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Abstract. We study an extension of the unit-demand pricing problem
in which the seller may offer bundles of items. If a customer buys such
a bundle she is guaranteed to get one item out of it, but the seller does
not make any promises of how this item is selected. This is motivated
by the sales model of retailers like hotwire.com, which offers bundles of
hotel rooms based on location and rating, and only identifies the booked
hotel after the purchase has been made.

As the selected item is known only in hindsight, the buying decision
depends on the customer’s belief about the allocation mechanism. We
study strictly pessimistic and optimistic customers who always assume
the worst-case or best-case allocation mechanism relative to their per-
sonal valuations, respectively. While the latter model turns out to be
equivalent to the pure item pricing problem, the former is fundamentally
different, and we prove the following results about it: (1) A revenue-
maximizing pricing can be computed efficiently in the uniform version,
in which every customer has a subset of items and the same non-zero
value for all items in this subset and a value of zero for all other items.
(2) For non-uniform customers computing a revenue-maximizing pricing
is APX-hard. (3) For the case that any two values of a customer are
either identical or differ by at least some constant factor, we present a
polynomial time algorithm that obtains a constant approximation guar-
antee.

1 Introduction

Algorithmic pricing deals with the problem of efficiently determining revenue-
maximizing ways of selling a collection of items given information about the
preferences of the potential customers in the target market. The traditional way
of selling items consists of posting a price for each individual item, then letting
customers pick the bundle of items they prefer and charging them the sum of
prices of items they select. The problem of finding such an item pricing under
various kinds of customer preferences has received a lot of attention recently [1,
2,6,7,14] and in many cases, its approximation complexity is quite well under-
stood.



Two fundamental classes of customer preferences have been particularly well
investigated. Customers are referred to as single-minded, if items constitute strict
complements and each customer is interested in purchasing one particular subset
of the items. We say that customers are unit-demand, if items are strict substi-
tutes and each customer is interested in buying a single item out of some set
of alternatives. Assuming unlimited supply of all the items, it is known that in
both of these settings the revenue-maximizing item pricing can be approximated
within factors that are logarithmic in the number of customers or linear in the
number of items [14] and, under appropriate complexity theoretic assumptions,
no essential improvement beyond these guarantees is possible [4, 11].

In a recent paper Briest et al. [5] consider the unit-demand pricing problem,
but instead of trying to find a revenue-maximizing item pricing, allow to sell
items via a so-called system of lotteries. Here, rather than posting prices for
individual items, the seller may offer a collection of lottery tickets, each such
ticket representing a probability distribution over items and an associated price.
A customer purchasing some given ticket will be asked to pay its price and
in turn receive an item randomly sampled from the ticket’s distribution. It is
shown in [5] that depending on the details of the underlying model of customer
behavior this larger class of selling mechanisms can lead to a significant increase
in revenue while simultaneously allowing for much better algorithmic solutions.

While, apart from its intrinsic connection to the process of haggling in price
negotiations [16,17], we are not aware of any lottery-like pricing mechanism
being applied directly in practice at this point, a related - yet different - method
is being employed by several companies. This method also consists of bundling
subsets of items and pricing bundles of items rather than individual items, and
again the understanding is that a unit-demand customer will receive a single item
from the bundle she picks. The crucial difference to the lottery-based system
described above lies in the fact that the seller does not make any promises as
to how the item allocated to the customer will be selected. This might be done
according to some probability distribution unknown to the customers, but it
might also be done in any other conceivable fashion, e.g. guided by production
costs or availability. One prominent example of a retailer employing this kind
of pricing scheme is the website hotwire.com, where hotel rooms are bundled
according to their location and star rating. Customers can book offers of the
form “3 nights in the Philadelphia downtown area, 4 stars and up for $279” and
will receive information about the exact hotel they will be staying at only after
payment has been made.

