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Abstract. Pareto-optimal solutions are one of the most important and
well-studied solution concepts in multi-objective optimization. Often the
enumeration of all Pareto-optimal solutions is used to filter out unrea-
sonable trade-offs between different criteria. While in practice, often only
few Pareto-optimal solutions are observed, for almost every problem with
at least two objectives there exist instances with an exponential number
of Pareto-optimal solutions. To reconcile theory and practice, the num-
ber of Pareto-optimal solutions has been analyzed in the framework of
smoothed analysis, and it has been shown that the expected value of this
number is polynomially bounded for linear integer optimization prob-
lems. In this paper we make the first step towards extending the existing
results to non-integer optimization problems. Furthermore, we improve
the previously known analysis of the smoothed number of Pareto-optimal
solutions in bicriteria integer optimization slightly to match its known
lower bound.

1 Introduction

Optimization problems that arise from real-world applications often come with
multiple objective functions. Since there is usually no solution that optimizes all
objectives simultaneously, trade-offs have to be made. One of the most important
solution concept in multi-objective optimization is that of Pareto-optimal solu-
tions, where a solution is called Pareto-optimal if there does not exist another
solution that is simultaneously better in all objectives. Intuitively Pareto-optimal
solutions represent the reasonable trade-offs between the different objectives, and
it is a common approach to compute the set of Pareto-optimal solutions to filter
out all unreasonable trade-offs.

For many multi-objective optimization problems there exist algorithms that
compute the set of Pareto-optimal solutions in polynomial time with respect to
the input size and the number of Pareto-optimal solutions. These algorithms are
not efficient in the worst case because for almost every problem with two or more
objectives there exist instances with an exponential number of Pareto-optimal
solutions. Since this does not reflect experimental results, where the number of

* This research was supported by ERC Starting Grant 306465 (BeyondWorstCase).



2 Heiko Roglin and Clemens Rosner

Pareto-optimal solutions is usually small, there has been a significant interest
in probabilistic analyses of multi-objective optimization problems in the last
decade.

The analyses in the literature are restricted to linear integer optimization
problems, in which the solutions can be encoded as integer vectors and there
is a constant number of linear objective functions to be optimized. To be more
precise, an instance of a linear integer optimization problem is given by a set
S C{-k,—k+1,...,k}" of feasible solutions for some k € N and d linear ob-
jective functions c',...,c? for some constant d. The function ¢ : S — R is of
the form c¢'(z) = cixy + ...+ cix, for x = (x1,...,x,). Many well-known opti-
mization problems can be formulated as a linear integer optimization problem.
Consider, for example, the bicriteria shortest path problem in which one has to
find a path in a graph G = (V, E) from some source node s to some target node ¢
and every edge has a certain length and induces certain costs. Then every s-t-
path has a total length and total costs, and ideally one would like to minimize
both simultaneously. A given instance of the bicriteria shortest path problem
can easily be formulated as an instance of a linear bicriteria integer optimization
problem by choosing S C {0,1}/”! as the set of incidence vectors of s-t-paths.
Then the coefficients in the two linear objective functions coincide with the edge
lengths and costs.

A particular well-studied case are linear integer optimization problems with
two objective functions. In the worst case it is very easy to come up with instances
that have an exponential number of Pareto-optimal solutions. On the contrary,
it has been proven that the expected number of Pareto-optimal solutions is
polynomially bounded if the coefficients of one of the two objective functions
are chosen at random, regardless of the choice of S C {—k,—k + 1,...,k}"
This is not only true if the coefficients are chosen uniformly at random but also
for more sophisticated probabilistic models like smoothed analysis, in which the
coefficients can roughly be determined by an adversary and are only slightly
perturbed at random. Furthermore, it suffices if only the coefficients of one of
the objective functions are chosen at random; the other objective function can be
adversarial and does not even have to be linear. This can be seen as a theoretical
explanation for why in experiments usually only few Pareto-optimal solutions
exist because already a small amount of random noise in the coefficients suffices
to render it very unlikely to encounter an instance with many Pareto-optimal
solutions.

