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Abstract

Unlike standard congestion games, weighted congestion games and congestion games
with player-specific delay functions do not necessarily possess pure Nash equilibria.
It is known, however, that there exist pure equilibria for both of these variants in
the case of singleton congestion games, i.e., if the players’ strategy spaces contain
only sets of cardinality one. In this paper, we investigate how far such a property
on the players’ strategy spaces guaranteeing the existence of pure equilibria can
be extended. We show that both weighted and player-specific congestion games
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space of each player consists of the bases of a matroid on the set of resources. We
also show that the matroid property is the maximal property that guarantees pure
equilibria without taking into account how the strategy spaces of different players
are interweaved.

Additionally, our analysis of player-specific matroid congestion games yields a
polynomial time algorithm for computing pure equilibria. We also address ques-
tions related to the convergence time of such games. For player-specific matroid
congestion games, in which the best response dynamics may cycle, we show that
from every state there exists a short sequences of better responses to an equilibrium.
For weighted matroid congestion games, we present a superpolynomial lower bound
on the convergence time of the best response dynamics showing that players do not
even converge in pseudopolynomial time.
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1 Introduction

Congestion games are a natural model for resource allocation in large networks
like the Internet. It is assumed that n players share a set R of m resources.
Players are interested in subsets of resources. For example, the resources may
correspond to the edges of a graph, and each player may want to allocate a
spanning tree of this graph. The delay (cost, negative payoff) of a resource
depends on the number of players that allocate the resource, and the delay of a
set of allocated resources corresponds to the sum of the delays of the resources
in the set. A well known potential function argument of Rosenthal [19] shows
that congestion games always possess Nash equilibrial, i.e., allocations of
resources from which no player wants to deviate unilaterally.

The existence of Nash equilibria gives a natural solution concept for conges-
tion games. Unfortunately, this property does not hold anymore if we slightly
extend the class of considered games towards congestion games with player-
specific delay functions, i.e., games in which different players may have dif-
ferent delay functions, and weighted congestion games, i.e., games in which
different players may have different impacts on the delays of the resources they
allocate. For both of these classes one can easily construct examples of games
that do not possess Nash equilibria. In this paper, we study which conditions
on the strategy spaces of individual players guarantee the existence of Nash
equilibria. We only consider games with non-decreasing delay functions since
otherwise one can construct examples of player-specific or weighted singleton
congestion games, i.e., games in which the players’ strategy spaces contain
only sets of cardinality one, that do not possess Nash equilibria.

It is known, however, that there exist Nash equilibria for both of these vari-
ants in the case of singleton congestion games with non-decreasing delay func-
tions [7,16]. We extend these results and show that both player-specific and
weighted congestion games admit pure equilibria in the case of matroid con-
gestion games, i.e., if the strategy space of each player consists of the bases of
a matroid on the set of resources. We also show that the matroid property is
the maximal condition on the players’ strategy spaces that guarantees Nash
equilibria without taking into account how the strategy spaces of different
players are interweaved. Our negative result shows that for every non-matroid
set system there exist a weighted and a player-specific congestion game in
which the strategy space of each player is isomorphic to the given set system
and that does not possess a Nash equilibrium.

In the case of player-specific matroid congestion games, our analysis also yields
a polynomial time algorithm for computing pure equilibria. As the best re-

I In this paper, the term Nash equilibrium always refers to a pure equilibrium.



sponse dynamics of such a game may cycle [16], we address the question
whether a Nash equilibrium can be found by players iteratively playing bet-
ter or best responses. Again, we extend results from player-specific singleton
congestion games, and show that from every state of such a game there exists
a polynomially long sequence of better responses leading to an equilibrium.

For weighted matroid congestion games we do not have an efficient algorithm
for computing a Nash equilibrium, but we show that players playing “lazy
best responses” reach a Nash equilibrium after a finite number of steps, where
a best response is lazy if it exchanges the least number of resources compared
to the current strategy among all best responses. We also address the conver-
gence time to Nash equilibria in weighted matroid games, and present a super-
polynomial lower bound. That is, we present a family of games that possess
superpolynomially long best response sequences. Similar results have already
been presented by Even-Dar et al. [5]. However, they use players with exponen-
tially large weights, whereas the weights in our construction are polynomially
bounded. This implies that players do not converge to a Nash equilibrium in
pseudopolynomial time.

1.1 Related Work

Milchtaich [16] considers player-specific singleton congestion games and shows
that every such game possesses at least one Nash equilibrium. His existence
proof implicitly contains an efficient algorithm for computing an equilibrium.
Additionally, he shows that players iteratively playing best responses in such
games do not necessarily reach a Nash equilibrium, that is, the best response
dynamics may cycle. However, he also shows that from every state of such a
game there exists a polynomially long sequence of best responses to a Nash
equilibrium. Our work generalizes Milchtaich’s analysis from singleton conges-
tion games towards matroid congestion games. Gairing et al. [10] consider the
class of player-specific singleton congestion games with linear delay functions
without offsets and show that the best response dynamics of such games do
not cycle. Milchtaich [17] also observes that player-specific network congestion
games do not possess Nash equilibria in general. Ackermann and Skopalik [2]
prove that the related decision problem is NP-complete.

Milchtaich [16] also addresses the existence of Nash equilibria in congestion
games which are both player-specific and weighted. In this case, a Nash equi-
librium does not necessarily exist in singleton congestion games. However,
Georgiou et al. [11] and Garing et al. [10] conjecture that these games possess
Nash equilibria in the case of linear player-specific delay functions without
offsets.



Fotakis et al. [7] consider a selfish routing game in which the players are
weighted and their strategy spaces are singleton sets. They show that in this
game at least one Nash equilibrium always exists and that players iteratively
playing best responses converge to such an equilibrium. Our proof that every
weighted matroid congestion game possesses at least one Nash equilibrium
reworks the proof in [7]. Even-Dar et al. [5] consider the same game with
respect to the convergence time. They distinguish between different types of
players” weights and different delay functions, and show that players do not
necessarily converge quickly in any of these scenarios.

Fotakis et al. [8] consider weighted network congestion games in which the
strategy space of each player corresponds to the set of all paths between pos-
sibly different sources and sinks in a network. They show that Nash equilibria
do not necessarily exist in these games. On the positive side, they show that
every weighted network congestion game possesses a Nash equilibrium if the
delay of every resource equals its congestion. Dunkel and Schulz [4] show
that it is NP-hard to decide whether a given weighted network congestion
game possesses a Nash equilibrium. Milchtaich [17] considers player-specific
or weighted network congestion games and tries to characterize which net-
works possess pure Nash equilibria independent of the number of players, and
independent of any assumption on the (player-specific) delay functions except
monotonicity.