Formalizing this kind of unit-demand bundle-pricing problem brings up some
modeling issues. Rational unit-demand customers are commonly modeled as as-
signing a value to each of the items and upon observing the item prices selecting
the item maximizing their wutility, defined as the difference between the cus-
tomer’s respective value and its price. While this concept of rationality extends
quite naturally to lottery-based pricing (every lottery holds a fixed ezpected util-
ity to a customer), it is not obvious what to do in the bundle pricing setting.
A customer’s value for a given bundle depends on the actual item she receives



and, thus, will only be known in hindsight and, consequently, the buying deci-
sion itself has to depend on the customer’s belief about the seller’s allocation
mechanism. In this paper, we will investigate the two most basic ways of mod-
eling these beliefs and assume that customers assign to each bundle either the
minimum or maximum value of any item contained in it. Intuitively, this cor-
responds to strictly pessimistic or optimistic customers who will always assume
the worst-case or best-case allocation mechanism relative to their personal val-
uations, respectively. Before we give an overview of the results presented in this
paper, let us introduce the problem more formally.

1.1 Preliminaries

The standard unit-demand pricing problem (UDP) is defined as follows. Given a
set of items Z, each available in unlimited supply, and a collection of customers
C, each described by a wvaluation function v, : T — Rar , we want to assign prices
to the items such as to maximize the overall revenue. More precisely, we assume
that given prices p(i) for all i € Z, a customer ¢ € C will choose to purchase item

ic(p) = argmax;c7(ve(i) — p(i)),

whenever that item’s price does not exceed her respective value. To avoid tech-
nicalities, we assume that there is a special item @ with v.(@) = 0, which is
always assigned price 0. The quantity v.(i) — p(¢) is termed customer ¢’s utility
from purchasing item 4 at price p(i). We will also assume that whenever there
are multiple items yielding identical utility, a customer will pick the one with
highest price among them.® In this way, item i.(p) is well defined for any set of
prices p. The revenue of a price assignment p is

rev(p) = Y _ p(ic(p))-
s

In the unit-demand bundle-pricing problem (UDBP) considered in this paper
we are again given a ground set Z of items and a collection C of unit-demand
customers. The output is a collection B C 27 of bundles of items and prices p(B)
for all bundles B € B. If a customer decides to purchase a bundle B of items,
she is guaranteed to receive an item from B. However, a customer does not have
any information regarding the details of how the particular item she will receive
is selected once the bundle is bought. Consequently, a customer’s value for any
given bundle has to depend on her belief about the selection procedure.

Most of this paper will be focused on the case of pessimistic customers who
will assign to each bundle its worst-case value (UDBP-MIN). Formally, a cus-
tomer with (unit-demand) valuation function v, : Z — R will value bundle
B C1T at

ve(B) = Illélgvc(z)
3 This assumption is w.l.o.g., since in case of a tie decreasing all prices by a factor
of (1 — ¢) for an arbitrary value of € ensures that for each customer the utility-
maximizing item is one of maximal price.



As in standard unit-demand pricing, given prices p each customer will purchase
her utility-maximizing bundle

Be(p) = argmax pe(ve(B) — p(B)),

where we assume that the empty bundle () € B has price p() = 0 and is valued at
0 by all customers. Furthermore, ties are again broken in favor of more expensive
bundles.

There are of course numerous other ways of extending unit-demand valuation
functions to the set of all bundles. In this paper, we will also briefly look at
the complementing case of customers assigning each bundle its best-case value
(UpBpP-MAX), formally,

Ue(B) = I}leaé(vc(i).
Other models, in particular those assuming some kind of probabilistic selection
method, are beyond the scope of this paper, but might also be of much interest,
particularly as some of them are essentially variations of the lottery concept
investigated in [5] and might have applications in the design of truthful revenue-
maximizing auction mechanisms [3,12, 15].

By uniform UDBP we refer to the restricted problem version in which cus-
tomers’ valuation functions assign identical (positive) values to some subset of
the items and value 0 to all items in the complement of this subset. Formally,
every customer is characterized by the set S. C Z of items she desires and her
value v, € R* for receiving any such item.

