for its popularity in practice. This unsatisfying gap between theory and practice
was narrowed by Arthur, Manthey, and Röglin who showed that the running
time of k-means is polynomially bounded in the model of smoothed analysis [3].

Another problem is that k-means may yield poor results if the initial centers
are badly chosen. The approximation ratio can be arbitrarily large, even for small

? A part of this work was done at Maastricht University and was supported by a Veni
grant from the Netherlands Organisation for Scientific Research.



input sets and k = 2. To improve the quality of the solutions found by the k-
means method, Arthur and Vassilvitskii proposed the following seeding technique
called k-means++, which has an expected approximation ratio of O(log k) [4].

1. Choose center c1 uniformly at random from the input set X.

2. For i = 2 to k do:
Let D2

i (x) be the square of the distance between point x and the nearest al-
ready chosen center c1, . . . , ci−1. Choose the next center ci randomly from X,

where every x ∈ X has a probability of
D2

i (x)∑
y∈X D2

i (y)
of being chosen.

Previous work In [4] instances are given on which k-means++ yields in expecta-
tion an Ω(log k)-approximation, showing that the bound of O(log k) for the
approximation ratio of k-means++ is asymptotically tight. However, the ex-
pected approximation ratio of a heuristic is not the only useful quality crite-
rion if the variance is large. If, for example, an O(1)-approximation is obtained
with probability 1/poly(k), then after a polynomial number of restarts an O(1)-
approximation is reached with high probability even if the expected approx-
imation ratio is Ω(log k). Interestingly, k-means++ achieves a constant factor
approximation for the instance given in [4] with constant probability, and no
instance was known on which k-means++ does not yield an O(1)-approximation
with constant probability.

For this reason Aggarwal, Deshpande, and Kannan called the lower bound
of Ω(log k) “misleading” [1]. In the same paper they showed that sampling O(k)
instead of k centers with the k-means++ seeding technique and selecting k good
points among them yields an O(1)-approximation with constant probability. Un-
fortunately the selection step is done with LP-based algorithms, which makes
this approach less simple and efficient than k-means++ in practice.

Therefore, both Arthur and Vassilvitskii [4] and Aggarwal, Deshpande, and
Kannan [1] raise the question whether k-means++ yields an O(1)-approximation
with constant probability. Aggarwal et al. call this a “tempting conjecture” which
“would be nice to settle”. So far the only known result in this direction is due to
Arthur and Vassilvitskii who mention that the probability to achieve an O(1)-
approximation is at least c · 2−k for some constant c > 0 [4].

Our contribution We modify the instances given in [4] and show that it is very
unlikely that k-means++ achieves an approximation ratio of (2/3 − ε) · log k on
this modified example.

Theorem 1. Let r : N→ R+ be a real function.

1. If r(k) = δ∗ · ln(k) for a fixed real δ∗ ∈ (0, 2/3), then there is a class of in-
stances on which k-means++ achieves an r(k)-approximation with probability
at most exp(−k1−3/2·δ∗−o(1)).

2. If r = o(log k), then there is a class of instances on which k-means++

achieves an r(k)-approximation with probability at most exp(−k1−o(1)).



2 Construction and Analysis of a Bad Instance

2.1 Construction

Throughout the paper “log” denotes the natural logarithm. Let r = r(k) > 0 be
a function where r(k) = δ∗ · log k for a fixed real δ∗ ∈ (0, 2/3) or r = o(log k).
Without loss of generality let r(k) → ∞ in the latter case. Additionally, let
δ = δ(k) := r(k)/ log k be the ratio of r(k) and log k. Based on the function r,
we introduce a parameter ∆ = ∆(k). In Section 2.3 we describe the details of
this choice. In this section we present the instances used for proving Theorem 1,
which are a slight modification of the instances given in [4].

We first choose k centers c1, . . . , ck, each with squared distance ∆2−(k−1)/k
to each other. For each point ci we construct a regular (k − 1)-simplex with
center ci and with side length 1. We denote the vertices of this simplex by

x
(i)
1 , . . . , x

(i)
k , and we assume that the simplices for different points ci and ci′ are

constructed in orthogonal dimensions. Then we get

‖x(i)j − ci‖
2 =

k − 1

2k
, (1)

and for x
(i)
j 6= x

(i′)
j′ we get

‖x(i)j − x
(i′)
j′ ‖

2 =

{
1 : i = i′ ,
∆2 : i 6= i′ ,

(2)

due to the fact that for i 6= i′ the squared distance between x
(i)
j and x

(i′)
j′ is

‖x(i)j − x
(i′)
j′ ‖

2 = ‖x(i)j − ci‖
2 + ‖ci − ci′‖2 + ‖x(i

′)
j′ − ci′‖

2 = ∆2

because of orthogonality and Equation (1). Let Ci = {x(i)1 , . . . , x
(i)
k } for i =

1, . . . , k. As input set for our k-means problem we consider the union X =⋃k
i=1 Ci of these sets.