It is interesting to relate the results about the existence of Nash equilibria
in player-specific and weighted matroid congestion games to our recent work
on the convergence time of standard congestion games: In [1] we characterize
the class of congestion games that admit polynomial time convergence to a
Nash equilibrium. Motivated by the fact that in singleton congestion games
players converge quickly [14], we show that if the strategy space of each player
consists of the bases of a matroid on the set of resources, then players iter-
atively playing best responses reach a Nash equilibrium in polynomial time.
Furthermore, we show that the matroid property is the maximal condition on
the players’ strategy spaces for guaranteeing polynomial time convergence to
a Nash equilibrium if one does not take into account how the players’ strategy
spaces are interweaved.

1.2 Formal Definition of Congestion Games

A congestion game I is a tuple (N, R, (X;)ien, (d)rer) where N = {1,... ,n}
denotes the set of players, R = {1,...,m} the set of resources, ¥; C 2%
the strategy space of player 7, and d, : N — N a delay function associated
with resource r. We call a congestion game symmetric if all players share
the same set of strategies, otherwise we call it asymmetric. We denote by



S = (S1,...,S,) the state of the game where player ¢ plays strategy S; € %;.
Furthermore, we denote by S®S! the state S” = (S1,...,S;-1, S5}, Six1,- -+, ),
i.e., the state S except that player i plays strategy S; instead of S;. For a state
S, we define the congestion n,.(S) on resource r by n,.(S) = [{i | r € S;}|, that
is, n,(S) is the number of players sharing resource r in state S. Players act
selfishly and like to play a strategy S; € ¥; minimizing their individual delay.
The delay 6;(S) of player i in state S is given by 6;(S) = X, dr(n:(5)).
Given a state S, we call a strategy S; a best response of player i to S if, for all
Sie ¥, 0;(S®S;) < 6;(S®S)). In the following, we use the term best response
sequence to denote a sequence of consecutive strategy changes in which each
step is a best response which strictly decreases the delay of the corresponding
player. Furthermore, we call a state S a Nash equilibrium if no player can
decrease her delay by changing her strategy, i.e., for all @ € N and for all
Sie Xy, 0;(5) < 6;(S @ S)). Rosenthal [19] shows that every congestion game
possesses at least one Nash equilibrium by considering the potential function
¢ D1 x e x By = Nwith ¢(8) = e S8 d, (4).

There are two well known extensions of congestion games, namely player-
specific congestion games and weighted congestion games. In a player-specific
congestion game every player i has its own delay function d’ : N — N for
every resource r € R. Given a state S, the delay of player ¢ is defined as
6:(S) = Xres, di(n,(S)). In a weighted congestion game every player i € N
has a weight w; € N. Given a state S, we define the congestion on resource r
by 1n,(S) = Yi.res, wi, that is, n,(S) is the total weight of all players sharing
resource r in state S.

1.3 Matroids and Matroid Congestion Games

We now introduce matroid congestion games. Before we give a formal definition
of such games we shortly introduce matroids. For a detailed discussion, we refer
the reader to [20].

Definition 1 A tuple M = (R,Z) is a matroid if R = {1,...,m} is a finite
set of resources and Z is a nonempty family of subsets of R such that, if [ € T
and J C I, then J € Z, and, if [,J € T and |J| < |I|, then there exists an
iel\JwithJU{i} €.

Let I C R. If I € Z, then we call I an independent set, otherwise we call
it dependent. It is well known that all maximal independent sets of Z have
the same cardinality. The rank rk(M) of the matroid M is the cardinality of
the maximal independent sets. A maximal independent set B is called a basis
of M. If additionally a weight function w : R — N is given, M is called a
weighted matroid and one is usually interested in finding a basis of minimum



weight, where the weight of an independent set I is given by w(I) = 3,y w(r).
It is well known that such a basis can be found by a greedy algorithm. Now
we are ready to define matroid congestion games.

Definition 2 We call a congestion game I' = (N, R, (Zi)ien, (dr)rer) @
matroid congestion game if for every player i € N, M; := (R,Z;) with
Z, ={1 C S| S € X} is a matroid and 3; is the set of bases of M;. Ad-
ditionally, we denote by rk(I') = max;epn rk(M;) the rank of the matroid
congestion game ['.

The obvious application of matroid congestion games are network design prob-
lems in which players compete for the edges of a graph in order to build a
spanning tree [21]. There are also other interesting applications as even simple
matroid structures like uniform matroids, that are rather uninteresting from
an optimization point of view, lead to rich combinatorial structures when var-
ious players with possibly different strategy spaces are involved. Illustrative
examples based on uniform matroids are market sharing games with uniform
market costs [12] and scheduling games in which each player has to injectively
allocate a given set of tasks (services) to a given set of machines (servers).

Let us remark that, in the case of matroid congestion games, the assumption
that all delays are positive is not a restriction. Since all strategies have the
same size, one can easily shift all delays by the same value in order to obtain
positive delays without changing the better and best response dynamics.

2 Player-Specific Matroid Congestion Games

In this section, we consider player-specific matroid congestion games with
non-decreasing player-specific delay functions and prove that every such game
possesses at least one Nash equilibrium. The proof we present extends tech-
niques invented for singleton congestion games [16] towards matroid congestion
games, and implicitly describes an efficient algorithm to compute an equilib-
rium of such games.

It is known that the best response dynamics of a player-specific singleton
congestion game may cycle, i.e., a sequence of best responses starting in a
state S may return to state S. Thus, player-specific singleton congestion games
are no potential games. However, if the players play their best responses in a
certain order, then they quickly find a Nash equilibrium, that is, from every
state of such a game, there exists a sequence of best responses of polynomial
length to a Nash equilibrium [16]. Hence, if the players play best responses in
a random order, then the expected number of best responses needed to reach
a Nash equilibrium is finite. In Section 2.2, we investigate whether a similar



property also holds for matroid congestion games. We show that from every
state of a player-specific matroid congestion game there exists a sequence of
better responses of polynomial length leading to a Nash equilibrium. We call
such a sequence of better responses an improvement path, and we leave it as
an open question whether short sequences of best responses always exist for
player-specific matroid congestion games.

2.1 Fxistence of Nash Equilibria

Theorem 3 FEuvery player-specific matroid congestion game ' with non-de-
creasing delay functions possesses a Nash equilibrium.