1.2 Contributions

We will first consider UDBP-MIN and present a number of algorithmic and com-
plementing hardness results. In Section 2 we present a polynomial time algorithm
for uniform UDBP-MIN, which is essentially based on two main ingredients.
First, we observe that the number of bundles that might be part of an optimal
bundle-pricing is small and, in fact, we can derive the set of bundles we need to
consider immediately from the given set of customers. We then show that the
extension of the valuation functions to this collection of bundles is very nicely
structured, as a consequence of which one can apply techniques from [8] to solve
the problem. More precisely, if we define a relation between bundles depending
on whether there exists a customer who strictly prefers one of them to the other,
this relation turns out to be transitive, as a consequence of which we can reduce
the bundle-pricing problem to solving a weighted independent set problem in a
perfect graph.

We proceed by considering the general (i.e., non-uniform) case of UDBP-
MIN which turns out to be significantly more complex. In Section 3 we show
that general UDBP-MIN is APX-hard. This is true even if all customers have
non-zero values for at most 2 items and there are only 3 distinct values among all
of them. The main distinction of our reduction from previous hardness results for
unit-demand pricing problems stems from the fact that because of the enlarged



solution space (containing all possible bundles of items) we need to argue about
a significantly larger set of potential solutions to prove that the reduction is
indeed approximation preserving.

On the algorithmic side, we introduce the concept of a-coarse instances,
in which any two values of a single customer must be identical or differ by a
factor of at least a. We present a polynomial time algorithm that obtains a
constant approximation guarantee for any given constant value of av > 1. This is
an interesting distinction from the several related item pricing problems, where
the known inapproximability results suggest that coarse instances in particular
seem to form the hard core of the problem [4]. The algorithm is based on a
novel reduction of the general to the uniform problem, in the process of which
each general valuation function is simulated by a carefully tailored collection of
uniform valuation functions yielding similar revenue under all relevant pricings.
This reduction is also interesting in its own right, as it can be applied to other
unit-demand pricing problems as well, yielding similar algorithmic results as long
as the uniform problem version allows for a good approximation. In particular,
we can obtain constant factor approximation algorithms for a-coarse instances
of UDP with price-ladder constraint [1], i.e., when the relative order of item
prices is predetermined, as the uniform version of this problem is known to be
solvable in polynomial time via dynamic programming. These results are found
in Section 4.

Finally, we briefly turn to UpBP-MAX and show that this problem behaves
fundamentally different from UDBP-MIN. In Section 5 we argue that the problem
turns out to be equivalent to the pure item pricing problem and, thus, all results
known for UDP carry over in this case.

2 A Polynomial-Time Algorithm for Uniform UpBp-MIN

The first main ingredient for our polynomial-time algorithm for uniform UpBp-
MIN are the following observations regarding the structure of the optimal collec-
tion of bundles and their prices. Note, that Definition 1 and Proposition 2 also
apply to non-uniform UpBp-MIN.

Definition 1. For a customer ¢ with valuation function v. : T — R(J{ we let
LY ={i e T|v.(i) > v}.
We say that LY is customer c’s level-v set.

Proposition 2. Let (Z,C) be an instance of UDBP-MIN. Then there exists a
revenue-maximizing collection B of bundles with corresponding prices p, such
that BC {LY|c€C,v € R} }.

Proposition 3. Let (Z,C) be an instance of uniform UDBP-MIN and (B,p) a
revenue-mazimaizing solution. It holds w.l.o.g. that B C {S.|c € C} and p(i) € P
for all i € Z, where P = {v.|c € C}.



The proofs of Propositions 2 and 3 are left for the full version of this paper.
Proposition 3 states that in the uniform case of UDBP-MIN both the set of
possible bundles and the set of possible prices that can appear as part of an
optimal solution are quite managable. In particular, the problem of computing
an optimal bundle pricing reduces to deciding which customers should purchase
their respective bundles S, and at which price from P.