The analyses in the literature are restricted to the case that the set of solu-
tions is a subset of a discrete set {—k,—k+1,...,k}"™. Consider, for example, the
binary case S C {0, 1}", and assume that we allow a little bit more flexibility in
choosing the set of feasible solutions as follows: every solution z € S C {0,1}"
may be replaced by a solution Z with |z; — Z;| < e for every component i for a
small e. This way a new set of feasible solutions & C [—¢,1 + ¢]™ is obtained.
Intuitively, if € is very small, then the expected number of Pareto-optimal so-
lutions with respect to S and with respect to S should be roughly the same.
However, this is not covered by the previous analyses and indeed analyzing the



Smoothed Number of Pareto-optimal Solutions in Bicriteria Optimization 3

expected number of Pareto-optimal solutions with respect to S seems to be a
much harder problem.

In this paper we initiate the study of more general sets of feasible solutions.
We do not solve the problem in full generality but we will make the first step
towards understanding non-discrete sets of feasible solutions. The idea we use
to obtain bounds for the expected number of Pareto-optimal solutions for the
more general setting allows us also to improve slightly the best known bound
for the bicriteria integer case, matching a known lower bound. In the following,
we will first give a motivating example and then we will discuss our results and
the previous work in more detail.

1.1 Knapsack Problem with Substitutes

In the knapsack problem, a set of n items with profits pi,...,p, and weights
w1, ..., Wy, is given. The goal is to find a vector x € {0,1}" such that the total
profit p(z) = p1z1 + ... + ppx, is maximized under the constraint that the
total weight w(x) = wizy + ... + wya, does not exceed a given capacity B. If
one disregards the capacity, one can view the knapsack problem as a bicriteria
optimization problem in which one seeks a solution from the set S = {0, 1}" with
large profit and small weight. The assumption that profit and weight are linear
functions is not always justified. If some items are substitute or complementary
goods, then their joint profit can be smaller or larger than the sum of their single
profits. Also if the weights represent costs and one gets a volume discount, the
weight function is not linear.

In order to take this into account, we consider a more general version of the
knapsack problem. We allow an arbitrary weight function w : {0,1}" — R that
assigns a weight to every subset of items. Furthermore, we assume that some
function « : {0,1}™ — [0, 1]™ is given and that the profit of a solution z € {0,1}"
is given as p(x) = a(x)1p1 +. .. + a(x),p,. Hence, the function o determines for
each item and each solution the fraction of the item’s value that it contributes.
One could, for example, encode rules like “if the second item is present, the first
item counts only half, and if the second and third item are present, then the first
item counts only a third”.

The question we study in this paper is how many solutions from {0,1}"
are Pareto-optimal with respect to the objective functions p and w. Formally,
a solution = € {0,1}" is Pareto-optimal if there does not exist a solution y €
{0,1}™ that dominates x in the sense that y is at least as good as z in all
criteria and strictly better than z in at least one criterion. Observe that we can
reformulate the model in the following way so that it fits to our discussion above:
We define S = {a(z) | z € {0,1}"} € [0,1]", w : S — R by w(x) = w(a"(z))
for x € S, assuming that « is injective, and p(z) = piz1 + ... + pu2,. Now
the goal is to minimize the arbitrary objective function w and to maximize the
linear objective function p over the set S C [0, 1]™.

As even for the simple linear case one can easily find instances in which
every solution from {0,1}" is Pareto-optimal, it does not make sense to study
this question in a classical worst-case analysis. We will instead assume that the
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profits p1,...,p, are chosen at random and we will prove polynomial bounds
for this case under the assumption that a(x); = 0 for z; = 0 and «(x); > o
for x; =1 for some § > 0 for every x € {0,1}" and every ¢ (i.e., any item that is
not part of a solution does not contribute any of its profit and any item that is
part of a solution contributes at least some small fraction d of its profit). In the
literature only the case that « is the identity has been studied.

Since, we are only interested in the expected number of Pareto-optimal so-
lutions, we do not care how the functions w and a are encoded. Our results
are true for all functions, regardless of whether or not they can be encoded and
evaluated efficiently.

