
Lower Bounds for the Smoothed Number of
Pareto optimal Solutions?

Tobias Brunsch and Heiko Röglin
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Abstract. In 2009, Röglin and Teng showed that the smoothed number
of Pareto optimal solutions of linear multi-criteria optimization problems
is polynomially bounded in the number n of variables and the maximum
density φ of the semi-random input model for any fixed number of objec-
tive functions. Their bound is, however, not very practical because the
exponents grow exponentially in the number d+1 of objective functions.
In a recent breakthrough, Moitra and O’Donnell improved this bound
significantly to O

(
n2dφd(d+1)/2

)
.

An “intriguing problem”, which Moitra and O’Donnell formulate in their
paper, is how much further this bound can be improved. The previous
lower bounds do not exclude the possibility of a polynomial upper bound
whose degree does not depend on d. In this paper we resolve this ques-
tion by constructing a class of instances with Ω((nφ)(d−log(d))·(1−Θ(1/φ)))
Pareto optimal solutions in expectation. For the bi-criteria case we pre-
sent a higher lower bound of Ω(n2φ1−Θ(1/φ)), which almost matches the
known upper bound of O(n2φ).

1 Introduction

In multi-criteria optimization problems we are given several objectives and aim
at finding a solution that is simultaneously optimal in all of them. In most cases
the objectives are conflicting and no such solution exists. The most popular way
to deal with this problem is to just concentrate on the relevant solutions. If a
solution is dominated by another solution, i.e., it is worse than the other solution
in at least one objective and not better in the others, then this solution does
not have to be considered for our optimization problem. All solutions that are
not dominated by any other solution are called Pareto optimal and form the
so-called Pareto set. For a general introduction to multi-criteria optimization
problems, we refer the reader to the book of Matthias Ehrgott [Ehr05].

Smoothed Analysis For many multi-criteria optimization problems the worst-
case size of the Pareto set is exponential. However, worst-case analysis is often
too pessimistic, whereas average-case analysis assumes a certain distribution
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on the input universe. Usually it is hard if not impossible to find a distribu-
tion resembling practical instances. Smoothed analysis, introduced by Spielman
and Teng [ST04] to explain the efficiency of the simplex algorithm in practice
despite its exponential worst-case running time, is a combination of both ap-
proaches and has been successfully applied to a variety of fields like machine
learning, numerical analysis, discrete mathematics, and combinatorial optimiza-
tion in the past decade (see [ST09] for a survey). Like in a worst-case analysis
the model of smoothed analysis still considers adverserial instances. In contrast
to the worst-case model, however, these instances are subsequently slightly per-
turbed at random, for example by Gaussian noise. This assumption is made to
model that often the input an algorithm gets is subject to imprecise measure-
ments, rounding errors, or numerical imprecision. In a more general model of
smoothed analysis, introduced by Beier and Vöcking [BV04], the adversary is
even allowed to specify the probability distribution of the random noise. The
influence he can exert is described by a parameter φ denoting the maximum
density of the noise.

Optimization Problems and Smoothed Input Model Beier and Vöcking [BV04]
have initiated the study of binary bi-criteria optimization problems. In their
model, which has been extended to multi-criteria problems by Röglin and Teng
[RT09], one considers optimization problems that can be specified in the follow-
ing form. There are an arbitrary set S ⊆ {0, 1}n of solutions and d+ 1 objective
functions wj : S → R, j = 0, . . . , d, given. While w0 can be an arbitrary function,
which is to be minimized, the functions w1, . . . , wd, which are to be maximized,
are linear of the form wj(s) = wj1s1 + . . . + wjnsn for s = (s1, . . . , sn) ∈ S.
Formally, the problem can be described as follows:

minimize w0(s), and maximize wj(s) for all j = 1, . . . , d

subject to s in the feasible region S.

As there are no restrictions on the set S of solutions, this model is quite general
and can encode many well-studied problems like, e.g., the multi-criteria knap-
sack, shortest path, or spanning tree problem. Let us remark that the choice
which objective functions are to be maximized and minimized is arbitrary and
just chosen for ease of presentation. All results also hold for other combinations
of objective functions.