Similar to the approach first introduced in [8], we will transform the prob-
lem of computing the optimal bundle pricing into a weighted independent set
problem and argue that the resulting graph is perfect, which allows us to solve
the independent set problem in polynomial time [13]. We use (¢, S, p) to denote
the fact that customer ¢ purchases bundle S, at price p. We create a vertex with
label (¢, S¢,p) and weight p for every ¢ € C and p € P with p < v.. Then we
create a directed edge from the vertex with label (¢, S.,p) to the vertex with
label (d, S4,¢), if and only if Sy C S. and ¢ < p. Let us refer to the resulting
directed graph as G and let G refer to the same graph but with undirected edges.

Lemma 4. Graph G as constructed above is perfect.

The proof of Lemma 4, which is an application of the strong perfect graph
theorem [9] and essentially similar to the proof given in [8], is omitted due to
space limitations. Lemma 4 immediately yields a polynomial time algorithm for
uniform UDBpP-MIN.

Algorithm 1: Poly-Time Algorithm for Uniform UDBP-MIN.

(1) Given instance (Z,C), construct the perfect weighted graph G containing a
vertex with label (¢, S¢, p) and weight p for all ¢ € C, p € P with p < v, and an
edge between vertices with labels (¢, S¢,p) , (d, Sq, q) iff either S. C Sy and
p<qorSqgCS.andq<p.

(2) Find a maximum weight independent set in G.

(8) For each vertex in the independent set, if it has label (c, Sc, p), offer bundle
S. at price p.

Theorem 5. Algorithm 1 returns a revenue-mazximizing bundle pricing in poly-
nomaal time.

Proof. By Proposition 3 there always exists a revenue-maximizing bundle pric-
ing in which every customer ¢ € C buys bundle S, or nothing at all and all prices
are chosen from the set P. Clearly, for any customer purchasing bundle S, at
price p it must be the case that no bundle B C S. is offered at a price below p, as
buying this bundle would yield higher utility for customer c¢. Consequently, the
bundle pricing corresponds to an independent set in G of total weight equal to
the revenue obtained by the bundle pricing. Similarly, setting prices according to
an independent set in G ensures that customer ¢ purchase bundle S, at price p
whenever the vertex with label (¢, S., p) is part of the independent set. Thus, we
have a one-to-one correspondence between bundle pricings and weighted inde-
pendent sets in G and it follows that Algorithm 1 returns a revenue-maximizing
pricing,.



Polynomial running time follows from the observation that graph G has at
most a polynomial number |C| - |P| of vertices and the fact that it is perfect
by Lemma 4, so finding a maximum weight independent set can be done in
polynomial time. a

3 Hardness of Approximation of UbDBp-MIN

In this section we show that UDBpP-MIN is APX-hard. In particular, we show
that there is no polynomial time approximation algorithm achieving a revenue
of at least (428/429 + ¢) times the revenue of the optimal bundle pricing, unless
P=NP. This is even true if every customer has non-zero value for at most two
items and there are only three different values among all of them.

Theorem 6. It is NP-hard to approzimate UDBP-MIN within ¢ = 428 4 ¢ for

429
any € > 0.

Proof. Our reduction is from the unweighted MAX Di1cUT problem. An instance
of this problem is a directed graph G = (V, E)), and the goal is to find a partition
of V into (S,V'\ S), where S C V, such that the number of edges that cross this
cut, i.e., edges (u,v) such that u € S but v ¢ S, is maximized. This problem is
not (12/13 + €)-approximable, for any constant e > 0, unless P=NP [10].