In the remainder we show that, with a good choice of ∆, X is a bad instance
for k-means++. Note that the only relevant difference to the example given in [4]
is the choice of ∆. While in [4] it was sufficient to choose ∆ large enough, we
have to tune ∆ much more carefully to prove Theorem 1.

2.2 Reduction to a Markov Chain

We consider the k-clustering C∗ = (C1, . . . , Ck) induced by the centers c1, . . . , ck.
Note that for small ∆ this might be a non-optimal solution, but its potential is
an upper bound for the optimal potential. Due to Equation (1), the potential Φ∗

of C∗ is

Φ∗ =

k∑
i=1

∑
x∈Ci

‖x− ci‖2 = k2 · k − 1

2k
≤ k2

2



as for any point of Ci the nearest center is ci. Now let C ′ be a clustering with
distinct centers c′1, . . . , c

′
t, 1 ≤ t ≤ k, chosen from X. For each center c′i let li

be the index of the set Cli that c′i belongs to. Let s := | {l1, . . . , lt} | denote the
number of covered sets Ci and let Xu := X \

⋃t
i=1 Cli denote the set of the

points of uncovered sets. Furthermore, let Φ denote the potential of X induced
by the centers c′1, . . . , c

′
t and let Φ(Xu) be the part of Φ contributed by the

uncovered sets. Applying Equations (1) and (2) we get Φ(Xu) = (k − s) · k ·∆2

and Φ = (s · k − t) · 12 + Φ(Xu) ≥ (s− 1) · k + Φ(Xu).
The inequality Φ

Φ∗ ≤ r is necessary for C ′ being an r-approximation. This
implies

r ≥ Φ

Φ∗
≥ Φ(Xu)

Φ∗
≥ 2(k − s) ·∆2

k
,

i.e. at least s∗ :=
⌈
k ·
(
1− r

2∆2

)⌉
of the k sets Ci have to be covered to get an

r-approximation.
Let us assume that we are in step 2 of k-means++ (see introduction) and let s

denote the number of covered sets Ci. The probability of covering an uncovered
set in this step is

Φ(Xu)

Φ
≤ Φ(Xu)

(s− 1) · k + Φ(Xu)
=

1

1 + s−1
(k−s)·∆2

=: ps . (3)

Hence, we can upper-bound the probability that k-means++ yields an r-approxi-
mation by the probability of reaching vertex vs∗ within k steps in the following
Markov chain, starting from vertex v0.

Here, ps are the probabilities defined in Inequality (3), p0 = 1 and qs = 1− ps.

2.3 How to choose ∆?

Arthur and Vassilvitskii [4] have shown that choosing ∆ large enough results in
instances on which k-means++ has an expected approximation ratio of Ω(log k).
This does not suffice for proving Theorem 1 because if we choose ∆ too large,
the probability that we do not cover every cluster becomes small. Hence, if we
choose ∆ too large, we have a good probability of covering every cluster and
thus of obtaining a constant-factor approximation. On the other hand, if we
choose ∆ too small, already a single covered cluster might suffice to obtain a
constant-factor approximation.

We first define a function ε : N→ (0, 1) as follows:

ε = ε(k) :=

{
1/3 : r = o(log k) ,

2
3 ·

log r
r : r = δ∗ · log k .



Now we set ∆̃ = ∆̃(k) :=
√
r · er·(1+ε)/4 = exp(Θ(r)) and ∆ := d∆̃e. In the

analysis of the Markov chain in the following section, we will assume that k is
chosen sufficiently large such that the following inequalities hold:

∆2 > r , (4)

∆2

k
≤ r

2
, (5)(

r + 2

2

)∆
≥
(

2∆2

r

)2

, (6)

∆6 ≤ 19

18
r3 · e3r(1+ε)/2 , (7)

k − 1 ≥
(

1− ε

9

)
· k , (8)

r + 2 ≤
(

1 +
ε

3

)
· r , (9)

r

2∆2
+
ε

3
·
(

1 +
ε

3

)
·
( r

2∆2

)2
≤
(ε

3

)2
, (10)

log r ≤ 3

2
ε · r . (11)

In the appendix we show that, for our choice of ε, Inequalities (4) to (11) are
satisfied for every sufficiently large k. We have not made any attempt to simplify
these inequalities as they appear in exactly this form in the analysis in the next
section.