1.2 Smoothed Analysis

Smoothed analysis has been introduced by Spielman and Teng [I5] to explain
why the simplex algorithm is efficient in practice despite its exponential worst-
case behavior. We use the framework of smoothed analysis to study the number of
Pareto-optimal solutions, and we will use the following model, which has already
been used in the literature for the analysis of multi-objective linear optimization
problems.

In our model, we assume that an arbitrary set S C [0, 1]™ of feasible solutions
that satisfies a certain property, which we define below, can be chosen by an
adversary. Furthermore, the adversary can also choose an arbitrary objective
function w : § — R, which is to be minimized. Finally a second linear objective
function p : S — R is given, which is to be maximized. This function is of
the form p(z) = p1z1 + ... + ppx, and in contrast to a worst-case analysis we
do not allow the adversary to choose the coefficients p1,...,p, exactly but we
assume that they are chosen at random. For this, let ¢ > 1 be some parameter
and assume that the adversary can choose, for each coefficient p;, a probability
density function f; : [0,1] — [0, @] according to which p; is chosen independently
of the other profits.

The smoothing parameter ¢ can be seen as a measure specifying how close
the analysis is to a worst-case analysis. The larger ¢, the more concentrated
the probability mass can be: the adversary could for example define for each
coefficient a uniform distribution on an interval of length é from which it is
chosen uniformly at random. This shows that for ¢ — oo our analysis approaches
a worst-case analysis.

In the following, we will even allow a different parameter ¢; for each coeffi-
cient ¢;, i.e., the density f; is bounded from above by ¢;. Then ¢ = max;cp,) ¢,
where [n] denotes the set {1,...,n}. We define the smoothed number of Pareto-
optimal solutions as the largest expected number of Pareto-optimal solutions
that the adversary can achieve by choosing the set S, the objective function w,
and the densities f1,..., fn-
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1.3 Previous Results

Multi-objective optimization is a well studied research area. There exist several
algorithms to generate Pareto sets of various optimization problems like, e.g.,
the (bounded) knapsack problem [8| [I2], the bicriteria shortest path problem
[0, 4], and the bicriteria network flow problem [6, II]. The running time of
these algorithms depends crucially on the number of Pareto-optimal solutions
and, hence, none of them runs in polynomial time in the worst case. In practice,
however, generating the Pareto set is tractable in many situations [7], [10].

Beier and Voécking initiated the study of the expected number of Pareto-
optimal solutions for binary optimization problems [2]. They consider the model
described in Section with & C {0,1}™ and show that the expected num-
ber of Pareto-optimal solutions is bounded from above by O(n*®) and from
below by 2(n?) even for ¢ = 1. In [I] Beier, Réglin, and Vécking analyze the
smoothed complexity of bicriteria integer optimization problems. They show
that the smoothed number of Pareto-optimal solutions is bounded from above
by O(n?k?log(k)¢) if S C {0,...,k—1}". This improved the upper bound for the
binary case to O(n?¢). They also present a lower bound of 2(n%k?) on the ex-
pected number of Pareto-optimal solutions for profits that are chosen uniformly
from the interval [—1, 1].

Roglin and Teng generalized the binary setting S C {0,1}" to an arbitrary
constant number d > 1 of linear objective functions with random coefficients plus
one arbitrary objective function [13]. They showed that the smoothed number
of Pareto-optimal solutions is in O((n?¢)7(9)), for a function f that is roughly
f(d) = 2%d!. Tn [9] this bound was significantly improved to O(n?¢¢?(¢+1)/2) by
Moitra and O’Donnel. Brunsch et al. proved in [3] a lower bound of §2(n?=15¢%)
for the same setting. Instead of binary optimization problems Brunsch and
Roglin analyze the smoothed number of Pareto-optimal solutions for multi-
objective integer optimization problems [4]. They consider S C {0,...,k}"
and show that the expected number of Pareto-optimal solutions is in E2(d+1)?
O(nQdd)d(d_H)).

None of these analyses applies to the case that the set S of feasible solutions
is a non-integral subset of [0, 1]™.