In the framework of smoothed analysis the coefficients wj1, . . . , w
j
n of the linear

functions wj are drawn according to (adversarial) probability density functions
fi,j : [−1, 1] → R that are bounded by the maximum density parameter φ, i.e.,
fi,j ≤ φ for i = 1, . . . , n and j = 1, . . . , d. The adversary could, for example,
choose for each coefficient an interval of length 1/φ from which it is chosen uni-
formly at random. Hence, the parameter φ determines how powerful the adver-
sary is. For large φ he can specify the coefficients very precisely, and for φ→∞
the smoothed analysis becomes a worst-case analysis. The coefficients are re-
stricted to the interval [−1, 1] because otherwise, the adversary could diminish
the effect of the perturbation by choosing large coefficients.



Previous Work Beier and Vöcking [BV04] showed that for d = 1 the expected
size of the Pareto set of the optimization problem above is O(n4φ) regardless
of how the set S, the objective function w0 and the densities fi,j are chosen.
Later, Beier, Röglin, and Vöcking [BRV07] improved this bound to O(n2φ) by
analyzing the so-called loser gap. Röglin and Teng [RT09] generalized the no-
tion of this gap to higher dimensions, i.e., d ≥ 2, and gave the first polynomial
bound in n and φ for the smoothed number of Pareto optimal solutions. Further-
more, they were able to bound higher moments. The degree of the polynomial,
however, was dΘ(d). Recently, Moitra and O’Donnell [MO10] showed a bound
of O(n2dφd(d+1)/2), which is the first polynomial bound for the expected size
of the Pareto set with degree polynomial in d. An “intriguing problem” with
which Moitra and O’Donnell conclude their paper is whether their upper bound
could be significantly improved, for example to f(d, φ)n2. Moitra and O’Donnell
suspect that for constant φ there should be a lower bound of Ω

(
nd
)
. In this

paper we resolve this question almost completely.

Our Contribution For the bi-criteria case, i.e., d = 1, we prove a lower bound
of Ω

(
min

{
n2φ1−Θ(1/φ), 2Θ(n)

})
. This is the first bound with dependence on n

and φ and it nearly matches the upper bound O(min
{
n2φ, 2n

}
). For d ≥ 2

we prove a lower bound of Ω
(
min

{
(nφ)(d−log(d))·(1−Θ(1/φ)), 2Θ(n)

})
. Note that

throughout the paper “log” denotes the binary logarithm. This is the first bound
for the general multi-criteria case. Still, there is a significant gap between this
lower bound and the upper bound of O(min

{
n2dφd(d+1)/2, 2n

}
), but the expo-

nent of n is nearly d− log (d). Hence our lower bound is close to the lower bound
of Ω

(
nd
)

conjectured by Moitra and O’Donnell.

Restricted Knapsack Problem To prove the lower bounds stated above we con-
sider a variant of the knapsack problem where we have n objects a1, . . . , an,
each with a weight wi and a profit vector pi ∈ [0, 1]d for a positive integer d.
By a vector s ∈ {0, 1}n we describe which objects to put into the knapsack. In
contrast to the unrestricted variant not all combinations of objects are allowed.
Instead, all valid combinations are described by a set S ⊆ {0, 1}. We want to
simultaneously minimize the total weight and maximize all total profits of a so-
lution s. Thus, the restricted knapsack problem, denoted by KS({a1, . . . , an}),
can be written as

minimize
n∑
i=1

wi · si, and maximize
n∑
i=1

(pi)j · si for all j = 1, . . . , d

subject to s in the feasible region S.

For S = {0, 1}n we just write K({a1, . . . , an}) instead of KS({a1, . . . , an}).
Note that the instances of the restricted knapsack problem that we use to

prove the lower bounds are not necessarily interesting on its own because they
have a somewhat artificial structure. However, they are interesting as they show
that the known upper bounds in the general model cannot be significantly im-
proved.



2 The Bi-criteria Case

In this section we present a lower bound for the expected number of Pareto
optimal solutions in bi-criteria optimization problems that shows that the upper
bound of Beier, Röglin, and Vöcking [BRV07] cannot be significantly improved.