Proof: Recall that since the strategy space of player ¢ corresponds to the set
of bases of a matroid M;, all strategies of player i have the same size rk(M,).
In the following, we represent a strategy of player i by 7k(M;) tokens that
the player places on the resources she allocates. Suppose that we reduce the
number of tokens of some of the players, that is, player i has k; < rk(M;)
tokens that she places on the resources of an independent set of cardinality k;.
Observe that the independent sets of cardinality k; form the bases of a matroid
M, whose independent sets correspond to those independent sets of M; with
cardinality at most k;. The matroid M; is also called the k;-truncation of
the matroid M;. Hence, a game in which some of the players have a reduced
number of tokens is also a matroid congestion game.

We prove the theorem by induction on the total number of tokens 7 =
>ien Tk(M;) that the players are allowed to place, that is, we prove the ex-
istence of Nash equilibria for a sequence of games ['y, 'y, ..., I';, where 'y 4
is obtained from I'y by giving one more token to one of the players. I'y is the
game in which each player has only the empty strategy. Obviously, I'y has only
one state and this state is a Nash equilibrium.

As induction hypothesis assume that player 7 has placed k; > 0 tokens, for
1 < ¢ < n, and this placement corresponds to a Nash equilibrium of the
player-specific matroid congestion game Ty = (N, R, (ZF)ienr, (d2)ienrrer)
with ¢ = Y;cp ks, in which the set of strategies X coincides with the k-
truncation of M,.

Now assume that some player 7y has to place an additional token t;. We show
how to compute a Nash equilibrium for the game I';,; obtained from a Nash
equilibrium of I', by changing iy’s strategy space to the set of independent
sets of size k;, + 1. Since an optimal basis of a matroid can be computed by
a greedy algorithm, there exists a resource ry such that placing the token t
on 7y gives an independent set of size k;, + 1 with minimum delay among all
independent sets of the same size. Thus, assuming that the tokens of the other



players are fixed, an optimal strategy for player iq is to place tg on ¢ and leave
all other tokens unchanged. However, as the congestion on r( is increased by
one, other players may want to move their tokens from ry in order to obtain a
better independent set. We now use matroid properties to show that a Nash
equilibrium of I'yy; can be reached with at most n-m - rk(I") moves of tokens.

Lemma 4 Let M = (R,Z) be a matroid with weights w : R — N and let
B,,, be a basis of M with minimum weight. If the weight of a single resource
To € B, 1S increased such that B,, is no longer of minimum weight, then,
in order to obtain a minimum weight basis again, it suffices to exchange r,,
with a resource r* € R of minimum weight such that B,,, U {r*} \ {r..} is a
basis.

Proof: In order to prove the lemma we use the following property of a matroid
M = (R,T). For a proof of this property, we refer the reader to Lemma 39.12
from [20].

Proposition 5 (Schrijver [20]). Let M = (R,I) be a matroid, and let I, J €
T with |I| = |J| be independent sets. The bipartite graph G(IAJ) = (V, E)
with V = (I\NJ)U(J\I) and E = {{i,j} | i € I\ J,j € J\I,TU{j}\{i} € T}
contains a perfect matching.

Let B, be a minimum weight basis w.r.t. the increased weight of r,,. Let
P be a perfect matching of the graph G (B, AB,,) and denote by e the edge
from P that contains . For every edge {r,r'} € P\{e}, it holds w(r) < w(r’)
as, otherwise, if w(r) > w(r’), the basis B,y U {r'} \ {r} would have smaller

weight than B,.

Now denote by 7, the resource that is matched with r,y, i.e., the resource
such that e = {rop, 7,1} € P. As w(r) < w(r’) for every {r,r'} € P\ {e}, the
weight of By \ {ropt} is bounded from above by the weight of By, \ {r/}.
By the definition of the matching P, By U {15, } \ {7opt} is a basis. By our
arguments above, the weight of this basis is bounded from above by the weight

of B, . Hence, this basis is optimal w.r.t. the increased weight of r,p;. O

After placing token ¢, of player i on resource rg, resource ry has one additional
token in comparison to the initial Nash equilibrium Sy of the game I'y. Since
we assume non-decreasing delay functions, only the players with a token on
ro might now have an incentive to change their strategies. Let i; be one of
these players. It follows from Lemma 4 that ¢; has a best response in which
she moves a token ¢; from resource ry to another resource that we call r;. Now
r1 is the only resource with one additional token in comparison to S,. Suppose
we have not yet reached a Nash equilibrium. Only those players with a token
on r; might have an incentive to change their strategies. Again by applying
Lemma 4, we can identify a player i that has a best response in which she
moves a token t, from r; to a resource ro, which then is the only resource with



one additional token.

The token migration process described above can be continued in the same
way until it reaches a Nash equilibrium of the game I'y,;. The correctness of
the process is ensured by the following invariant.

Invariant 6 For every j > 0, after player i; moves token t; onto resource r;,

a) only players with a token on r; may violate the Nash equilibrium condition,

b) the Nash equilibrium condition of all players would be satisfied if one ignores
the additional token on r;, that is, if each player calculates the delay on r;
as if there were one token less on this resource.

The invariant follows by induction on j: For player 7; the invariant is satisfied
as this player plays a best response according to Lemma 4. Thus she satisfies
the Nash equilibrium condition even without virtually reducing the congestion
on r;. For all other players, the validity of the invariant for j follows directly
from the validity of the invariant for j — 1 as these players do not move their
tokens.

Thus, in order to show the existence of a Nash equilibrium for I'y, 4, it suffices
to show that the token migration process is finite. Consider an arbitrary token
t of player i. For a resource r, let D;(r) denote the delay of 7 on 7 if r has one
more token than in the initial state S. Whenever t is moved by the migration
process from a resource r to a resource ', it must be D;(r) > D;(r’). Hence,
the token t can visit each resource at most once during the token migration
process. As there are at most n-rk(I") tokens, the migration process terminates
after at most n - m - rk(I") steps in a Nash equilibrium of I, ;. O

Observe that the proof of Theorem 3 implicitly describes an efficient algorithm
to compute a Nash equilibrium with at most n? - m - 7&*(I") moves of tokens.

Corollary 7 There exists a polynomial time algorithm to compute a Nash
equilibrium of a player-specific matroid congestion game with non-decreasing
player-specific delay functions.

2.2  FExistence of Short Improvement Paths

Theorem 8 Let I' be a player-specific matroid congestion game with non-
decreasing delay functions, and let S be an arbitrary state of I'. Then there
exists a better response sequence of length at most 2-n?-m-rk*(I') which starts
in state S and terminates in a Nash equilibrium.