Given an instance G = (V, E) of the unweighted MAX DICUT problem, we
create an instance of UDBP-MIN by introducing one item for each node in V'
and 48 customers for each edge in E. For the edge (u,v) € E, we introduce
customers with value 0 for all items in V' \ {u,v} and with the following values
for u and v:

number of customers ¢ ‘ 9 3 3 15 1 3 6 2 6
ve(u) 000 1 1 2 2 24
ve(v) 1 24 0 4 01 4 0

Given these customers, the only bundles for which there exist customers with
non-zero valuation are singleton bundles and bundles {u, v} for edges (u,v) € E.
Hence, we can focus on setting prices for these bundles. Furthermore, any pricing
can be transformed into a pricing using only the prices 1, 2, 3, and 4 and achieving
at least the same revenue as follows: If we have a pricing with prices below 1,
we can first increase all these prices to 1 without decreasing the revenue, then
we can increase all prices strictly between 1 and 2 to 2 without decreasing the
revenue and so on.

If we have already set prices for the singleton bundles {u} and {v} and there
is an edge (u,v) € E, then the (not necessarily unique) price for the bundle {u, v}
maximizing the revenue is determined. A case analysis yields the following table
showing an optimal price for {u,v} and the total revenue obtained from all
customers belonging to edge (u,v) for the different choices of p({u}) and p({v}):

p({u}) 1111222 233334444
p({v}) 1 23 4123412341234
opt. price for p({u,o})[1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1

total revenue 48 48 48 48 48 48 48 54 42 42 42 42 48 48 48 48



The following information from the previous table is crucial:

— For any pricing with p({u}) # 3 and p({v}) # 3, there is a choice for p({u, v})
for which all customers belonging to edge (u,v) yield a total revenue of 48.

— For any pricing with p({u}) # 2 or p({v}) # 4, there is no choice for p({u,v})
for which they yield a larger revenue than 48.

— If p({u}) = 2 and p({v}) = 4, then there is a choice for p({u,v}) for which
all customers belonging to edge (u,v) yield a total revenue of 54.

Based on this information, we can relate the maximum directed cut in the
graph G and the revenue-maximizing pricing for the instance of UDBpP-MIN
that we have constructed. If the graph G has a cut (S, V'\ S) crossed by ¢ edges,
then there exists a pricing for the instance of UDBP-MIN with a revenue of
48 - (|E| — £) + 54 - £. For this, we assign a price of 2 to every set {u} with u € S
and a price of 4 to every set {u} with u ¢ S. The prices for the sets {u, v} for
edges (u,v) € E are chosen according to the previous table.

If the optimal pricing of the instance of UDBP-MIN yields a revenue of 48 -
(|E] — €) + 54 - ¢ for some £ € N, then there exists a cut S in G that is crossed
by ¢ edges. To see this, we can assume w.l.o.g. that in the optimal pricing all
singleton bundles have a price of either 2 or 4 because replacing every price of 1
or 3 by a price of 4 does not decrease the revenue. Then if S consists of exactly
those nodes whose corresponding singleton bundle has a price of 2, there are ¢
edges crossing the cut (S,V \ S).

An optimal directed cut of any graph G = (V| F) is crossed by at least |E|/4
edges. In order to see this, consider the undirected (multi)-graph G’ obtained
from G by removing the directions of the edges. In a maximum undirected cut
(S, V\S) of G’ at least half of the edges have one endpoint in .S and one endpoint
in V'\ S. This means that at least a quarter of the edges go from S to V'\ .S or
at least a quarter of the edges go from V' \ S to S.

Assume there was an algorithm achieving a ({3 + €)-approximation for
UDBP-MIN. Let £* denote the maximum number of edges crossing any cut in
graph G, then 48 (|E| — *) +54-£* = 48 - |E| + 6 - £* is the revenue of the opti-
mal pricing in the instance of UDBP-MIN described above. Hence, the algorithm
computes a pricing with revenue 48 - |E| + 6 - £ with

48| E|+6-¢ _
mE+6e 2 €=

%S—l—e.
From this, we derive
(>clr=8-|Bl-(1—¢)>c-£*=32-0*-(1—c) =" (33¢—32) > {*- (12 +¢) .