Theorem 1. There is a class of instances for the restricted bi-criteria knap-
sack problem for which the expected number of Pareto-optimal solutions is lower
bounded by

Ω
(

min
{
n2φ1−Θ(1/φ), 2Θ(n)

})
,

where n is the number of objects and φ is the maximum density of the profits’
probability distributions.

Note that the exponents of n and φ in this bound are asymptotically the same
as the exponents in the upper bound O(min

{
n2φ, 2n

}
) proved by Beier, Röglin,

and Vöcking [BRV07].
For our construction we use the following bound from Beier and Vöcking.

Theorem 2 ([BV04]). Let a1, . . . , an be objects with weights 21, . . . , 2n and
profits p1, . . . , pn that are independently and uniformly distributed in [0, 1]. Then,
the expected number of Pareto optimal solutions of K({a1, . . . , an}) is Ω

(
n2
)
.

Note that scaling all profits does not change the Pareto set and hence Theorem 2
remains true if the profits are chosen uniformly from [0, a] for an arbitrary a > 0.
We will exploit this observation later in our construction.

The idea how to create a large Pareto set is what we call the copy step. Let us
consider an additional object b with weight 2n+1 and fixed profit q. In Figure 1
all solutions are represented by a weight-profit pair in the weight-profit space.
The set of solutions using object b can be considered as the set of solutions that
do not use object b, but shifted by (2n+1, q). If the profit q is chosen sufficiently
large, i.e., larger than the sum of the profits of the objects a1, . . . , an, then there
is no domination between solutions from different copies and hence the Pareto
optimal solutions of K({a1, . . . , an, b}) are just the copies of the Pareto optimal
solutions of K({a1, . . . , an}). Lemma 3 formalizes this observation.

Lemma 3. Let a1, . . . , an be objects with weights 21, . . . , 2n and non-negative
profits p1, . . . , pn and let b be an object with weight 2n+1 and profit q >

∑n
i=1 pi.

Furthermore, let P denote the Pareto set of K({a1, . . . , an}) and let P ′ denote
the Pareto set of K({a1, . . . , an, b}). Then, P ′ is the disjoint union of P ′0 :=
{(s, 0) : s ∈ P} and P ′1 := {(s, 1) : s ∈ P} and thus |P ′| = 2 · |P|.

Now we use the copy idea to construct a large Pareto set. Let a1, . . . , anp be
objects with weights 21, . . . , 2np and with profits p1, . . . , pnp ∈ P := [0, 1/φ]
where φ > 1, and let b1, . . . , bnq be objects with weights 2np+1, . . . , 2np+nq and
with profits qi ∈ Qi := (mi − dmie /φ,mi], where mi = (np + 1)/(φ− 1) · ((2φ−
1)/(φ− 1))i−1. The choice of the intervals Qi is due to the fact that we have to

ensure qi >
∑np
j=1 pj +

∑i−1
j=1 qj to apply Lemma 3 successively for the objects
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Fig. 1. The copy step. The Pareto set P ′ consist of two copies of the Pareto set P.

b1, . . . , bnq . We will prove this inequality in Lemma 4. More interesting is the
fact that the size of an interval Qi is dmie /φ which might be larger than 1/φ.
To explain this consider the case mi > 1 for some index i. For this index the
interval Qi is not a subset of [−1, 1] as required for our model. Instead of avoiding
such large values mi by choosing nq small enough, we will split Qi into dmie
intervals of equal size which must be at least 1/φ. This so-called split step will
be explained later.

Lemma 4. Let p1, . . . , pnp ∈ P and let qi ∈ Qi. Then, qi >
∑np
j=1 pj +

∑i−1
j=1 qj

for all i = 1, . . . , nq.

Note that with Lemma 4 we implicitely show that the lower boundaries of the
intervals Qi are non-negative.

Proof. Using the definition of mi, we get

qi > mi −
dmie
φ
≥ mi −

mi + 1

φ
=
φ− 1

φ
·mi −

1

φ

=
np + 1

φ
·
(

2φ− 1

φ− 1

)i−1
− 1

φ
.

