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Abstract

Congestion games are a well-studied model for resource sharing among unco-
ordinated selfish agents. Usually, one assumes that the resources in a congestion
game do not have any preferences over the players that can allocate them. In typi-
cal load balancing applications, however, different jobs can have different priorities,
and jobs with higher priorities get, for example, larger shares of the processor time.
We introduce a model in which each resource can assign priorities to the players
and players with higher priorities can displace players with lower priorities. Our
model does not only extend standard congestion games, but it can also be seen as
a model of two-sided markets with ties. We prove that singleton congestion games
with priorities are potential games, and we show that every player-specific singleton
congestion game with priorities possesses a pure Nash equilibrium that can be found
in polynomial time. Finally, we extend our results to matroid congestion games, in
which the strategy space of each player consists of the bases of a matroid over the
resources.

∗This work was supported by DFG grant VO 889/2, EPSRC Grant GR/T07343/02, and by the
Ultra High-Speed Mobile Information and Communication Research Cluster (UMIC) established under
the excellence initiative of the German government. An extended abstract appeared in Proc. of the 3rd
Int. Workshop on Internet and Network Economics (WINE 2007).
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1 Introduction

In a congestion game, there is a set of players who compete for a set of resources. Each
player has to select a subset of resources that she wishes to allocate. The delay of a
resource depends on the number of players allocating that resource, and every player is
interested in allocating a subset of resources with small total delay. Congestion games
are a well-studied model for resource sharing among uncoordinated selfish agents. They
are widely used to model routing [5], network design [3], load balancing [4, 12], and
dynamic frequency assignment for WLANs [6]. One appealing property of congestion
games is that they are potential games [22]. In particular, this implies that every
congestion game possesses a pure Nash equilibrium and that myopic player eventually
reach a Nash equilibrium by iteratively playing better responses.

One drawback of the standard model of congestion games is that resources do not
have any preferences over the players. In typical load balancing applications, however,
different jobs can have different priorities, and depending on the policy, jobs with a
low priority are stopped or slowed down when jobs with higher priorities are present.
We introduce congestion games with priorities to model the scenario in which a job can
prevent jobs with lower priorities from being processed. In our model, each resource can
partition the set of players into classes of different priorities. As long as a resource is only
allocated by players with the same priority, these players incur a delay depending on
the congestion, as in standard congestion games. But if players with different priorities
allocate a resource, only players with the highest priority incur a delay depending on the
number of players with this priority, and players with lower priorities incur an infinite
delay. Intuitively, they are displaced by the players with the highest priority. This
model is applicable if every player controls a stream of jobs rather than only a single
one. In the latter case, it might be more reasonable to assume that jobs with lower
priorities incur a large but finite delay.

Motivated by the application of congestion games to load balancing and dynamic
frequency assignment for WLANs, we mainly consider congestion games in which each
player has to choose exactly one resource to allocate, namely one server on which her
job is to be processed. Such singleton congestion games or congestion games on parallel
links have been studied extensively in the literature [4, 9, 10, 15]. We show that single-
ton congestion games with priorities are potential games, implying that uncoordinated
players who iteratively play better responses eventually reach a pure Nash equilibrium.
If the priorities assigned to the players coincide for every resource, then we even obtain
polynomial-time convergence to a Nash equilibrium. Milchtaich [20] introduces player-
specific congestion games as an extended class of congestion games in which every player
can have her own delay function for every resource. He shows that player-specific sin-
gleton congestion games are not potential games anymore but that they possess pure
Nash equilibria that can be computed in polynomial time. We show that also in player-
specific singleton congestion games with priorities pure Nash equilibria exist and can
be computed efficiently.

Interestingly, our model of player-specific congestion games with priorities does not
only extend congestion games but also the well-known model of two-sided markets. This
model was introduced by Gale and Shapley [11] to model markets on which different
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kinds of agents are matched to one another, for example men and women, students
and colleges [11], interns and hospitals [23], and firms and workers. Using the same
terms as for congestion games, we say that the goal of a two-sided market is to match
players and resources (or markets). In contrast to congestion games, each resource
can only be matched to one player. With each pair of player and resource a payoff is
associated, and players are interested in maximizing their payoffs. Hence, the payoffs
implicitly define a preference list over the resources for each player. Additionally, each
resource has a preference list over the players that is independent of the profits. Every
player can propose to one resource and if several players propose to a resource, only the
most preferred player is assigned to that resource and receives the corresponding payoff.
This way, every set of proposals corresponds to a bipartite matching between players
and resources. A matching is stable if no player can be assigned to a resource from
which she receives a higher payoff than from her current resource given the proposals of
the other players. Gale and Shapley [11] show that stable matchings always exist and
can be found in polynomial time. Since the seminal work of Gale and Shapley there
has been a significant amount of work in studying two-sided markets. See for example,
the book by Knuth [18], the book by Gusfield and Irving [13], or the book by Roth and
Sotomayor [24].