Proof: The proof uses similar arguments as the proof of Theorem 3, except



that initially every player places all her tokens. After the first placement of
the tokens, which corresponds to the given state S, we assume that all tokens
are deactivated, i. e., players are not allowed to move them in order to decrease
their delays. We then consider a sequence of games I'y,...,I';, where I'yy; is
obtained from I'; by activating one more token. We can achieve that deacti-
vated tokens are not moved by setting the delay of the corresponding player
on the corresponding resource to 0. Then activating a token corresponds to
restoring the delay to its real value. Thus, each game I'y is a player-specific
matroid congestion game. Given a Nash equilibrium S, of I'y, we show that
there exists a short improvement path in I'yy; from the former equilibrium
Sy to a Nash equilibrium Sy, of I'yy;. Obviously, by concatenating all these
paths we obtain an improvement path from S to a Nash equilibrium of I'.

As induction hypothesis assume that ¢ tokens have been activated so far and
that we are given a Nash equilibrium 5, of I';. Suppose now, that an additional
token ty of player g is activated, and that ig moves ty to a resource r; in order
to decrease her delay. After that, we are in a situation similar to the one in
the proof of Theorem 3, that is, the congestion on one resource 7 is increased
by one compared to the Nash equilibrium Sy of I',. In contrast to the situation
in the proof of Theorem 3, in which the congestion of the other resources
remained unchanged, there exists a resource rq whose congestion is decreased
by one compared to the congestion in I';. Assume that we place a dummy
token on resource rg which artificially increases the congestion by one. In this
case, we can consider the same token migration process as in the proof of
Theorem 3.

In contrast to the previous proof, there are two different ways how this process
can terminate. If the process returns to ro, i. e., if it moves a token onto ry, we
terminate the process and remove the dummy token from ry. If the process
does not return to ry, then it is not affected by the dummy token and by the
same arguments as in the proof of Theorem 3 it follows that it terminates
after at most n - m - rk(I") moves of tokens.

In the first case, if at some time a player moves a token t; from a resource
rj_1 to the resource r; = ry, then after removing the dummy token from ry we
have reached a Nash equilibrium of Iy, ; due to Invariant 6. Since the resource
ro is not involved in the previous moves of tokens, each of these movements
reduces the delay of the corresponding player also in the game I',,; without
the dummy token. In the last step a player moves a token onto ry and improves
her delay even if the dummy token is present. Hence, she also decreases her
delay in 'y ; without the dummy token.

In the second case, we have almost reached a Nash equilibrium. That is, all

players were satisfied if we would not remove the dummy token. Suppose now
that we remove the dummy token. As the delay functions are non-decreasing,
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only players who can move tokens onto r, may have an incentive to change
their strategies. The following lemma, which is a slight variation of Lemma 4,
ensures that players who have an incentive to change their strategies with
respect to the tokens they are allowed to move only need to move a token
onto ry in order to obtain a best response.

Lemma 9 Let M = (R,Z) be a matroid with weights w : R — N and let
B,,, be a basis of M with minimum weight. If the weight of a single resource
r* € R\ B,,: is decreased such that B,,, is no longer of minimum weight, then,
in order to obtain a minimum weight basis again, it suffices to exchange r*
with a resource 1, € B,,, of mazimum weight such that B,,, U {r*} \ {r,.} is
a basis.

The proof of Lemma 9 follows the same line of arguments as the proof of
Lemma 4 and is therefore omitted. Suppose now that player i;, moves a token ¢,
from resource | to ro. Afterwards, the congestion on ry equals the congestion
in the former equilibrium with respect to the dummy token, and the congestion
on 1} is decreased by one. Again only players who can move a token onto
r} have an incentive to change their strategy. We can continue this process
obtaining an additional token migration process in which a token ¢;;; moves
to the resource from which token ¢; was removed. As before, we have to show
that this token migration process is finite and terminates in a Nash equilibrium
of I'y11. The fact that it terminates in a Nash equilibrium is ensured by the
following invariant which is a slight variation of Invariant 6.

Invariant 10 For every j > 0, after player i; removes token t'; from resource

!/
,rj+1)

a) only players who can move a token onto 1’ may violate the Nash equilib-
rium condition,

b) the Nash equilibrium condition of all players would be satisfied if one ignores
the missing token on r’, ,, that is, if each player calculates the delay on 1’
as if there were one additional token on this resource.

Invariant 10 can be proven analogously to Invariant 6. Its proof is therefore
omitted. It remains to show that the second token migration process is also
finite. Again, the same arguments as in the proof of Theorem 3 show that
this is true, and we conclude that the second process terminates after at most
n-m - 7k(I") moves of tokens in a Nash equilibrium of T'p;.

Altogether, we have shown that there exists an improvement path of length
2-n-m-rk(I") from Sy to a Nash equilibrium of T'yy;. As the number of tokens
7 is upper bounded by n - rk(I"), the theorem follows. O

11



3 Weighted Matroid Congestion Games

In this section we consider weighted matroid congestion games with non-de-
creasing delay functions and show that every such game possesses a Nash
equilibrium. Moreover, we show that myopic players do not necessarily reach
such an equilibrium if they iteratively play arbitrary best responses. We show,
however, that players who are only allowed to play best responses that ex-
change the least number of resources compared to their current strategies
eventually reach a Nash equilibrium. We call such best responses lazy best
responses and define them formally as follows.

Definition 11 Given a state S, we call a best response S} of player i lazy if
it can be decomposed into a sequence of strategies S; = S, St,...,SF = Sf
with [S7T\ SI| =1 and 6;(S ® SI™) < 6,(S @ S7), for 0 < j < k.

From the following proposition one can easily conclude that whenever a player
can decrease her delay, then there exists a lazy best response for this player.
For a proof we refer the reader to Lemma 39.12 in [20].

Proposition 12 (Schrijver [20]) Given a matroid M = (R,T) with weights
w: R — N, a basis B € T is a minimum weight basis of M if and only if
there exists no basis B* € T with |B\ B*| =1 and w(B*) < w(B).

We are now ready to prove that weighted matroid congestion games possess
Nash equilibria.

Theorem 13 FEvery weighted matroid congestion game I' with non-decreasing
delay functions possesses a Nash equilibrium. Furthermore, players reach an
equilibrium after a finite number of lazy best responses.

Proof: Let S be a state of I'. With each resource r, we associate a pair
2-(S) = (d-(n,.(5)),n.(S)) consisting of the delay and the congestion of r in
state S. For two resources r and " and states S and ', let z,.(S) > z.(95') if
and only if d.(n.(S)) > d..(n.(S")) or d.(n.(5)) = dw(n.(S")) and n,.(S) >
n(S"). Let 2,.(S) > 2.(5) if and only if z.(S) > 2,.(5") and z.(S) # 2z (S5").
Let Z(S) denote a vector containing the pairs z,.(S) of all resources r € R in
non-increasing order, that is, z;(S) > z;41(S5), where z;(S) denotes the j-th
component of z(9), for 1 < j < |R]|.