Hence, ei* > % + ¢, contradicting the hardness of the MAX DicuT problem. O

4 Approximation Algorithm for Non-Uniform UbBp-MIN

Definition 7. For a customer ¢ let V., = {v|3i € T : v.(i) = v} denote the
range of her valuation function. We say that a« UDBP-MIN instance (Z,C) is
a-coarse for some a > 1, if for every ¢ € C and all v,v' € V. with v # v’ it holds
that either v > av’ or v’ > aw.



Algorithm 2: Approximation Algorithm for a-coarse UDBP-MIN.

(1) Given an a-coarse instance (Z,C), construct a uniform instance (Z,C’) as
follows: For every ¢ € C and every v € V., add a customer c(v) with value v and
set of desired items S.(,) = L¢.

(2) Compute an optimal solution (B, p) on this uniform instance.

(3) Return (B, (1 — o ")p).

Theorem 8. Algorithm 2 achieves approzimation guarantee (1/4)(1—a~1)?

a-coarse instances of UDBP-MIN.

on

Theorem 8 above is an immediate consequence of the following two lemmas.

Lemma 9. Let R* denote the optimal revenue obtainable on «-coarse instance
(Z,C) and R’ the mazimum revenue obtainable on the uniform instance (Z,C’)
constructed by the algorithm. It holds that R’ > R*.

Proof. We have seen in Proposition 2 that the collection of bundles B* sold in
the revenue-maximizing solution of instance (Z,C) consists only of level sets of
the customers from C. Now assume that we offer all bundles from B* at the same
prices to the uniform customers constructed by the algorithm. For each customer
¢ € C purchasing her level-v set LY at price p < v, we have a uniform customer
¢(v) with value v for any item in LY by construction, both of which experience
utility v — p from buying bundle LY. On the other hand, customer c¢(v)’s values
for all items are no larger than those of customer ¢ and, consequently, she values
no bundle higher than c. Since buying L? at price p is the utility maximizing
choice for ¢, so it is for ¢(v) and it follows that we collect as much revenue from
¢(v) in the uniform instance as we do from c in the original instance. Summing
over all ¢ € C yields the claim. O

Lemma 10. Let (B,p) be an optimal solution to the uniform UDBP-MIN in-
stance (Z,C’) constructed by the algorithm resulting in revenue R'. Then solution
(B, (1—a~1)p) yields revenue at least (1/4)(1—a~1)2R’ on the original a-coarse
instance (Z,C).

Proof. Let (B,p) be an optimal solution to the uniform UpBp-MIN instance
(Z,C"). By Proposition 3 we may w.l.o.g. assume that B is a subset of the desired
sets of customers from C’ and so it is also a subset of the level sets of the original
non-uniform customers from C. We can also assume w.l.o.g. that every customer
who buys a set buys her desired set and no subset.

Let C| = {c(v) € C'|LY € Band v/2 < p(LY) < v} denote the set of cus-
tomers who purchase their set of desired items at a price of at least half their
value. Note, that it must be the case that customers in C’, contribute total
revenue of at least R'/2. It is easy to argue that if this was not the case, mul-
tiplying all prices by a factor of 2 would increase overall revenue, contradicting
the optimality of (B, p).



Let us refer to the original set of non-uniform customers which have at least
one corresponding customer in C'y as M and sort the customers in C’, according
to the non-uniform customer they represent and their values. For a customer
¢ € M, we define £, to be the number of corresponding customers in C’, . Formally,

let us denote ,
Ch =Uen Uiy {c(”ic) }’

where vf > v§ > - > vf for all c € M. Now let C, = ¢ {c(vf)} be the
thinned out version of C/. which only contains the uniform customer with highest
value for each original customer ¢ € M. Let R, be the total revenue collected
from customers in C.. It holds that

1 1 -
’ c_ (1 _
R2} S = di-a) ¥ (Sam
ceM ceM
1 1 & 1 1
:5 (1-a ZZQ"@{ 5(1—@ 1)2 vfzi(l—a_l)iR’7
ceM i=0 ceM i=1
where we use the facts that v§ < a~""§ since instance (Z,C) is a-coarse and

customer ¢(vf) cannot Contrlbute more than v to the overall revenue of at least
R'/2 collected from customers in C/, .