In the same way as it is in many situations not realistic to assume that in congestion
games the resources have no preferences over the players, it is in two-sided markets
often unrealistic to assume that the preference lists of the resources are strict. Our
model of player-specific congestion games with priorities can also be seen as a model
of two-sided markets with ties in which several players can be assigned to one resource.
If different players propose to a resource, only the most preferred ones are assigned to
it. If the most preferred player is not unique, several players share the payoff of the
resource. Such two-sided markets correspond to our model of congestion games with
priorities, except that players are now interested in maximizing their payoffs instead
of minimizing their delays, which does not affect our results. Two-sided markets with
ties have been extensively studied in the literature [13, 16]. In these models, ties are
somehow broken, i.e., despite ties in the preference lists, every resource can be assigned
to at most one player. Hence, these models differ significantly from our model. One
application of our model are markets into which different companies can invest: as long
as the investing companies are of comparable size, they share the payoff of the market,
but large companies can utilize their market power to eliminate smaller companies
completely from the market. Player-specific congestion games and two-sided markets
are the special cases of our model in which all players have the same priority or distinct
priorities, respectively. In the following, we use the terms two-sided markets with ties
and player-specific congestion games with priorities interchangeably.

We also consider a special case of correlated two-sided markets with ties in which
the payoffs of the players and the preference lists of the resources are correlated. In
this model, every resource prefers to be assigned to players who receive the highest
payoff when assigned to it. We show that this special case is a potential game. Vari-
ants of correlated two-sided markets without ties have been studied in the context of
content distribution in networks and distributed caching problems [8, 12, 21]. These
markets have also been considered for discovering stable geometric configurations with
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applications in VLSI design [14]. Our result implies that variants of the uniform dis-
tributed caching game with bandwidth constraints (defined by Mirrokni et al. [21, 8])
are potential games.

Additionally, we consider player-specific congestion games with priorities in which
the strategy space of each player consists of the bases of a matroid over the resources.
For this case, we show that pure Nash equilibria exist and can be computed in polyno-
mial time, extending a result for player-specific congestion games without priorities [2].
These games can also be seen as many-to-one two-sided markets with ties. Many-to-one
two-sided markets are well-studied in the economics literature [7, 17, 19]. Kelso and
Crawford [17] show that if the preference list of every player satisfies a certain substi-
tutability property, then stable matchings exist. Kojima and Ünver [19] prove that in
this case, from every matching there exists a polynomially long better response sequence
to a stable matching. This substitutability property is satisfied if the strategy spaces
of the players are matroids. The crucial difference between our model of many-to-one
markets with ties and the models considered in the economics literature is that in those
models, every player specifies a ranking on the power set of the resources. This ranking
is fixed and does not depend on the current matching. In our model with ties, however,
players do not have fixed rankings but rankings that depend on the current matching.

2 Preliminaries

In this section, we define the problems and notations used throughout the paper.
Congestion Games. A congestion game Γ is a tuple (N ,R, (Σi)i∈N , (dr)r∈R) where
N = {1, . . . , n} denotes the set of players, R the set of resources, Σi ⊆ 2R the strategy
space of player i, and dr : N → N a delay function associated with resource r. By m we
denote |R|, and we denote by S = (S1, . . . , Sn) the state of the game in which player i
plays strategy Si ∈ Σi. For a state S, we define the congestion nr(S) on resource r by
nr(S) = |{i | r ∈ Si}|, that is, nr(S) is the number of players sharing resource r in state
S. Every player i acts selfishly and wishes to play a strategy Si ∈ Σi that minimizes
her individual delay, which is defined as