We denote by <, the lexicographic order among the vectors z(S), i.e.,
Z(S1) <iex Z(S2) if there exists an index [ such that Zz,(S;) = Zi(S), for
all k <[, and z(S1) < Z(S2).

Due to Lemma 12, in every state S which is not a Nash equilibrium there

exists at least one player ¢ who can decrease her delay by playing a lazy
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best response S;. Since 5] is a lazy best response, there exists a sequence of
strategies S; = S9, ..., S¥ = S¥ such that, for every 0 < j < k, |SIT"\ S| =1
and

We now claim that z(S @ SZH) < Z(S @ S}, for every 0 < j < k. Let
r; be the unique resource in S} that is not contained in S7 1 and let 7 be

the unique resource that is contained in S/*' but not in S?. Since the delay
decreases strictly with the exchange, we have

dr, (17, (S ® 8])) > dys (nys (S @ SI™))

Additionally, since we assume non-decreasing delay functions,

dy,(nr, (S ® S1)) > dr;(nr, (S ® SI) —wi) = dy;(nr, (S ® Sz'jH)) :

Furthermore, n, (S ®S7) > n,, (S @®S7™). Combining these inequalities implies
2, (S @ Sy > 2, (S @ 571 and 2, (S @ Sy > 7+ (S @ ST, This yields

max{zrj(S @ S, 7+ (S @ SZJ“)} < max {zrj(S ® 57, z: (S @ Sf)}

and hence Z2(S®S7) >.. Z(S®S/*"). That is, the lexicographic order decreases
with every exchange and, hence, with every lazy best response. This concludes
the proof of the theorem. O

Theorem 13 shows that the number of lazy best responses needed to reach a
Nash equilibrium is bounded from above by

(3] (i) |

The first term is an upper bound on the maximal number of different vectors
Z(9) and the second one bounds the number of different states of the matroid
congestion game I'. Below we present an example showing that arbitrary best
responses do not necessarily lead to a Nash equilibrium. In singleton congestion
games, every best response is a lazy best response. Hence, in these games,
players playing iteratively best responses always reach a Nash equilibrium. A
lower bound on the convergence time in this case is presented in Section 5.

Theorem 14 The best response dynamics of a weighted matroid congestion
game with non-decreasing delay functions can cycle.
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Proof: Consider a weighted matroid congestion game with four resources
{1,2,3,4} and two players with weights w; = 1 and wy = 2. We define the
strategy spaces as follows:

21 = {{1}7 {3}} Z:2 - {{172}7 {173}7 {274}7 {374}} .

Observe that both strategy spaces are sets of bases of matroids on subsets of
the resources. Additionally, we define non-decreasing delay functions. A dash
denotes a value we do not have to care about.

n=1\|n=2|n,=3
or(ma) | 2 20 20
da(no) - 9 -
d3(ng) | 4 8 10
d4(ng) - 20 -

Now consider the following cycle of states:

({3}, {1,3}) — ({3}, {2,4}) — ({1}, {2,4}) — ({1}, {1,3}) — ({3}, {1,3}) .

Each strategy change induces a set of inequalities in order to be a best re-
sponse. One can easily verify that all these inequalities are satisfied by the
above defined delay functions. Hence, players playing arbitrary best responses
do not necessarily converge to a Nash equilibrium in weighted matroid con-
gestion games. O

The delay functions in the previous example are non-decreasing but not strictly
increasing. We leave open the question whether in arbitrary weighted matroid
congestion games with strictly increasing delay functions players always con-
verge to an equilibrium.

4 Non-Matroid Strategy Spaces

In the previous two sections, we showed that the matroid property is a suffi-
cient condition on the combinatorial structure of the players’ strategy spaces
for guaranteeing the existence of Nash equilibria in player-specific or weighted
congestion games with non-decreasing delay functions. In this section, we show
that the matroid property is also the maximal condition for guaranteeing the
existence of Nash equilibria in such games.
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Our negative result shows that for every non-matroid set system there exist
a weighted and a player-specific congestion game in which the strategy space
of each player is isomorphic to the given set system and that does not possess
a Nash equilibrium. Our construction assumes that the strategy spaces of
different players can be interweaved appropriately. Let us remark that the
delay functions are positive and increasing.

If one drops this assumption and considers special classes of congestion games
in which the delay functions and/or the way of how the strategy spaces can be
interweaved are restricted, then one can identify larger classes of weighted and
player-specific congestion games that possess Nash equilibria. For instance, Fo-
takis et al. [8] prove that every weighted network congestion game possesses
a Nash equilibrium if one additionally assumes that the delay on an edge
equals the current congestion on that edge. Often there exists a common com-
binatorial interpretation of the resources in a congestion game; they can, for
instance, be the edges of a graph and every player might want to allocate a
path in that graph between a given source/sink pair. This restricts the way of
how the strategy spaces of different players can be interweaved. For example,
Milchtaich [17] shows that every player-specific or weighted network conges-
tion game possesses an equilibrium if the network graph belongs to a certain
restricted class of graphs.

Observe that our negative results show that our positive results are tight. In
Theorems 3 and 13 we show that every player-specific or weighted congestion
game possesses a Nash equilibrium if the strategy space of each player cor-
responds to the bases of a matroid, regardless of how the strategy spaces of
different players are interweaved and for every choice of non-decreasing delay
functions. Our negative results show that such a positive result cannot be
extended further without placing additional assumptions on the delay func-
tions and/or the relation of the strategy spaces. In addition to that, we also
demonstrate that the way of how the strategy spaces are interweaved in our
construction is not too restrictive to apply to natural classes of congestion
games by showing that our construction can, for instance, easily be embedded
into (symmetric) network congestion games.

4.1 A Characterization of Non-Matroid Set Systems

Let X be a set system on a set R of resources. The set system X is called
an anti-chain if for every X € X, no proper superset ¥ O X belongs to
Y. Moreover, we call ¥ a non-matroid set system if the tuple (R,{X C S |
S € ¥}) is not a matroid. In [1] we show that every non-matroid anti-chain
possesses the (1,2)-exchange property. Here we need the following variant of
this property with positive (instead of non-negative) delays.
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Definition 15 ((1,2)-exchange property) Let . be an anti-chain on a set
of resources R. We say that 3 satisfies the (1,2)-exchange property if we can
identify three distinct resources a,b,c € R with the property that for every
given k € N with k > |R|, we can choose a delay d(r) € {1,k +|R|} for every
r € R\ {a,b,c} such that for every choice of the delays of a, b, and ¢ with
IR| < d(a),d(b),d(c) < k, the following property is satisfied: If d(a) + |R| <
d(b)+d(c), then for every set S € ¥ with minimum delay, a € S and b,c ¢ S.
If d(a) > d(b) + d(c) 4+ |R|, then for every set S € ¥ with minimum delay,
a¢ S andb,ceS.