1.4 Our Results

We study bicriteria optimization problems in which the set S of feasible solutions
is a finite subset of [0,1]™ and one wants to optimize one arbitrary objective
function w : & — R and one linear objective function p : § — R. We call
w weight and p profit. We do not care about the exact values of w and will
therefore assume that w is given as a ranking on S where solutions with a lower
weight have a higher ranking. In order to obtain interesting results about the
number of Pareto-optimal solutions, it is necessary to restrict the set S. We
define the (k,0)-property as follows.

Definition 1. For given k € N and § € (0,1], a set of solutions S C [0,1]"
satisfies the (k,d)-property if there exist finite sets K; C [0,1] with |K;| < k for
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i € [n], such that for each pair of solutions s # s’ € S either |{i € [n] | s; €
K;} # |{i € [n] | s; € K;}| or there exist indices i,j € [n] such that s; € K,
|si — si| >0, and s} € Kj, [sj — 85| > 6.

Let S C [0,1]™ be an instance of the Knapsack Problem with Substitutes, as
described in Section Recall that different solutions s # s’ € S differ in the
coordinates with a value of 0, i.e., there exists ¢ € [n] such that either s; = 0 #
or s; # 0 = s. Since the value of each coordinate has to be 0 or at least 6 we
can set K; = {0} for every i € [n] and see that S has the (1, d)-property.

For finite bicriteria integer optimization problems we have S C {—k, —k +
1,...,k—1,k}"™ for some k € N. For such sets the definition of the (k, d)-property
does not apply immediately. Instead we can first shift and then scale S to obtain
Sc{o= A3 2 =1}" C [0,1]" (First add k to every coordinate of every
solution and then divide the result by 2k). This shifting and scaling does not
change the profit order and with the same ranking as before the shift, Sand S

have the same number of Pareto-optimal solutions. With K; = {0, i, oo 1h it
is easy to see that S has the (2k + 1, Ti)—property.

In this paper, we present an approach for bounding the smoothed number of
Pareto-optimal solutions for bicriteria optimization problems that have a finite
set S C [0,1]™ of feasible solutions with the (k,d)-property. The general idea
underlying our analysis is similar to the one used by Beier, Roglin, and Vocking
[1] to analyze integer problems. The basic idea is to partition the Pareto-optimal
solutions into different classes and to analyze the expected number in each class
separately. Roughly the class of a Pareto-optimal solution « is determined by the
indices in which it differs from the next Pareto-optimal solution, i.e., the Pareto-
optimal solution with smallest weight among all Pareto-optimal solutions with
larger profit than z.

To analyze the expected number of Pareto-optimal solutions in one class, we
first partition the interval [0, n] of possible profits of solutions from S uniformly
into small subintervals. Then, by linearity of expectation, it suffices to bound for
each subinterval I the expected number of Pareto-optimal solutions with a profit
inI.Let I = [t—e,t) for some ¢t and € > 0 be such a subinterval. If ¢ is very small,
then with high probability I contains either none or exactly one Pareto-optimal
solution. Hence, the expected number of Pareto-optimal solutions in I equals
almost exactly the probability that there exists a Pareto-optimal solution whose
profit lies in I. In order to bound this probability, we use the principle of deferred
decisions as follows. First we uncover all profits except for the profit p; for one
of the positions ¢ in which z differs from its next Pareto-optimal solution. This
information suffices to identify a set of candidates for a Pareto-optimal solution
in I. That is, if there exists a Pareto-optimal solution in I, then it must come
from this set of candidate solutions. Beier, Roglin and Vocking [I] treated each
of these candidates separately and used linearity of expectation to bound the
probability that any of them becomes a Pareto-optimal solution with profit in I.
This is not possible anymore in our more general setting because there could be
an exponential number of candidates. We instead use a new method, in which
we exploit dependencies between the different candidates. This allows us to treat
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the set of candidates as a whole and to obtain a better bound on the probability
that one of them becomes a Pareto-optimal solution with profit in 1.

Theorem 2. Let £k € N, § € (0,1], and let S C [0,1]™ be a set of feasible
solutions with the (k,d)-property and some arbitrary ranking w. Assume that
each profit p; is a random variable with density function f; : [0,1] — [0, ¢;] and
let ¢ = max;cp,) ¢;. Let q denote the number of Pareto-optimal solutions in S.