On the other hand we have

np∑

j=1

pj +

i−1∑

j=1

qj ≤
np∑

j=1

1

φ
+

i−1∑

j=1

mj =
np
φ

+

i−1∑

j=1

np + 1

φ− 1
·
(

2φ− 1

φ− 1

)j−1

=
np
φ

+
np + 1

φ− 1
·

(
2φ−1
φ−1

)i−1
− 1

2φ−1
φ−1 − 1

=
np
φ

+
np + 1

φ
·
((

2φ− 1

φ− 1

)i−1
− 1

)

=
np + 1

φ
·
(

2φ− 1

φ− 1

)i−1
− 1

φ
. ut



Combining Theorem 2, Lemma 3 and Lemma 4, we immediately get a lower
bound for the knapsack problem using the objects a1, . . . , anp and b1, . . . , bnq
with profits chosen from P and Qi, respectively.

Corollary 5. Let a1, . . . , anp and b1, . . . , bnq be as above, but the profits pi are
chosen uniformly from P and the profits qi are arbitrarily chosen from Qi. Then,
the expected number of Pareto optimal solutions of K({a1, . . . , anp , b1, . . . , bnq})
is Ω

(
n2p · 2nq

)
.

Proof. Because of Lemma 4, we can apply Lemma 3 for each realization of the
profits p1, . . . , pnp and q1, . . . , qnq . This implies that the expected number of
Pareto optimal solutions is 2nq times the expected size of the Pareto set of
K({a1, . . . , anp}) which is Ω

(
n2p
)

according to Theorem 2. ut

The profits of the objects bi grow exponentially and leave the interval [0, 1]. As
mentioned earlier, we resolve this problem by splitting each object bi into ki :=

dmie objects b
(1)
i , . . . , b

(ki)
i with the same total weight and the same total profit,

i.e., each with weight 2np+i/ki and profit q
(l)
i ∈ Qi/ki := (mi/ki − 1/φ,mi/ki].

As the intervals Qi are subsets of R+, the intervals Qi/ki are subsets of [0, 1].

It remains to ensure that for any fixed index i all objects b
(l)
i are treated as

a group. This can be done by restricting the set S of solutions. Let Si =
{(0, . . . , 0), (1, . . . , 1)} ⊆ {0, 1}ki . Then, the set S of solutions is defined as
S := {0, 1}np ×∏nq

i=1 Si. By choosing the set of solutions that way, the objects

b
(1)
i , . . . , b

(ki)
i can be viewed as substitute for object bi. Thus, a direct conse-

quence of Corollary 5 is the following.

Corollary 6. Let S, a1, . . . , anp and b
(l)
i be as above, let the profits p1, . . . , pnp

be chosen uniformly from P and let the profits q
(1)
i , . . . , q

(ki)
i be chosen uni-

formly from Qi/ki. Then, the expected number of Pareto optimal solutions of

KS({a1, . . . , anp} ∪ {b(l)i : i = 1, . . . , nq, l = 1, . . . , ki}) is Ω
(
n2p · 2nq

)
.

The remainder contains just some technical details. First, we give an upper

bound for the number of objects b
(l)
i .

Lemma 7. The number of objects b
(l)
i is upper bounded by nq+

np+1
φ ·

(
2φ−1
φ−1

)nq
.

Proof. The number of objects b
(l)
i is

∑nq
i=1 ki =

∑nq
i=1 dmie ≤ nq +

∑nq
i=1mi, and

nq∑

i=1

mi =
np + 1

φ− 1
·
nq∑

i=1

(
2φ− 1

φ− 1

)i−1
≤ np + 1

φ− 1
·

(
2φ−1
φ−1

)nq

2φ−1
φ−1 − 1

=
np + 1

φ
·
(

2φ− 1

φ− 1

)nq
. ut

Now we are able to prove Theorem 1.