Lemma 16 Let > be an anti-chain on a set of resources R. Furthermore, let
I ={XCS|S e X}, and assume that (R,Z) is not a matroid, i. e., that 3
is not the set of bases of some matroid. Then ¥ possesses the (1,2)-exchange
property.

Before we prove Lemma 16, we present an additional property of matroids.
For a proof of this property, we refer the reader to Theorem 39.6 in [20)].

Proposition 17 (Schrijver [20]) Let ¥ be a set system on a finite set R.
Then X is the set of bases of a matroid if and only if for every pair of sets
S1,Sy € X and every ry € Sy \ S1, there exists an vy € Sy \ Sy such that

SgU{’/’l}\{TQ} € 3.

Proof: (Lemma 16) Since (R,Z) is not a matroid, there exist due to Propo-
sition 17 two sets X,Y € ¥ and a resource € X \ Y such that for every
y €Y\ X, the set X \ {z} U {y} is not contained in X.

Let X and Y be such sets and let z € X be such a resource. Consider all
subsets Y’ of the set X UY \ {z} with Y’ € 3. Every such set Y’ can be
written as Y/ = X \ {x = z1,..., 5} U{y1,...,yr} with z; € X \ Y and
y; € Y\ X and [ + 1" > 2. This is true since [ > 1 holds per definition and
" > 1 holds because X is an anti-chain. Furthermore [ and I’ cannot both equal
1 as otherwise we obtain a contradiction to the choice of X, Y, and x. Among
all these sets Y7, let Y, denote one set for which [’ is minimal. Observe that
we can replace Y by Y, without changing the aforementioned properties of
X, Y, and z. Hence, in the following, we assume that ¥ = Y,,;,, that is, we
assume that Y\ X =Y’ \ X for all of the aforementioned sets Y”.

We claim that we can always identify resources a, b, ¢ € X UY such that either
aceX\YandbceY\XoraeY\X and b,c € X \Y with the property
that for every Z C X UY with Z € ¥, if a &€ Z, then b,c € Z. In order to see
this, we distinguish between the cases I' =1 and I’ > 2:

(1) Let Y\ X = {y1} and hence X \ Y ={z =xy,..., 27} with [ > 2. Then
we set a = y1, b = x1, and ¢ = x5. Consider aset 7 C X UY with Z € ¥
and a € Z. Then Z = X since X is an anti-chain, and hence b, c € Z.
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(2) Let Y\ X = {y1,...,yp} with I’ > 2. Then we set a = =, b = y;, and
¢ = yy. Consider a set Z7 C X UY with Z € ¥ and a ¢ Z. Since we
assumed that Y = Yj,;,, it must be b, ¢ € Z as otherwise Z \ X # Y \ X.

Now we define delays for the resources in R\ {a, b, ¢} such that the properties
in Definition 15 are satisfied. Let £ € N be chosen as in Definition 15, that
is, d(a),d(b),d(c) € {|R|,...,k}. We set d(r) = k + |R| for every resource
r¢ X UY and d(r) = 1 for every resource r € (X UY)\ {a,b, c}. First of all,
observe that in the first case the delay of Y equals d(a)+|Y|—1 < k+|R| and
that in the second case the delay of X equals d(a)+ |X|—1 < k+ |R|. Hence,
a set Z € ¥ that contains a resource r ¢ X UY can never have minimum
delay as its delay is at least k + |R|. Thus, only sets Z € ¥ with Z C X UY
can have minimum delay. Since for such sets, a ¢ Z implies b, ¢ € Z, we know
that every set with minimum delay must contain a or it must contain b and c.

Consider the case d(a) + |R| < d(b) + d(c) and assume for contradiction
that there exists an optimal set Z* with a ¢ Z*. Due to the choice of a,
b, and ¢, the set Z* must then contain b and c¢. Hence d(Z*) > d(b) + d(c).
Furthermore, again due to the choice of a, b, and ¢, there exists a set Z' C XUY
with a € Z" and b,c ¢ Z'. The delay of 7' is d(Z') = d(a) + |Z'] — 1 <
d(a) + |R| < d(b) + d(c) < d(Z*), contradicting the assumption that Z* has
minimum delay. Hence every optimal set Z* must contain a. If Z* additionally
contains b or ¢, then its delay is at least d(a) + |R| > d(Z’). Hence, in the
case d(a) + |R| < d(b) + d(c) every optimal set Z* contains a but it does not
contain b and c.

Consider the case d(a) > d(b) + d(c) + |R| and assume for contradiction
that there exists an optimal set Z* with b ¢ Z* or ¢ ¢ Z*. Then Z* must
contain a and hence its delay is at least d(a). Due to the choice of a, b, and
¢, there exists a set 2/ C X UY with a ¢ Z’ and b,c € Z'. The delay
of Z'is d(Z') = d(b) + d(c) + |Z'| — 2 < d(b) + d(c) + |R| < d(a) < d(Z7),
contradicting the assumption that Z* has minimum delay. Hence every optimal
set Z* must contain b and c. If Z* additionally contains a, then its delay is at
least d(b) + d(c) + |R| > d(Z’). Hence, in the case d(a) > d(b) + d(c) + |R|
every optimal set Z* contains b and ¢ but it does not contain a. O

4.2 The Matroid Property is Maximal for Guaranteeing the FExistence of
Equilibria

We are now ready to prove that Theorems 3 and 13 cannot be extended further
without placing additional assumptions on the delay functions and/or the
relation of the strategy spaces. We first consider weighted congestion games.
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Theorem 18 For every non-matroid anti-chain ¥ on a set of resources R
there exists a weighted congestion game I with two players whose strategy
spaces are isomorphic to ¥ that does not possess a Nash equilibrium. The
delay functions in ' are positive and increasing.

Proof: Given a non-matroid anti-chain we describe how to construct a weighted
congestion game with the properties stated in the theorem. We first describe
how the strategy spaces are defined and then how the delay functions are
chosen.