2.4 Analysis of the Markov Chain

Now we concentrate on bounding the probability to reach vertex vs∗ in the
Markov chain above. For this we introduce geometrically distributed random
variables X0, . . . , Xs∗−1. Variable Xs describes the number of trials that are
required to move from vertex vs to vertex vs+1. We would like to show that the

expected value of X :=
∑s∗−1
s=0 Xs is much greater than k and then conclude that

it is unlikely to reach vs∗ within k steps. Unfortunately, Hoeffding’s Inequality [6]
which is often used for drawing such a conclusion requires random variables
with bounded domain. So we make a technical detour by introducing additional

random variables Ys := min {Xs, ∆}, s = 0, . . . , s∗ − 1, and Y :=
∑s∗−1
s=0 Ys. We

will see that the differences caused by truncating the variables Xs are negligible
for our purpose.

The expected value of Xs is 1/ps, the expected value of Ys is (1 − q∆s )/ps

(see Appendix A). If we express ps as ps = 1
1+ 1

zs

for zs = (k−s)·∆2

s−1 , then

1− E[Ys]

E[Xs]
= q∆s = (1− ps)∆ =

(
1− 1

1 + 1
zs

)∆
=

(
1

zs + 1

)∆
.



As zs is decreasing with s and s ≤ s∗ − 1 ≤ k ·
(
1− r

2∆2

)
, we can bound zs

for s ≥ 1 by

zs ≥
(k − k ·

(
1− r

2∆2

)
) ·∆2

k ·
(
1− r

2∆2

)
− 1

=
r
2

1− r
2∆2 − 1

k

≥ r

2
.

The non-negativity of the second last denominator follows from Inequalities (4)
and (5). By applying Inequality (6), we get

E[Ys]

E[Xs]
= 1−

(
1

zs + 1

)∆
≥ 1−

(
1

r
2 + 1

)∆
≥ 1−

( r

2∆2

)2
. (12)

Due to Inequality (12) a lower bound for E[X] implies a lower bound for E[Y ].
The former one can be bounded as follows.

E[X] =

s∗−1∑
s=0

E[Xs] =

s∗−1∑
s=0

1

ps
= 1 +

s∗−1∑
s=1

(
1 +

s− 1

(k − s) ·∆2

)

= s∗ +

k−1∑
i=k−s∗+1

k − i− 1

i ·∆2
= s∗ − s∗ − 1

∆2
+
k − 1

∆2
·

k−1∑
i=k−s∗+1

1

i

≥ s∗ ·
(

1− 1

∆2

)
+
k − 1

∆2
· log

(
k

k − s∗ + 1

)
.

Using s∗ ≥ k ·
(
1− r

2∆2

)
, we can lower bound this by

E[X] ≥ k ·
(

1− r

2∆2

)
·
(

1− 1

∆2

)
+
k − 1

∆2
· log

(
k

k − k ·
(
1− r

2∆2

)
+ 1

)

≥ k ·

[(
1− r + 2

2∆2

)
+
k − 1

k∆2
· log

(
∆2

r
2 + ∆2

k

)]
.

Inequalities (5), (8), (9) and the choice of ∆ yield

E[X]

k
≥ 1−

(
1 + ε

3

)
· r

2∆2
+

1− ε
9

∆2
· log

(
∆2

r

)
≥ 1−

(
1 + ε

3

)
· r

2∆2
+

1− ε
9

∆2
· r · 1 + ε

2

≥ 1 +
r

2∆2
· ε

3
·
(

1 +
ε

3

)
,

where the last inequality holds because ε ∈ (0, 1). Applying Inequality (12), we
can show that even the expected value of Y is significantly larger than k.

E[Y ]

k
≥
(

1−
( r

2∆2

)2)
· E[X]

k
≥
(

1−
( r

2∆2

)2)
·
(

1 +
r

2∆2
· ε

3
·
(

1 +
ε

3

))
= 1 +

r

2∆2
·
(
ε

3
·
(

1 +
ε

3

)
− r

2∆2
− ε

3
·
(

1 +
ε

3

)
·
( r

2∆2

)2)
= 1 +

r

2∆2
·
(
ε

3
+
(ε

3

)2
−
(

r

2∆2
+
ε

3
·
(

1 +
ε

3

)
·
( r

2∆2

)2))
.



Hence, we get E[Y ] ≥ k · (1 + r
2∆2 · ε3 ) = k + k · f for f = f(k) = εr

6∆2 be-
cause of Inequality (10). Using Hoeffding’s Inequality [6], we can now bound the
probability to reach vertex vs∗ within k steps in the Markov chain above.

Pr[X ≤ k] ≤ Pr[Y ≤ k] ≤ Pr[E[Y ]− Y ≥ k · f ] ≤ exp

(
−2 · (k · f)2

s∗ ·∆2

)
≤ exp

(
−2k2f2

k ·∆2

)
= exp

(
−k · 2f2

∆2

)
.