∑
r∈Si

dr(nr(S)). We call a state S a pure Nash
equilibrium1 if, given the strategies of the others players, no player can decrease her delay
by changing her strategy. Rosenthal [22] shows that every congestion game possesses at
least one Nash equilibrium by considering the potential function φ : Σ1 × · · · ×Σn → N
with φ(S) =

∑
r∈R

∑nr(S)
i=1 dr(i). A congestion game is called singleton if each strategy

space Σi consists only of sets with cardinality one. The current state S of a singleton
congestion game can be written as S = (r1, . . . , rn), meaning that player i currently
allocates resource ri.
Player-Specific Congestion Games. Player-specific congestion games are conges-
tion games in which every player i has her own delay function di

r : N → N for each
resource r. The delay of player i is then computed with respect to the functions di

r.
Player-Specific Congestion Games with Priorities. We define this model to be
a generalization of player-specific congestion games in which each resource r assigns a
priority or rank rkr(i) to every player i. For a state S, let rkr(S) = maxi:r∈Si rkr(i).

1In this paper, the term Nash equilibrium always refers to a pure Nash equilibrium.
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We say that player i allocates resource r if r ∈ Si, and we say that player i is assigned
to resource r if r ∈ Si and rkr(i) = rkr(S). We define n∗r(S) to be the number of
players that are assigned to resource r, that is, the number of players i with r ∈ Si and
rkr(i) = rkr(S). The delay that an assigned player i incurs on r is di

r(n
∗
r(S)). Players

who allocate a resource r but are not assigned to it incur an infinite delay on resource r.
Congestion games with priorities but without player-specific delay functions are defined
in the same way, except that instead of player-specific delay functions di

r there is only
one delay function dr for each resource r. We say that the priorities are consistent if
the priorities assigned to the players by different resources coincide.
Two-sided Markets. A two-sided market consists of two disjoint sets N = {1, . . . , n}
and R with |R| = m. We use the terms players and agents to denote elements from
N , and we use the terms resources and markets to denote elements from R. In a
two-sided market, every player can be matched to one resource, and every resource can
be matched to one player. We assume that with every pair (i, r) ∈ N × R, a payoff
pi,r is associated and that player i receives payoff pi,r if she is matched to resource r.
Hence, the payoffs describe implicitly for each player a preference list over the resource.
Additionally, we assume that every resource has a strict preference list over the players,
which is independent of the payoffs. Each player i ∈ N can propose to a resource
ri ∈ R. Given a state S = (r1, . . . , rn), each resource r ∈ R is matched to the winner
of r, which is the player whom r ranks highest among all players i ∈ N with r = ri. If
i is the winner of r, she gets a payoff of pi,r. If a player proposes to a resource won by
another player, she receives no payoff at all. We say that S is a stable matching if none
of the players can unilaterally increase her payoff by changing her proposal given the
proposals of the other players. That is, for each player i who is assigned to a resource
ri, each resource r from which she receives a higher payoff than from ri is matched to
a player whom r prefers to i.
Two-sided Markets with Ties. We define a two-sided market with ties to be a two-
sided market in which the preference lists of the resources can have ties. Given a vector
of proposals S = (r1, . . . , rn), we say that a player i ∈ N is matched to resource r ∈ R
if r = ri and if there is no player j ∈ N such that r = rj and j is strictly preferred to
i by r. For a resource r, we denote by nr(S) the number of players proposing to r and
by n∗r(S) the number of players that are matched to r. We assume that every player i
has a non-increasing payoff function pi

r : N → N for every resource r. A player i who is
matched to resource r receives a payoff of pi

r(n
∗
r(S)). Also for two-sided markets with

ties, we call a state S a stable matching if none of the players can increase her payoff
given the proposals of the other players.
Correlated Two-sided Markets with Ties. In correlated two-sided markets with
ties, the preferences of players and resources are correlated. We assume that also the
preference lists of the resources are chosen according to the payoffs that are associated
with the pairs from N ×R. That is, a player i ∈ N is preferred to a player j ∈ N by
resource r ∈ R if and only if pi,r > pj,r. Due to this construction, if two players i and j
are both matched to a resource r, then the payoffs pi,r and pj,r must be the same. We
denote this payoff by pr(S), and we assume that it is split among the players that are
matched to r. The payoff that a player receives who is matched to r is specified by a
function qr(pr(S), n∗r(S)) with qr(pr(S), 1) = pr(S) that is non-increasing in the number
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Figure 1: For games on the upper level, equilibria can be computed in polynomial time,
games on the mid-level are potential games, and games on the lower level converge in a
polynomial number of rounds. An arrow form A to B indicates that B is a special case
of A.