Then
B n? < B n3ko
Elg] = 0 (5 zm) —o("5%).

We will show that every set of solutions S C {0,...,k — 1}" can be scaled
into a set of solutions S’ € [0, 1]™ with the (k, %)—property. For bicriteria integer
optimization problems we then further improve our analysis to improve the best
previous result [I] and match the known lower bound 2(n?k?) [1] for constant

o.

Theorem 3. Let S C D" be a set feasible solutions with a finite domain D =
{0,...,k — 1} C Z and an arbitrary ranking w. Assume that each profit p; is a
random variable with density function f; : [0,1] — [0, ¢;] and let ¢ = max;cpy) ¢;-
Let g denote the number of Pareto-optimal solutions in S. Then

Elq)=0 (nk2 zn: @) =0 (n’k*¢).

We also show a lower bound of £2(min{($)!°#3(2),2"}) for the expected num-
ber of Pareto-optimal solutions in an instance with the (1, §)-property, where all
profits are drawn according to a uniform distribution on the interval [%,1]. This
shows that the dependence on § in Theorem [2 is necessary.

2 Upper Bound on the Expected Number of
Pareto-optimal Solutions

As discussed above, the methods and ideas we use in this chapter are inspired
by the analysis of Beier, Roglin and Vécking [I]. We adapt their approach to the
non-integer setting and also improve their analysis of the integer case.

Lemma 4. Letk € N, £ € [n], 6 € (0,1], and let S C [0,1]™ be a set of solutions
with the (k,d)-property. Assume K; C [0,1] with |K;| = k; < k for i € [n] to be
corresponding sets for the (k,0)-property of S. Also let |{i € [n] | s; € K;}| =¢
for every solution s € S. Assume that each profit p; is a random variable with
density function f; : [0,1] — [0,¢;] and let ¢ = max;cp,) ¢s. Let q denote the
number of Pareto-optimal solutions in S. Then

n . . 2
Elq] < (Z 47”;1@) +1< 4n5k¢ +1.

=1
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Proof. The idea of the proof is to partition the set of Pareto-optimal solutions
into different classes and to compute the expected number of Pareto-optimal
solutions in each of these classes separately. Let P C S denote the set of all
Pareto-optimal solutions. For each Pareto-optimal solution s € P, except for the
one with largest profit, let next(s) := argmin{p(s’) | s’ € P and p(s’') > p(s)}
denote the Pareto-optimal solution with the next larger profit than s. Now let
s € P be an arbitrary Pareto-optimal solution that is not the one with the
largest profit. By definition of the set S, there has to be an i € [n] such that
next(s); = v for some v € K; and |s; —next(s);| > 6. We then say that s belongs
to the class (4, v). With the Pareto-optimal solution with the largest profit being
a separate class by itself, every Pareto-optimal solutions is part of at least one of
the classes. Note that a Pareto-optimal solution can belong to several different
classes.

Let i € [n] and v € K;. We will now analyze the expected number of Pareto-
optimal solutions in class (i, v). For this we consider the set

Siw={s" €[-1,1]" | 3s € S such that s} = 5; —v and Vj € [n] \ {i} : 5; = 5} }.

For each solution s € S the set S;, contains a corresponding solution s’, which
is identical to s except for the i-th coordinate, where it is smaller by v. This does
not change the profit order of the solutions because the profit of each solution in
Si.v is smaller by exactly v - p; than the profit of its corresponding solution in S.
Given the same ranking (i.e., the same weight function) on S; ,, as on S, there is
a one-to-one correspondence between the Pareto-optimal solutions in S and S, ,,.
Hence, instead of analyzing the number of class (i,v) Pareto-optimal solution
in S, we can also analyze the number of class (i,0) Pareto-optimal solutions in
Siv. Instead of class (7,0) Pareto-optimal solutions, we will use the term class
Pareto-optimal solutions in the following. The following lemma concludes the
proof by summing over the Y I | k; different choices for the pair (i,v). Note
that the term +1 in the lemma accounts for the Pareto-optimal solution with
the largest profit. O

Lemma 5. Consider the setting described in Lemmal4 and let i € [n] andv € K;
be arbitrary. Let ¢’ denote the number of class i Pareto-optimal solutions in S; ,,.
Then

dng;

Elq] < —

Proof. The key idea is to prove an upper bound on the probability that there
exists a class ¢ Pareto-optimal solution in S; ,, whose profit falls into a small
interval [t — g,t), for arbitrary ¢ and ¢ > 0. We use the principle of deferred
decisions and will assume in the following that all profits p; for j # i are already
fixed arbitrarily. We will only exploit the randomness of p;.