Finally, let us fix a single uniform customer c(v) € C, purchasing bundle LY
at price p. We observe that it must be the case that all bundles B C LY must
have a price of at least p, as otherwise purchasing LY could not be ¢(v)’s utility
maximizing choice. Now consider the non-uniform customer ¢ corresponding to
c¢(v) and the effect of reducing all prices by a factor of (1 — a~1!). Customer c
has utility

— (1 — a_l)p > — (1 — oz_l)v =a v

from purchasing bundle LY at price (1 — a~!)p. Her value for any bundle con-
taining items from outside LY is at most a~!v by a-coarseness, so none of these
bundles can yield higher utility even at price 0. Bundles strictly contained in
L? could potentially yield higher utility, but by our argument above the price of
any such bundle is at least (1 — a~!)p after decreasing prices and we conclude
that customer ¢ contributes at least as much revenue as ¢(v) under the decreased
prices.

It follows that when offered bundles B at prices (1 — a~!)p, customers C
generate overall revenue of at least (1 — a 1)R, > (1/4)(1 — o~ 1)?R’, which
completes the proof. a

Finally, we briefly mention that the reduction described above has interesting
applications in other varaiants of unit-demand pricing, as well. By UDP-PL we
refer to the item pricing problem as defined in Section 1.1 with an additional
price ladder constraint [1] 7, i.e., a predefined relative order of item prices p, 1) <

* < Pr(n)- It is known that uniform UDP-PL can be solved in polynomial
time via a dynamic programming approach and, by our reduction, we obtain
a (1/4)(1 — a~1)%-approximation for general a-coarse UDP-PL. This stands in



sharp contrast to UDP without price ladder contraint, which does not allow for
constant approximation gurantees even on coarse instances [4].

5 Approximability of UpBpr-Max

In this section we turn to UDBP-MAX where customers are strictly optimistic
and assign to every bundle the maximum value of any item contained in it. We
will see that this model is fundamentally different from UDBP-MIN as it turns
out to be equivalent to the pure item pricing problem.

Let (Z,C) be an instance of UDBP-MaX and let (B, p) be an optimal solution
to that instance. Then we can transform (B, p) into a solution (B’, p’) yielding the
same revenue where B’ consists of singleton sets only. For this, we just need to
replace any non-singleton bundle in B that is bought by a subset {c1,...,¢} CC
of customers by a set of bundles {i1},...,{i¢} where i; denotes the item from
B that customer c; values the most. All these new bundles are offered for price
p(B). For a customer j bundle {i;} has the same value as bundle B and for every
other customer it has at most the same value. Hence, customer j will buy {i;}
and the other customers in C\ {cy,...,c/} are not affected by replacing 5.

This implies that UDBP-MAX and the pure item pricing problem are es-
sentially the same problem. Hence, known results for the latter problem apply
also to UDBP-MAX. In particular, the revenue-maximizing item pricing can be
approximated within factors that are logarithmic in the number of customers or
linear in the number of distinct items [14] and, under appropriate complexity
theoretic assumptions, no essential improvement is possible [4, 11].

6 Conclusions

We have introduced an extension of the unit-demand pricing problem in which
bundles may be offered. This problem is interesting because it models the sales
model of retailers like hotwire.com. We have seen that different assumptions
about the customers’ beliefs yield very different conclusions. While for the case
of pessimistic customers we presented novel algorithmic results, the case of op-
timistic customers boils down to the pure item pricing problem.

There are many interesting questions open. One question arising directly from
our results is whether there exists a constant factor approximation algorithm for
general non-uniform instances of UpDBP-MIN without the additional assumption
of a-coarseness. It would also be very interesting to extend our model to different
beliefs of customers. One could, e.g., study a model in which customers believe
that an item is chosen uniformly at random from the set they buy.
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