of players matched to r.
Player-Specific Matroid Congestion Games with Priorities. In a player-specific
matroid congestion game with priorities, each strategy space Σi must be the set of bases
of a matroid over the set of resources. A set system (R, I) with I ⊆ 2R is said to be
a matroid if X ∈ I implies Y ∈ I for all Y ⊆ X and if for every X, Y ∈ I with
|Y | < |X| there exists an x ∈ X with Y ∪ {x} ∈ I. A basis of a matroid (R, I) is an
inclusion-maximal set X ∈ I. Every basis of a matroid has the same cardinality which
is called the rank of the matroid. For a matroid congestion game Γ, we denote by rk(Γ)
the maximal rank of one of the strategy spaces of the players. Examples of matroid
congestion games are singleton games and games in which the resources are the edges
of a graph and every player has to allocate a spanning tree. Again, these games can
also be seen as an extension of two-sided markets in which each player can propose to
a subset of resources instead of only one, so-called many-to-one markets, and in which
the preference lists of the resources can have ties.

Figure 1 shows a summary of our results and the models we consider.

3 Singleton Congestion Games with Priorities

In this section, we consider singleton congestion games with priorities but without
player-specific delay functions. For games with consistent priorities, we show that the
better response dynamics reaches a Nash equilibrium after a polynomial number of
rounds. We use the term round to denote a sequence of activations of players in which
every player gets at least once the chance to improve. For example, our result implies
that a polynomial (expected) number of better responses suffices if players are activated
in a round-robin fashion or uniformly at random. We also prove that games in which
different resources can assign different priorities to the players are potential games. We
leave open the question whether they converge in a polynomial number of rounds.
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Theorem 3.1. In singleton congestion games with consistent priorities, the better re-
sponse dynamics reaches a Nash equilibrium after a polynomial number of rounds.

Proof. Ieong et al. [15] prove that in singleton congestion games every sequence of better
responses terminates in a Nash equilibrium after a polynomial number of steps. Since
the players with the highest priority are not affected by the other players, the result
by Ieong et al. shows that after a polynomial number of rounds, none of them has an
incentive to change her strategy anymore. From that point on, the strategies of these
players are fixed and we can again apply the result by Ieong et al. to the players with the
second highest priority. After a polynomially number of rounds, also none of them has
an incentive to change her strategy anymore. After that, the argument can be applied
to the players with the third highest priority and so on.

Next we consider congestion games in which different resources can assign different
priorities to the players.

Theorem 3.2. Singleton congestion games with priorities are potential games.

Proof. We set D = (N∪{∞})×N and for elements x = (x1, x2) ∈ D and y = (y1, y2) ∈ D
we denote by “<” the lexicographic order on D in which the first component is to be
minimized and the second component is to be maximized, i.e., we define x < y if
and only if x1 < y1 or if x1 = y1 and x2 > y2. We construct a potential function
Φ: Σ1×· · ·×Σn → Dn that maps every state S = (r1, . . . , rn) to a vector of values from
D. In state S, every resource r ∈ R contributes nr(S) values to the vector Φ(S) and
Φ(S) is obtained by sorting all values contributed by the resources in non-decreasing
order according to the lexicographic order defined above. Resource r contributes the
values (dr(1), rkr(S)), . . . , (dr(n∗r(S)), rkr(S)) to the vector Φ(S) and nr(S)−n∗r(S) times
the value (∞, 0). We claim that if state S′ is obtained from S by letting one player play
a better response, then Φ(S′) is lexicographically smaller than Φ(S), i.e., there is a k
with Φj(S) = Φj(S′) for all j < k and Φk(S′) < Φk(S).