We want to bound the probability that there exists a class ¢ Pareto optimal
solution, whose profit lies in the interval [t—¢, t). Let Sy,—0 := {s € S;» | 8; = 0}.
Define 27 to be the highest ranked solution € S,,—¢ satisfying p(z) > t and
define X* := {z7,23,... 2, _} to be the set containing z7 and all solutions
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x € Sg,=o that are Pareto-optimal with respect to the set S;,—0 and that satisfy
t—e < p(z) < t. We assume X~ to be ordered such that for all 7 € X* we have

p(x}) < p(zj_;) (see Figure 1)).

Rank
(in decreasing order)

Fig. 1: Example of S;,—o, with solutions in X* = {z¥, 2}, 2%, 25} marked as such.

Note that the solutions in X* do not have to be Pareto-optimal in S; ,, (they
could be dominated by solutions outside of S;,—¢) and that X* does not have
to contain any solutions. If S;, contains a class ¢ Pareto-optimal solution z,
whose profit falls into the interval [t — ¢,¢), we have next(x) € S;,—o. Since
next(z) is Pareto-optimal in S, ,, it has to be Pareto-optimal in S;,—¢ as well.
We claim next(z) € X*. Assume next(x) ¢ X*, then p(next(x)) must be at least
t and therefore next(z) must have a lower rank than xf. Since next(x) is Pareto-
optimal we must have p(next(z)) > p(z7). By the definition of next(z) there can
be no Pareto-optimal solution z’ in §;,, with p(z) < p(z') < p(next(z)), which
means that there can be no Pareto-optimal solution in S;, that dominates z7
but not next(z), which is a contradiction. Analogously it follows that next(x)
is the solution with the highest rank among all 7 € X* with p(z}) > p(x). If
next(z) = zj for some j < my., then p(x) € [p(z];,),p(})), and if next(x) =
27, .. then p(a) € [t — £,p(a}, .)).

In order to analyze the probability that there exists a class ¢ Pareto-optimal
solution, whose profit lies in the interval [t — e,t), we look at each r; € X*.
Let r1 = t, 7, .41 = t — ¢ and r; = p(x}) for j € {2,...,m}. We will, for
each j € [my ], bound the probability that S; ., contains a class ¢ Pareto-optimal
solution, whose profit lies in the interval [rj;1,7;).

Let j € [my.] and let &; denote the solution that has the largest profit
among all solutions = with |z;| > J that are higher ranked than x}. Assume
that there exists a class 7 solution x with profit in the interval [r;41,7;). Then
z} has to be a Pareto-optimal solution and x has to be higher ranked than z7,
because otherwise z would dominate z. Let y denote the solution, among all
solutions that are higher ranked than z7, that has the largest profit. Since z7 is
Pareto-optimal, y is Pareto-optimal as well and has less profit than z7. Since we
assume z to be a class 7 solution with profit in the interval [rj;1,7;) we know
next(z) = z; and therefore z = y and = = ;.
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We now aim to bound the probability that &; is a class ¢ Pareto-optimal
solution and falls into the interval [rj41,7;). Define

A(t’j) _ {’I"j — p(f]) if IAZj eX.iStS
1 otherwise.
Let P denote the set of class i Pareto-optimal solutions and €; = r; —r;41 for all
J € [my,c]. Whenever there exists a class 4 solution « € P with p(x) € [rj41,75),
the choice of Z; implies that = &; and hence A(t, j) € (0, ¢/].
Then
Pr[3z € P : p(z) € [rj41,75)] < Pr[A(t, ) € (0,¢]).