Let 37 and X5 be two set systems on sets of resources Ry and R, respectively.
In the following we assume that both sets are isomorphic to ¥ and that ¥; is
the strategy space of player i, for i = 1,2. Due to the (1, 2)-exchange property
we can, for every player ¢, identify three distinct resources a;, b;, ¢; € R; with
the properties as in Definition 15. Since we have not made any assumption
on the global structure of the game, we can arbitrarily decide which resources
from R; and Rs coincide. The resources R; \ {a;, b;, ¢;} are exclusively used
by player i. Hence, we can assume that their delays are chosen such that the
(1,2)-exchange property is satisfied. Thus, to simplify matters we can assume
that

Yr={{ar}, {br,er}} and By = {{az}, {b2, c2}} -
N~ —— N~ ——
Si St 83 83
In the following, we assume that a; = by, by = ao and ¢; = ¢o. Thus we
can rewrite the strategy spaces as follows: ¥, = {{z},{y,2}} and ¥y =

{H{y}{w, 23}

We set w; =2 and wy = 1 and define the following increasing delay functions
for the resources z, y and z, where m = |R]:

n.=1|n.=2|n,=3

d.(ng) m 20-m | 21-m

dy(ny) | 5-m | 12-m | 15-m

d,(n,)| 3-m | 4-m | 10-m

One can easily verify that |6;(S®S})—8;(S®S?)| > m, fori = 1,2, regardless of
the choice of the other player. Hence, for every player, one of the inequalities in
Definition 15 is always satisfied. This game does not possess a Nash equilibrium
since player 1 prefers to play strategy S? if player 2 plays strategy Si, and S
if player 2 plays strategy Sz. Additionally, player 2 prefers to play strategy S3
if player 1 plays strategy S7, and S; if player 1 plays strategy Sj. O
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Theorem 19 For every non-matroid anti-chain ¥ on a set of resources R
there exists a player-specific congestion game I with two players whose strategy
spaces are isomorphic to ¥ that does not possess a Nash equilibrium. The delay
functions in I" are positive and increasing.

Proof: The proof is similar to the proof of Theorem 18. In particular, the
construction of the strategy spaces of the players is identical. The player-
specific delay functions are obtained from the delay functions in the proof
of Theorem 18 as follows: For the first player d}(n,) = d.(n, + 1), for every
resource r € {x,y, 2z} and every congestion n, € {1,2}. For the second player
d*(1) = d,(1) and d?(2) = d,(3), for every resource r € {z,y,z}. O

Summarizing, every non-matroid anti-chain can be used to construct a player-
specific or weighted congestion game with positive delay functions that does
not posses a Nash equilibrium. Observe that this result also holds if the system
is not an anti-chain but the pruned set system, i.e., the set system obtained
after removing all supersets, is not the set of bases of a matroid. This is
because supersets cannot occur in a Nash equilibrium in the case of positive
delay functions. Correspondingly, our results presented in Theorems 3 and 13
show that a player-specific or weighted congestion game in which all pruned
strategy spaces correspond to bases of matroids possesses a Nash equilibrium
with respect to the pruned and, hence, also with respect to the original strategy
spaces because supersets are weakly dominated by subsets in the case of non-
negative delay functions. Thus, the matroid property (applied to the pruned
strategy spaces) is necessary and sufficient to show the existence of Nash
equilibria.

Corollary 20 The matroid property is the mazximal property on the pruned
strateqy spaces of the individual players that guarantees the existence of Nash
equilibria in weighted and player-specific congestion games with non-negative,
non-decreasing delay functions.

4.8 A Comment on Network Congestion Games

Our negative results in Theorems 18 and 19 assume that it is possible to
interweave the strategy spaces of the players in a specific manner. A legiti-
mate question is whether our construction can nevertheless be embedded into
natural classes of congestion games in which the resources have a common
combinatorial interpretation.

Here, we demonstrate that are construction can, for instance, easily be em-
bedded into network congestion games. However, note that we are not the first
to present player-specific or weighted network congestion games which do not
possess Nash equilibria [8,17].
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S1 = So

t z to

Fig. 1. An example of a network congestion game with the strategy spaces as defined
in the proofs of Theorems 18 and 19.

Consider the network depicted in Figure 1. The first player likes to route her
traffic from s; to t;, the second player from sy to t5. Observe that the sets of
paths of player 1 and 2 coincide with the strategy spaces as defined above. We
conclude the following corollary.

Corollary 21 There exist instances of player-specific and instances of weighted
network congestion games with non-decreasing delay functions which do not
possess Nash equilibria.

Observe, that the players are not symmetric, i.e., they like to connect the
source to different sinks. However, it is not difficult to make the game sym-
metric by introducing a common sink ¢ which is connected to ¢; and ¢, and
by appropriately defining the delay functions of the edges {t1,t} and {t,t}.

5 Convergence Time in Weighted Matroid Congestion Games

In Section 3 we have shown that players playing lazy best responses even-
tually reach a Nash equilibrium in every weighted matroid congestion game.
In weighted singleton congestion games every best response is a lazy best re-
sponse, hence, in these games every sequence of best responses leads to a Nash
equilibrium. It is an interesting question how many best responses are actually
needed to find a Nash equilibrium. This question is addressed by Even-Dar
et al. [5] who present a family of weighted singleton congestion games with
symmetric players and identical resources with best response sequences of ex-
ponential length. However, they use exponentially large weights in their con-
struction. In this section, we present an infinite family of weighted singleton
congestion games possessing superpolynomially long best response sequences
although every player has either weight one or n and all delays are polynomi-
ally bounded in the number of players and resources. This immediately implies
that players do not necessarily reach a Nash equilibrium in pseudopolynomial
time in a weighted singleton congestion game.
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Theorem 22 There exists a constant ¢ > 0 such that for every n € N, there
exists a weighted singleton congestion game I' with at most ecn? players and
at most cn resources that possesses a best response sequence of length 2™. The
players in I' have either weight 1 or weight n, and the mazimum delay is upper
bounded by cn?.

From Theorem 22 we can conclude the following corollary.

Corollary 23 Weighted matroid congestion games do not converge to a Nash
equilibrium in pseudopolynomial time.

Proof: [Theorem 22] A well known technique for constructing instances of
local search problems with exponentially long best response sequences is to
construct instances that resemble the behavior of a binary counter (see, e.g.,
[1,3,13,18]). We apply this technique to weighted singleton congestion games.

Let n € N be chosen arbitrarily. We construct a weighted singleton congestion
game with O(n?) players and O(n) resources that resembles the behavior of
a binary counter counting from 0 to 2" — 1. The instance consists of n gad-
gets Gy, ..., G,_1 where gadget G; represents the i-th bit of the counter; Gg
represents the least significant bit, GG,,_; the most significant bit. For every
gadget (G;, we define three main configurations, namely a O-state, a 1-state
and a reset state, with the following properties.

(1) If gadget G; is in its O-state and no gadget G; with j > ¢ is in its reset
state, then there exists a best response sequence of gadget G; such that
G, first changes to its reset state and then to its 1-state.

(2) If gadget G; is in its 1-state and at least one gadget G; with j > 4 is in
its reset state, then there exists a best response sequence of gadget Gj
such that G; changes to its O-state.