Assume that in state S player i plays a better response by changing her allocation
from resource ri to resource r′i. We compare the two vectors Φ(S) and Φ(S′), and we
show that the smallest element added to the potential vector is smaller than the smallest
element removed from the potential vector, showing that the potential decreases lexico-
graphically. Due to the strategy change of player i, either the value (dri(n

∗
ri

(S)), rkri(S))
or the value (∞, 0) is replaced by the value (dr′i

(n∗r′i(S
′)), rkr′i

(S′)). Since player i plays a
better response, dr′i

(n∗r′i(S
′)) < dri(n

∗
ri

(S)) or dr′i
(n∗r′i(S

′)) < ∞, respectively, and hence,
the term added to the potential is smaller than the term removed from the potential.
In the following we show that all values that are contained in Φ(S) but not in Φ(S′)
are larger than (dr′i

(n∗r′i(S
′)), rkr′i

(S′)). Clearly, only terms for the resources ri and r′i
change and we can restrict our considerations to these two resources.

Let us consider resource ri first. If the rank of ri does not decrease by the strategy
change of player i or if no player allocates resource ri in state S′, then only the term
(dri(n

∗
ri

(S)), rkri(S)) or (∞, 0) is not contained in the vector Φ(S′) anymore. All other
terms contributed by resource ri do not change. If the rank of resource ri is decreased
by the strategy change of player i, then additionally some terms (∞, 0) in the potential
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are replaced by other terms. Obviously, the removed terms (∞, 0) are larger than
(dr′i

(n∗r′i(S
′)), rkr′i

(S′)).
Now we consider resource r′i. If the rank of r′i does not increase by the strat-

egy change of player i or if no player allocates r′i in state S, then only the term
(dr′i

(n∗r′i(S
′)), rkr′i

(S′)) is added to the potential. All other terms contributed by r′i
do not change. If the rank of r′i is increased by the strategy change of player i, then
additionally the terms (dr′i

(1), rkr′i
(S)), . . . , (dr′i

(n∗r′i(S)), rkr′i
(S)) are replaced by n∗r′i

(S)
terms (∞, 0). In this case, n∗r′i

(S′) = 1 and the smallest removed term, (dr′i
(1), rkr′i

(S)),
is larger than (dr′i

(1), rkr′i
(S′)) = (dr′i

(n∗r′i(S
′)), rkr′i

(S′)) because rkr′i
(S′) > rkr′i

(S).

4 Player-Specific Singleton Congestion Games with Pri-
orities

In this section, we consider singleton congestion games with priorities and player-specific
delay functions and we show that these games always possess Nash equilibria. Our proof
also yields an efficient algorithm for finding an equilibrium.

Theorem 4.1. Every player-specific singleton congestion game with priorities possesses
a pure Nash equilibrium that can be computed in polynomial time by O(m · n3) strategy
changes.

Proof. In order to compute an equilibrium, we compute a sequence of states S0, . . . , Sk

such that S0 is the state in which no player allocates a resource and Sk is a state in which
every player allocates a resource. Remember that we distinguish between allocating a
resource and being assigned to it. Our construction ensures the invariant that in each
state Sa in this sequence, every player who allocates a resource has no incentive to
change her strategy. Clearly, this invariant is true for S0 and it implies that Sk is a
pure Nash equilibrium.

In state Sa we pick an arbitrary player i who is allocating no resource and we let her
play her best response. If in state Sa there is no resource to which i can be assigned,
then i can allocate an arbitrary resource without affecting the players who are already
allocating a resource and hence without affecting the invariant. It remains to consider
the case that after her best response, player i is assigned to a resource r. If we leave the
strategies of the other players unchanged, then the invariant may not be true anymore
after the strategy change of player i. The invariant can, however, only be false for
players who are assigned to resource r in state Sa. We distinguish between two cases in
order to describe how the strategies of these players are modified in order to maintain
the invariant.

First we consider the case that the rank of resource r does not change by the strategy
change of player i. If there is a player j who is assigned to resource r in Sa and who
can improve her strategy after i is also assigned to r, then we change the strategy of
j to the empty set, i.e., in state Sa+1 player j belongs to the set of players who do
not allocate any resource. Besides this, no further modifications of the strategies are
necessary because all other players are not affected by the replacement of j by i on
resource r. In the case that the rank of resource r increases by the strategy change of
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player i, all players who are assigned to resource r in state Sa are set to their empty
strategy in Sa+1.