Proof (Theorem 1). Without loss of generality let n ≥ 4 and φ ≥ 3+
√
5

2 ≈
2.62. For the moment let us assume φ ≤ ( 2φ−1

φ−1 )
n−1
3 . This is the interesting

case leading to the first term in the minimum in Theorem 1. We set n̂q :=
log(φ)

log((2φ−1)/(φ−1)) ∈ [1, n−13 ] and n̂p :=
n−1−n̂q

2 ≥ n−1
3 ≥ 1. All inequalities

hold because of the bounds on n and φ. We obtain the numbers np and nq
by rounding, i.e., np := bn̂pc ≥ 1 and nq := bn̂qc ≥ 1. Now we consider objects

a1, . . . , anp with weights 2i and profits chosen uniformly from P , and objects b
(l)
i ,

i = 1, . . . , nq, l = 1, . . . , ki, with weights 2np+i/ki and profits chosen uniformly
from Qi/ki. Observe that P and all Qi/ki have length 1/φ and thus the densities
of all profits are bounded by φ. Let N be the number of all these objects. By
Lemma 7, this number is bounded by

N ≤ np + nq +
np + 1

φ
·
(

2φ− 1

φ− 1

)nq
≤ n̂p + n̂q +

n̂p + 1

φ
·
(

2φ− 1

φ− 1

)n̂q

= n̂p + n̂q +
n̂p + 1

φ
· φ = 2n̂p + n̂q + 1 = n .

Hence, the number N of objects we actually use is at most n, as required. As set
of solutions we consider S := {0, 1}np×∏nq

i=1 Si. Due to Corollary 6, the expected

size of the Pareto set of KS({a1, . . . , anp} ∪ {b(l)i : i = 1, . . . , nq, l = 1, . . . , ki})
is

Ω
(
n2p · 2nq

)
= Ω

(
n̂2p · 2n̂q

)
= Ω

(
n̂2p · 2

log(φ)

log( 2φ−1
φ−1 )

)
= Ω

(
n2 · φ

1

log( 2φ−1
φ−1 )

)

= Ω
(
n2 · φ1−Θ(1/φ)

)
,

where the last step holds because

1

log
(

2 + c1
φ−c2

) = 1−
log
(

1 + c1
2φ−2c2

)

log
(

2 + c1
φ−c2

) = 1−
Θ
(

c1
2φ−2c2

)

Θ (1)
= 1−Θ

(
1

φ

)

for any constants c1, c2 > 0. We formulated this calculation slightly more general
than necessary as we will use it again in the multi-criteria case.

For φ > ( 2φ−1
φ−1 )

n−1
3 we construct the same instance as above, but for maxi-

mum density φ′ > 1 where φ′ = ( 2φ′−1
φ′−1 )

n−1
3 . Since n ≥ 4, φ′ exists, is unique

and φ′ ∈
[
3+
√
5

2 , φ
)

. This yields n̂′p = n̂′q = n−1
3 and, as above, the expected size

of the Pareto set is Ω
(

(n̂′p)
2 · 2n̂′q

)
= Ω

(
n2 · 2Θ(n)

)
= Ω

(
2Θ(n)

)
. ut

3 The Multi-criteria Case

In this section we present a lower bound for the expected number of Pareto
optimal solutions in multi-criteria optimization problems. We concentrate our
attention to d ≥ 2 as we discussed the case d = 1 in the previous section.



Theorem 8. For any fixed integer d ≥ 2 there is a class of instances for the
restricted (d + 1)-dimensional knapsack problem for which the expected number
of Pareto-optimal solutions is lower bounded by

Ω
(

min
{

(nφ)(d−log(d))·(1−Θ(1/φ)), 2Θ(n)
})

,

where n is the number of objects and φ is the maximum density of the profit’s
probability distributions.

Unfortunately, Theorem 8 does not generalize Theorem 1. This is due to
the fact that, though we know an explicit formula for the expected number of
Pareto optimal solutions if all profits are uniformly chosen from [0, 1], we were
not able to find a simple non-trivial lower bound for it. Hence, in the general
multi-criteria case, we concentrate on analyzing the copy and split steps.