One can easily verify that these two properties ensure that there exists a best
response sequence of all gadgets that resembles a binary counter counting from
0 to 2™ — 1: Initially all gadgets are in their O-state. First gadget GGy changes
to its 1-state, then gadget G;. However, when gadget GGy changes to its 1-state
it passes its reset state, and therefore resets gadget Gy. Afterwards gadget Gg
may change back to its 1-state. We proceed with gadget G5 that resets the
gadgets G and GG; by changing to its 1-state. We may continue with gadget
Gy and so on.

Now we describe the gadgets Gy, ..., G,_1 in detail. Gadget G; consists of 1+2
players and 3 resources r}, 7% and ri. There are two main players, the bit player
and the reset player, and ¢ additional players, which we call connection players.
The bit player and the reset player both have weight n, and each connection
player has weight 1. Later, we will define delay functions and strategy spaces
such that the best responses of the connection players are uniquely determined
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by the choice of the reset player. The purpose of the connection players is to
propagate the decision of the reset player to the gadgets Gy,...,G;_1. The
delay functions of the resources are defined as follows.

3n—i+1)+1 ifng <2n—i-2

dyi (1) = _ ,
3n?(i+1)+2  otherwise
3n—i+1)+2 ifn.: <n

dr () | .
3n*(i+1)+1  otherwise
3n—i+1)+3 ifn. <1

dri (nrz) = ( ) 3

3 3

3n%(i+1) otherwise
We denote by X%, and X! the strategy spaces of the bit and reset player,
respectively, and by Eéonj the strategy space of the j-th connection player,
with 0 < 7 <7 — 1. Let the strategy spaces be defined as

She = {Urh )} e = 50 {22y S, = {Uh 053

For every player, we call the first strategy according to the above given order-
ing, her O-strategy and the second one her 1-strategy. Figure 2 illustrates our
construction.

bit player reset player

7

¢ connection players

Fig. 2. Illustration of gadget G;. Nodes represent resources, edges represent players.

In the following, we describe the state of gadget G; by a pair of bits (z,y),
meaning that the bit player plays her z-strategy and that the reset player
plays her y-strategy. When describing the state of a gadget by such a pair, we
assume that the connection players have played their best responses according
to strategy y. We denote by (0,0) the O-state of gadget G;, by (1,0) the 1-
state, and by (0, 1) the reset state. We can then formulate the aforementioned
properties of gadget GG; in terms of sequences of states (z,y).

(1) If gadget G; is in state (0,0) and every gadget G; with j > ¢ is in state
(0,0) or (1,0), then there exists a best response sequence of gadget G
such that G; first changes to its reset state (0,1) and then to the state
(1,0).
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(2) If gadget G; is in state (1,0) and at least one gadget G; with j > i is in
state (0,1), then there exists a best response sequence of gadget G; such
that G; changes to state (0,0).

It remains to show that the delay functions are chosen in the right way, that
is, all strategy changes are best responses. We first show that the connection
players of gadget G; are solely controlled by the reset player of that gadget.
Therefore, consider the following two cases.

(a) If the reset player plays her O-strategy {ri}, then the best response for
every connection player is her O-strategy. This is true since in this case
the delay on resource ri equals 3n?(i+1) and the maximum delay on any
resource 7 is at most 3n?(j + 1) + 2 which is less than 3n%(i + 1) because
7 <.

(b) If the reset player plays her 1-strategy {r}, then the best response for
every connection player is her 1-strategy. This is true since in this case
the delay on ri equals 3(n — i + 1) + 3, and the minimum delay on any
resource 11 is at least 3(n —j + 1)+ 1 which is larger than 3(n—i+1)+3
because j < 1.

In the following, we assume that immediately after each strategy change of the
reset player, the connection players of the corresponding gadget change their
strategies appropriately. Hence, when we say that the reset player of gadget
G; plays her z-strategy, x € {0,1}, we implicitly assume that all connection
players of that gadget play their z-strategies, too. Now we study the afore-
mentioned best response sequences of the bit and reset players of a gadget G;
in detail.

(1) Gadget G; is in state (0,0) and all reset players of the gadgets G; with
7 > 1 play their O-strategy. In this case, the reset player can decrease her
delay from 3n?(i + 1) to 3(n — i + 1) + 2 by changing to her 1-strategy.
After that, gadget G; is in state (0,1), and the bit player can decrease
her delay from 3n?(i+1) +2 to 3n?(i + 1) + 1. After that gadget G, is in
state (1, 1), and the reset player can decrease her delay from 3n2(i+1)+1
to 3n%(i + 1) by changing to her O-strategy. After that the gadget is in
state (1,0) and as long as no reset player of a gadget G; with j > i plays
her 1-strategy it stays in this state.

(2) Gadget G is in state (1,0) and at least one reset player of a gadget G
with j > 7 plays her 1-strategy. In this case, the cumulative weight of all
players allocating resource 7 is at most n — i — 2. Hence, the bit player
can decrease her delay from (3n—i+1)+2 to (3n—i+1)+1 by changing
to her O-strategy. After that the gadget is in state (0, 0).

Altogether this shows that the aforementioned sequence of strategy changes
is a best response sequence and results in counting from 0 to 2" — 1. O
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Let us briefly mention that our construction can even be implemented with
players who have only weights 1 or 2. In order to achieve this, one has to
introduce additional players that propagate the decision of the reset players
to the connections players. Based on the observation that a player with weight
2 can displace two players of weight 1 from a resource, these players can be
arranged in a binary tree with ¢ leaves that propagate the decision to the
connection players. As this construction is rather technical and does not give
new insights, we do not present the details.

6 Open Problems

In contrast to player-specific congestion games, the proof of Theorem 13 does
not yield an efficient algorithm for computing Nash equilibria in weighted ma-
troid congestion games. To the best of our knowledge, efficient algorithms are
only known in the case of weighted singleton congestion games with identical
resources, i.e., all resources have identical, non-decreasing delay functions. If
the players are symmetric, Fotakis et al. [7] show that it suffices to assign the
players in non-increasing order of their weights to resources with minimum de-
lay given the choices of the previous players. In the case, of asymmetric players
Gairing et al. [9] show how to compute a Nash equilibrium in polynomial time.

We leave it as an open problem whether Nash equilibria in weighted matroid
congestion games can be computed efficiently. Since the lexicographic order
defined in the proof of Theorem 13 is a potential function with respect to
the lazy best response dynamics, the problem of computing an equilibrium
belongs to PLS. This has already been observed by Fabrikant et al. [6] for a
generalization of weighted singleton congestion games. This implies that the
problem of finding an equilibrium cannot be NP-hard, unless NP=co-NP [15].
But it is still open whether it is PLS-complete to find an equilibrium in such
games.
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