It only remains to show that the described process terminates after a polynomial
number of strategy changes in a stable state. We prove this by a potential function that
is the lexicographic order of two components. The most important component is the sum
of the ranks of the resources, i.e.,

∑
r∈R rkr(Sa), which is to be maximized. Observe that

this sum does not decrease in any of the two aforementioned cases, and that it increases
strictly in the second case. Thus we need to show that after a polynomial number of
consecutive occurrences of the first case, the second case must occur. Therefore, we need
a second and less important component in our potential function. In order to define
this component, we associate with every pair (i, r) ∈ N ×R for which i is assigned to
r in state Sa a tolerance tola(i, r) that describes how many players (including i) can be
assigned to r without changing the property that r is an optimal strategy for i, i.e.,

min{max{b | in Sa, r is best resp. for i if i shares r with b− 1 players}, n} .

The second component of the potential function is the sum of the tolerances of the
assigned pairs in Sa, which is to be maximized. We denote the set of assignments in
state Sa by Ea ⊆ N ×R and define the potential function as

Φ(Sa) =

∑
r∈R

rkr(Sa),
∑

(i,r)∈Ea

tola(i, r)

 .

In every occurrence of the first case, the second component increases by at least 1. Since
the values of the components are bounded from above by m · n and n2 and bounded
below from 0, the potential function implies that there can be at most m · n3 strategy
changes before an equilibrium is reached. This does not include the last strategy change
of players who are not assigned to any resource in the final state. In their last strategy
change, these players allocate an arbitrary resource, which does not affect the potential.
However, there are less than n such strategy changes.

Let us remark that the potential function does not imply that the considered games
are potential games because it increases only if the strategy changes are made according
to the above described policy.

5 Correlated Two-Sided Markets with Ties

In this section, we analyze the better response dynamics for correlated two-sided markets
with ties and we show that these games are potential games.

Theorem 5.1. Correlated two-sided markets with ties are potential games.

Proof. We define a potential function Φ: Σ1 × · · · × Σn → Nn that is similar to the
one used in the proof of Theorem 3.2, and we show that it increases strictly with every
better response that is played. Again each resource r contributes nr(S) values to the
potential, namely the values qr(pr(S), 1), . . . , qr(pr(S), n∗r(S)) and nr(S)− n∗r(S) times
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the value 0. In the potential vector Φ(S), all these values are sorted in non-increasing
order. A state S′ has a higher potential than a state S if Φ(S′) is lexicographically
larger than Φ(S), i.e., if there exists an index k such that Φj(S) = Φj(S′) for all j < k
and Φk(S) < Φk(S′).

Let S denote the current state and assume that there exists one player i ∈ N who
plays a better response, leading to state S′. We show that Φ(S′) is lexicographically
larger than Φ(S). Assume that i changes her proposal from ri to r′i. Since i plays a better
response, she must be matched to r′i in state S′. That is, the value qr′i

(pi,r′i
, n∗r′i

(S′)) is
added to the potential. We show that only smaller values are removed from the potential,
implying that the potential must lexicographically increase. If i is matched to ri in
state S, then only the value qri(pri(S), n∗ri

(S)) is removed from the vector and maybe,
if n∗ri

(S) = 1, some 0 values are replaced by larger values. Since player i plays a better
response, qri(pri(S), n∗ri

(S)) < qr′i
(pi,r′i

, n∗r′i
(S′)). If n∗r′i

(S′) = 1 and there are players
assigned to r′i in state S, then also the values qr′i

(pr′i
(S), 1), . . . , qr′i

(pr′i
(S), n∗r′i(S)) are

removed from the potential vector. In this case, player i displaces the previously assigned
players from resource r′i, which implies qr′i

(pi,r′i
, n∗r′i

(S′)) = qr′i
(pi,r′i

, 1) > qr′i
(pr′i

(S), 1),
as desired.

6 Extensions to Matroid Strategy Spaces

In this section, we study player-specific congestion games with priorities in which each
strategy space Σi consists of the bases of a matroid over the resources. For this setting,
we generalize the results that we obtained for the singleton case.

Theorem 6.1. In matroid congestion games with consistent priorities, the best response
dynamics reaches a Nash equilibrium after a polynomial number of rounds.

For matroid congestion games, it is known that every sequence of best responses
reaches a Nash equilibrium after a polynomial number of steps [1]. Using this result
yields the theorem analogously to the proof of Theorem 3.1.

Given a state S of a matroid congestion game with priorities, we denote a better
response of a player i ∈ N from Si to S′i lazy if it can be decomposed into a sequence
of strategies Si = S0

i , S1
i , . . . , Sk

i = S′i such that |Sj+1
i \ Sj

i | = 1 and the delay of player
i in state Sj+1

i is strictly smaller than her delay in state Sj
i for all j ∈ {0, . . . , k − 1}.