In the bi-criteria case we used an additional object b to copy the Pareto set
(see Figure 1). For that we had to ensure that every solution using this object
has higher weight than all solutions without b. The same had to hold for the
profit. Since all profits are in [0, 1], the profit of every solution must be in [0, n].
As the Pareto set of the first np ≤ n/2 objects has profits in [0, n/(2φ)], we could
fit nq = Θ (log (φ)) copies of this initial Pareto set into the interval [0, n].

In the multi-criteria case, every solution has a profit in [0, n]d. In our con-
struction, the initial Pareto set consists only of a single solution, but we benefit
from the fact that the number of mutually non-dominating copies of the initial
Pareto set that we can fit into the hypercube [0, n]d grows quickly with d.

Let us consider the case that we have some Pareto set P whose profits lie
in some hypercube [0, a]d. We will create

(
d
dh

)
copies of this Pareto set; one for

every vector x ∈ {0, 1}d with exactly dh = dd/2e ones. Let x ∈ {0, 1}d be such
a vector. Then we generate the corresponding copy Cx of the Pareto set P by
shifting it by a + ε in every dimension i with xi = 1. If all solutions in these
copies have higher weights than the solutions in the initial Pareto set P, then the
initial Pareto set stays Pareto optimal. Furthermore, for each pair of copies Cx
and Cy, there is one index i with xi = 1 and yi = 0. Hence, solutions from Cy
cannot dominate solutions from Cx. Similarly, one can argue that no solution in
the initial copy can dominate any solution from Cx. This shows that all solutions
in copy Cx are Pareto optimal. All the copies (including the initial one) have
profits in [0, 2a+ ε]d and together |P| ·

(
1 +

(
d
dh

))
≥ |P| · 2d/d solutions.

We start with an initial Pareto set of a single solution with profit in [0, 1/φ]d,
and hence we can make Θ (log (nφ)) copy steps before the hypercube [0, n]d is
filled. In each of these steps the number of Pareto optimal solutions increases by
a factor of at least 2d/d, yielding a total number of at least (2d/d)Θ(log(nφ)) =
(nφ)Θ(d−log(d)) Pareto optimal solutions.

In the following, we describe how these copy steps can be realized in the
restricted knapsack problem. Again, we have to make a split step because the
profit of every object must be in [0, 1]d. Due to such technicalities, the actual
bound we prove looks slightly different than the one above. It turns out that we



need (before splitting) d new objects b1, . . . , bd for each copy step in contrast to
the bi-criteria case, where (before splitting) a single object b was enough.

Let nq ≥ 1 be an arbitrary positive integer and let φ ≥ 2d be a real. We
consider objects bi,j with weights 2i/dh and profit vectors

qi,j ∈ Qi,j :=

j−1∏

k=1

[
0,
dmie
φ

]
×
(
mi −

dmie
φ

,mi

]
×

d∏

k=j+1

[
0,
dmie
φ

]
,

where mi is recursively defined as

m0 := 0 and mi :=
1

φ− d ·
(
i−1∑

l=0

(ml · (φ+ d) + d)

)
, i = 1, . . . , nq . (1)

The explicit formula for this recurrence is

mi =
d

φ+ d
·
((

2φ

φ− d

)i
− 1

)
, i = 1, . . . , nq .

The d-dimensional interval Qi,j is of the form that the jth profit of object bi,j
is large and all the other profits are small. By using object bi,j the copy of the
Pareto set is shifted in direction of the jth unit vector. As mentioned in the
motivation we will choose exactly dh such objects to create additional copies.
To give a better intuition for the form of the single intervals the d-dimensional
interval Qi,j is constructed of we refer the reader to the explanation in the bi-
criteria case.

Let H(x) be the Hamming weight of a 0-1-vector x, i.e., the number of ones

in x, and let Ŝ := {x ∈ {0, 1}d : H(x) ∈ {0, dh}} denote the set of all 0-1-vectors
of length d with 0 or dh ones. As set S of solutions we consider S := Ŝnq .
Lemma 9. Let the set S of solutions and the objects bi,j be as above. Then, each
solution s ∈ S is Pareto optimal for KS({bi,j : i = 1, . . . , nq, j = 1, . . . , d}).