Since the expected number of class ¢ Pareto-optimal solutions can be written
as

/°° lim Pri3z e P:p(zx) €t — 6,t)]dt

00 e—0 £

dt

lim
00 e—0 £

- /‘XJ ) Z;ntf Pr(3z € P:p(x) € [rjt1,75)]

<

lim
o e—0 [

/OO ) Z;mf Pr[A(t, j>e(078j]]dt

lim
_n e—0 e

[y TR € O,

where the last equality comes from the fact that all solutions have a profit in
[—n,n], it remains to analyze the terms Pr[A(¢, j) € (0,¢;]].

Let SIil20 = {z € S, | |2;] > 6} and S¥=* = {x € S;,, | x; = u}. For
all j € [my.] let £; consist of all solutions from S 12:120 that have a higher rank
than z7 and let £¥ consist of all solutions from S**=" that have a higher rank
than z7. Let 27 denote the lowest ranked Pareto-optimal solution from the set
Ej, Le., 2 has the largest profit among all solutions in K;-‘.

The identity of z} is completely determined by the profits py, ¢ # i. For
all w € [~1,1] the set £ and therefore the existence and identity of #¥ are
completely determined by those profits as well. Hence, if we fix all profits except
for p;, then Z7 is fixed and its profit is ¢, +up; for some constant ¢, that depends
only on the profits already fixed. The identity of £; still depends on the exact
value of p;, but independent of p; it has to be equal to &% for some u € [—1,1] with
|u| > §. More specifically we have &; = argmax{p(& ) | 2} exists and |u\ > 6},
which depends on the exact value of p;. We can view {x“ | x exists and |u] > §}
as the set of candidates, which could be a a class ¢ Pareto—optimal solution with
profit in the interval [r; 1, 7;).

This means that ¥ takes a profit in the interval [rj41,7;) if and only if p; lies

SRS —

in the interval [by, b, 4 =2) := [FE = Li=Cu) ip case u > 0 and (by, by, + =L ] =
(% H—fu] in case u < 0. Let b = min{b, | u € [§,1] and &% exists} and let

u' = argmin{b, | u € [6,1] and 2} exists}. Then for p; < b and all u € [4, 1] we
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have p(&%) < 741 and for p; > b+ 2% we have p(i';-*l) >r;. Let b/ = max{b, |u €
[—1,—0d] and 27 exists} and let u” = argmax{b, | u € [-1, -] and I} exists}.
Then for p; < we have p(ﬁ}//) > r; and for p; > b’ + _ij,, and all u € [-1, —J]
we have p(#}) < r;+1. This implies that for all p; ¢ [b,b+ %) U@, b + =L] we

w’

have p(Z;) ¢ [rj+1,7;). Hence we obtain Pr[A(t, j) € (0,¢;]] <¢; (% + _qif,,) <

26
ity
Now we can bound the expected number of Pareto-optimal solutions:
Mie . 2¢;

n e o n 26 n ) )
E[q'] S/ lim Zﬂ_l”dt:/ lim =0 dt:/ lim 220 g — 4191,

n e—0 £ n e—=0 € n e—0 6 5

We now show Theorem [l

Proof (Proof (Theorem [d)). For £ € [n]let S; = {s € S | [{i € [n] | s; €
K;}| = ¢}, where the K; C [0,1] with |K;| = k; < k for ¢ € [n] denote the
corresponding sets for the (k, d)-property of S. Let Py denote the set of Pareto-
optimal solutions in &y and let P be the set of Pareto-optimal solutions in S.
Let s € P be a Pareto-optimal solution in §. Then there exists no solution
s’ € S that dominates s. For some ¢ € [n] we have s € Sy. Sy C S implies that
no solution s’ € S dominates s. Therefore s is also Pareto-optimal in Sy, i.e.,
s € Py. This implies P C U@E[n] Py. Let g, denote the number of Pareto-optimal
solutions in Sy, i.e., gy = |Pe|. Lemma |4| and linearity of expectation yield

4n &
< < _ .
Elq] < Zg[ }E[qz] +1< eg[ | ( 5 ;:1 kig; + 1) +1

Anke

5 +n+1.