Because of Inequalities (7) and (11) we can bound the fraction 2f2/∆2 by

2f2

∆2
=

ε2r2

18∆6
≥ ε2r2

19r3 · e3r(1+ε)/2
=
ε2

19
· 1

e3r(1+ε)/2+log r
≥ ε2

19
· 1

e(3/2+3ε)·r

=
ε2

19
· 1

e(3/2+3ε)·δ·log k =
ε2

19
· k−(3/2+3ε)·δ .

If r = o(log k), then δ ∈ o(1) and Pr[X ≤ k] ≤ exp
(
−k1−o(1)

)
. If r = δ∗ · log k

for some fixed real δ∗ ∈ (0, 2/3), then we get

Pr[X ≤ k] ≤ exp
(
−k−o(1) · k1−( 3

2+
2 log r

r )·δ∗
)

= exp
(
−k1− 3

2 δ
∗−o(1) · k−

2 log r
log k

)
= exp

(
−k1− 3

2 δ
∗−o(1)

)
.

This concludes the proof of Theorem 1.

3 Conclusion

We proved that, in general, k-means++ yields an o(log k)-approximation only
with negligible probability. The proof of this result is based on instances with
fairly high dimension. Since we constructed the simplices in orthogonal dimen-
sions, our instances have dimension Θ(k2).

It remains open how k-means++ behaves on instances in small dimensions.
One intriguing question is whether there exists an upper bound for the expected
approximation ratio of k-means++ that depends only on the dimension of the
instance. Currently we cannot exclude the possibility that the expected approxi-
mation ratio of k-means++ is O(log d) where d is the dimension of the instance.

References

1. Ankit Aggarwal, Amit Deshpande, and Ravi Kannan. Adaptive sampling for k-
means clustering. In Proc. of the 12th International Workshop and 13th Interna-
tional Workshop on Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques (APPROX-RANDOM), pages 15–28. Springer,
2009.



2. Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of
Euclidean sum-of-squares clustering. Machine Learning, 75(2):245–248, 2009.

3. David Arthur, Bodo Manthey, and Heiko Röglin. k-means has polynomial smoothed
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A The Expected Value of Truncated Geometrically
Distributed Random Variables

Let X be a geometrically distributed random variable with parameter p, let
q := 1 − p and let M be a non-negative integer. The expected value of the
truncated random variable Y := min {X,M} is

E[Y ] =

∞∑
i=1

min{i,M} · p · qi−1 =

∞∑
i=1

i · p · qi−1 −
∞∑

i=M+1

(i−M) · p · qi−1

= E[X]− qM ·
∞∑
i=1

i · p · qi−1 =
(
1− qM

)
·E[X] =

1− qM

p
.

B Inequalities (4) to (11)

Throughout this section any inequality f(k) ≤ g(k) is a short hand for f(k) ≤
g(k) for sufficiently large k. First note that regardless of the choice of r the
inequalities r ≤ 2

3 log k and 2
3 (log r)/r ≤ ε ≤ 1 hold. The latter one immediately

implies Inequality (11).

• Inequality (4) follows from ∆2 ≥ ∆̃2 ≥ r · exp
(
r
2

)
which is greater than r

because r > 0.
• As ∆̃ ≤

√
r · exp(r/2) ≤

√
r · exp ((log k)/3) =

√
r · 3
√
k ≤
√
r ·
√
k/2− 1, we

get Inequality (5): ∆2 ≤ (∆̃+ 1)2 ≤ r · k/2.
• Due to the fact ∆→∞ we get 2∆ ≥ ∆4. The inequalities (r+ 2)/2 ≥ 2 and

2∆2/r ≤ ∆2 then imply the correctness of Inequality (6).
• Inequality (7) is a consequence of ∆̃→∞. This yields ∆̃+ 1 ≤ 6

√
19/18 · ∆̃

and hence ∆6 ≤ (∆̃+ 1)6 ≤ 19
18∆̃

6 = 19
18r

3 · exp(3r · (1 + ε)/2).



• Inequalities (8) and (9) hold if ε ≥ 9/k and ε ≥ 6/r. This is true since
ε = Ω ((log r)/r), k = exp(Ω (r)) and 1/r = O(1/r).
• Let us consider Inequality (10). As ∆2 > r (see Inequality (4)), r/(2∆2) +
ε/3 ·(1+ε/3) ·(r/(2∆2))2 ≤ r/(2∆2)+4/9 ·r/(2∆2) ≤ r/∆2. The correctness
follows from ∆2 ≥ r · exp(r/2), i.e. r/∆2 ≤ 1/ exp(r/2), whereas (ε/3)2 =
Ω
(
1/r2

)
.