Proof. We show the statement by induction over nq and discuss the base case and

the inductive step simultaneously because of similar arguments. Let S ′ := Ŝnq−1
and let (s, snq ) ∈ S ′×Ŝ be an arbitrary solution from S. Note that for nq = 1 we
get s = λ, the 0-1-vector of length 0. First we show that there is no domination
within one copy, i.e., there is no solution of type (s′, snq ) ∈ S that dominates
(s, snq ). For nq = 1 this is obviously true. For nq ≥ 2 the existence of such a
solution would imply that s′ dominates s in the knapsack problemKS′({bi,j : i =
1, . . . , nq − 1, j = 1, . . . , d}). This contradicts the inductive hypothesis.

Now we prove that there is no domination between solutions from different
copies, i.e., there is no solution of type (s′, s′nq ) ∈ S with s′nq 6= snq that dom-
inates (s, snq ). If snq = 0, then the total weight of the solution (s, snq ) is at

most
∑nq−1
i=1 2i < 2nq . The right side of this inequality is a lower bound for the

weight of solution (s′, s′nq ) because s′nq 6= snq . Hence, (s′, s′nq ) does not dominate
(s, snq ). Finally, let us consider the case snq 6= 0. There must be an index j ∈ [d]



where (snq )j = 1 and (s′nq )j = 0. We show that the jth total profit of (s, snq ) is

higher than the jth profit of (s′, s′nq ). The former one is strictly bounded from

below by mnq −
⌈
mnq

⌉
/φ, whereas the latter one is bounded from above by

nq−1∑

i=1

(
(dh − 1) · dmie

φ
+ max

{dmie
φ

,mi

})
+ dh ·

⌈
mnq

⌉

φ
.

Solution (s′, s′nq ) can use at most dh objects of each group bi,1, . . . , bi,d. Each

of them, except one, can contribute at most dmieφ to the jth total profit. One

can contribute either at most dmieφ or at most mi. This argument also holds for

the nthq group, but by the choice of index j we know that each object chosen

by s′nq contributes at most dmieφ to the jth total profit. It is easy to see that

dmie /φ ≤ mi because of φ > d ≥ 1. Hence, our bound simplifies to

nq−1∑

i=1

(
(dh − 1) · dmie

φ
+mi

)
+ dh ·

⌈
mnq

⌉

φ

≤
nq−1∑

i=1

(
d · mi + 1

φ
+mi

)
+ (d− 1) · mnq + 1

φ
(d ≥ 2)

=
1

φ
·
(
nq−1∑

i=1

(mi · (φ+ d) + d) + d · (mnq + 1)

)
− mnq + 1

φ

=
1

φ
·
(
nq−1∑

i=0

(mi · (φ+ d) + d) + d ·mnq

)
− mnq + 1

φ
(m0 = 0)

=
1

φ
· ((φ− d) ·mnq + d ·mnq )−

mnq + 1

φ
(Equ. (1))

≤ mnq −
⌈
mnq

⌉

φ
.

This implies that (s′, s′nq ) does not dominate (s, snq ). ut

Immediately, we get a statement about the expected number of Pareto optimal
solutions if we randomize.

Corollary 10. Let S and bi,j be as above, but the profit vectors qi,j are arbi-
trarily drawn from Qi,j. Then, the expected number of Pareto optimal solutions
for KS({bi,j : i = 1, . . . , nq, j = 1, . . . , d}) is at least (2d/d)nq .

Proof. This result follows from Lemma 9 and |Ŝ| = 1 +
(
d
dh

)
= 1 + max

i=1,...,d

(
d
i

)
≥

1 + (
∑d
i=1

(
d
i

)
)/d = 1 + (2d − 1)/d ≥ 2d/d. ut



As in the bi-criteria case we now split each object bi,j into ki := dmie objects

b
(1)
i,j , . . . , b

(ki)
i,j with weights 2i/(ki · dh) and with profit vectors

q
(l)
i,j ∈ Qi,j/ki :=

j−1∏

k=1

[
0,

1

φ

]
×
(
mi

ki
− 1

φ
,
mi

ki

]
×

d∏

k=j+1

[
0,

1

φ

]
.