4n? &
:%Zkﬂi-#ﬂ‘*‘lﬁ
i=1

Here the additional 1 comes from a possible solution s € § with |[{i € [n] | s; €
K;}| = 0. The (k,J)-property ensures that there can exist at most one such
solution. This concludes the proof. a

We now prove Theorem

Proof (Proof (Theorem @) We take a look at the scaled version &' = {+s |
s € S}, where 1s denotes the solution s’ with s} = +s; for all i € [n]. Since
this scaling operation changes the profit of every solution by a factor of %, the
two sets 8’ and S have the same number of Pareto-optimal solutions. Setting

K={41]i€{0,...,k—1}} and § = ; we can apply Lemmato obtain

n

Elg) <> 47;’;;5 +1<4nk?) ¢i+1=0 (nk2 Zaﬁi)
i=1

i=1 =1
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3 A Lower Bound

In this section we will show a simple lower bound for the expected number of
Pareto-optimal solutions. For a given ¢ € (0, 1] we will show how to find a set
of solutions S C ({0} U [0, 1])™ with the (1,d)-property such that the number
of Pareto-optimal solutions in S is 2(min{2", (3)!°8s(?)}), assuming that all
profits are drawn uniformly at random from the interval [%, 1]. Furthermore, the
coordinates of the solutions in S will take at most n+ 1 different values, showing
that a bound on the number of different values alone is not sufficient to obtain
a polynomial bound on the number of Pareto-optimal solutions.

Theorem 6. Suppose profits are drawn according to a uniform distribution from
the interval [1,1]. Then for every § € (0,1] there exists a set S C ({0} U [6,1])"
with the (1,8)-property and a ranking on S such that the number of Pareto-
optimal solutions in S is £2(min{($)08s(2) 2n}).

Proof. Fori € [n], let 2; = 51 and let 8" = {0, 21} x {0, 22} x ... x {0, 2, }. The
choice of x; guarantees that for all i € [n] we get 5 > 377 ;. x;. This implies
that regardless of how the values of the profits p; for i € [n] are chosen, the
lexicographical order of the solutions is equal to their profit order. When we use
the lexicographical order as our ranking as well, this implies that all solutions
are Pareto-optimal. We will define § = {s € &' | Vi : s; € {0} U[§, 1]} to be the
subset of S’ that contains only the solutions, whose coordinates have values of 0
or at least 0. We get S = {0, 21} x {0, 22} x ... % {O’xl_logg %JH} x {0} x...x{0}

for the case |logg | +1 < n and S = &' otherwise. With K; = {0} for all i € [n]

we can see that S has the (1, d)-property. The set S contains min{2", 2 [logs % | 1
different solutions, and as we have seen, all solutions are Pareto-optimal. The

observation that (3)1°8s(2) = 9123(3) concludes the proof. O

4 Conclusion and Open Problems

We defined for bicriteria optimization problems with a finite set of solutions
S C [0,1]™ the (k,d)-property and showed how to obtain an upper bound for
the smoothed number of Pareto-optimal solutions in instances with the (k,d)-
property. It is easy to see that the (k,d)-property can be applied to any finite
set of solutions. However, in general § can be arbitrarily small.

Lemma 7. Let S C [0,1]™ be a finite set of solutions. There exist k € N and
0 € (0,1], such that S has the (k,d)-property.

Proof. Let Es = {x € [0,1] | 3s € S,i € [n] : s; = x} denote the set of
values that the coordinates of the solutions in S take. Let k = |Eg| and 0 =
mingyep, | — y|. Since S is a finite set, this is well defined and we get k € N
and § € (0,1]. We choose K; = Es for all i € [n]. Let s # s € S be two different
solutions then there must exist ¢ € [n] such that s; # s;. By definition of K;
and § we have s; € K;, s, € K; and |s; — s;| > §, which yields that S has the
(k, d)-property. O
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As our upper bound on the expected number of Pareto-optimal solutions
depends on both k and §, one can ask if there exists an upper bound that
depends only on k or only on . Theorem [6] shows there can be no polynomial
upper bound only in n, ¢, and k. On the other hand, we conjecture that there
exists an upper bound for the smoothed number of Pareto-optimal solutions
that depends polynomially on n, ¢ and the inverse of the minimum distance
ming£yes||s — s'|| between solutions.
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