Then, we adapt our set S of solutions such that for any fixed indices i and j either

all objects b
(1)
i,j , . . . , b

(ki)
i,j are put into the knapsack or none of them. Corollary 10

yields the following result.

Corollary 11. Let S and b
(l)
i,j be as described above, but let the profit vectors

p
(1)
i,j , . . . , p

(ki)
i,j be chosen uniformly from Qi,j/ki. Then, the expected number of

Pareto optimal solutions of KS({b(l)i,j : i = 1, . . . , nq, j = 1, . . . , d, l = 1, . . . , ki})
is at least (2d/d)nq .

Still, the lower bound is expressed in nq and not in the number of objects used.
So the next step is to analyze the number of objects.

Lemma 12. The number of objects b
(l)
i,j is upper bounded by d·nq+ 2d2

φ−d ·
(

2φ
φ−d

)nq
.

Proof. The number of objects b
(l)
i,j is

∑nq
i=1(d · ki) = d ·∑nq

i=1 dmie ≤ d · nq + d ·∑nq
i=1mi, and

nq∑

i=1

mi ≤
d

φ+ d
·
nq∑

i=1

(
2φ

φ− d

)i
≤ d

φ+ d
·

(
2φ
φ−d

)nq+1

(
2φ
φ−d

)
− 1

≤ d

φ
·
(

2φ

φ− d

)
·
(

2φ

φ− d

)nq
=

2d

φ− d ·
(

2φ

φ− d

)nq
. ut

Now we can prove Theorem 8.

Proof. Without loss of generality let n ≥ 16d and φ ≥ 2d. For the moment let us

assume φ−d ≤ 4d2

n ·
(

2φ
φ−d

) n
2d

. This is the interesting case leading to the first term

in the minimum in Theorem 8. We set n̂q :=
log((φ−d)· n

4d2
)

log( 2φ
φ−d )

∈
[
1, n2d

]
and obtain

nq := bn̂qc ≥ 1 by rounding. All inequalities hold because of the bounds on n

and φ. Now we consider objects b
(l)
i,j , i = 1, . . . , nq, j = 1, . . . , d, l = 1, . . . , ki,

with weights 2i/(ki ·d) and profit vectors qi,j chosen uniformly from Qi,j/ki. All
these intervals have length 1/φ and hence all densities are bounded by φ. Let N
be the number of objects. By Lemma 12, this number is bounded by

N ≤ d · nq +
2d2

φ− d ·
(

2φ

φ− d

)nq
≤ d · n̂q +

2d2

φ− d ·
(

2φ

φ− d

)n̂q

≤ d · n̂q +
2d2

φ− d · (φ− d) · n
4d2
≤ n .



Hence, the number N of objects we actually use is at most n, as required. As
set S of solutions we use the set described above, encoding the copy step and the
split step. Due to Corollary 11, for fixed d ≥ 2 the expected number of Pareto

optimal solutions of KS({b(l)i,j : i = 1, . . . , nq, j = 1, . . . , d, l = 1, . . . , ki}) is

Ω

((
2d

d

)nq)
= Ω

((
2d

d

)n̂q)
= Ω



(

2d

d

) log((φ−d)· n
4d2

)
log( 2φ

φ−d )




= Ω



(

(φ− d) · n
4d2

) log

(
2d

d

)
log( 2φ

φ−d )


 = Ω

(
(φ · n)

d−log(d)

log( 2φ
φ−d )

)

= Ω
(

(φ · n)(d−log(d))·(1−Θ(1/φ))
)
,

where the last step holds because of the same reason as in the proof of Theorem 1.

In the case φ−d > 4d2

n ·
(

2φ
φ−d

) n
2d

we construct the same instance above, but

for a maximum density φ′ > d where φ′ − d = 4d2

n ·
(

2φ′

φ′−d

) n
2d

. Since n ≥ 16d,

the value φ′ exists, is unique and φ′ ∈ [65d, φ). Futhermore, we get n̂q = n
2d . As

above, the expected size of the Pareto set is Ω
(
(2d/d)n̂q

)
= Ω

(
(2d/d)n/(2d)

)
=

Ω
(
2Θ(n)

)
. ut
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