That is, a lazy better response can be decomposed into a sequence of exchanges of single
resources such that each step strictly decreases the delay of the corresponding player.
In [2], it is observed that for matroid strategy spaces, there does always exist a best
response that is lazy. In particular, the best response that exchanges the least number
of resources is lazy, and in singleton games every better response is lazy.

Theorem 6.2. Matroid congestion games with priorities are potential games with re-
spect to lazy better responses.

Since lazy better responses can be decomposed into exchanges of single resources,
the same potential function as in the proof of Theorem 3.2 also works for the matroid
case. The restriction to lazy better responses in Theorem 6.2 is necessary, as shown by
the following result.
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Theorem 6.3. The best response dynamics in matroid congestion games with priorities
can cycle.

Proof. Let N = {1, 2} denote the players and let R = {a, b, c, d} denote the resources.
The set of strategies of player 1 is

Σ1 = {{a}, {d}}

and the set of strategies of player 2 is

Σ2 = {{a, b}, {b, c}, {c, d}, {a, d}} .

Resource a assigns a higher priority to player 2, and resource d assigns the same priority
to both players. The delay functions are chosen as follows:

da(1) = 1, db(1) = 3, dc(1) = 1, dd(1) = 2, dd(2) = 4 .

Given these delays, the following sequence of states is a cycle in the best response
dynamics:

({d}, {a, d}) → ({d}, {b, c}) → ({a}, {b, c}) → ({a}, {a, d}) → ({d}, {a, d}) .

Similar arguments as for Theorem 4.1 yield the following generalization.

Theorem 6.4. Every player-specific matroid congestion game Γ with priorities pos-
sesses a pure Nash equilibrium that can be computed in polynomial time by O(m · n3 ·
rk(Γ)) strategy changes.

Proof. For i ∈ N , we denote by Ii the set {X | X ⊆ Y ∈ Σi}, and we assume that the
set system Mi = (R, Ii) is a matroid. We use the same arguments as in the proof of
Theorem 4.1, that is, we compute a sequence of states S0, . . . , Sk such that S0 is the
state in which every player allocates the empty set and Sk is a Nash equilibrium. In
contrast to the definition of matroid congestion games, where each player i is required
to allocate a basis from Σi, we also allow partial strategies from Ii in states Sa with
a < k. To be precise, in states Sa with a < k it can happen that the set of resources
that a player allocates is a strict subset of a basis. For a player i ∈ N , let Ra

i ⊆ R
denote the set of resources she can be assigned to in state Sa, i.e., Ra

i contains exactly
those resources that are in state Sa not assigned to a player that they strictly prefer
to i. Let Ma

i = (Ra
i ,Σ

a
i ) denote the matroid that is obtained from Mi by deleting all

resources in R \Ra
i . The following invariant will be true for all states Sa.

Invariant 6.5. For every player i ∈ N , there exists a basis Ba
i ∈ Σa

i of the matroid Ma
i

with Sa
i ⊆ Ba

i that has minimum delay given the partial strategies of the other players
in Sa.

That is, if the other players do not change their strategies, no player is forced to
leave resources that she currently allocates in order to obtain a basis with minimum
delay. If the basis Ba

i of the matroid Ma
i is not a basis of the matroid Mi, then player

i has no strategy with finite delay given the partial strategies of the other players in Sa.

11



Now we describe how state Sa+1 is obtained from state Sa. If in state Sa every
player i allocates a basis of the matroid Ma

i , then due to the invariant, an equilibrium
Sa+1 is obtained from Sa by letting each player i allocate an arbitrary basis Ba+1

i of
Mi with Sa

i ⊆ Ba+1
i . Assume that there exists a player i ∈ N who is not allocating

a basis of Ma
i . In order to obtain Sa+1, we choose an arbitrary resource r ∈ Ba

i \ Sa
i

and let player i allocate r, i.e., we set Sa+1
i = Sa

i ∪ {r}. Obviously, after this strategy
change, player i is assigned to resource r since r ∈ Ra

i . If we leave all other strategies
unchanged, then the invariant may not be true anymore.

We distinguish between three different cases in order to determine the strategies of
the other players in state Sa+1.

1. If no player allocates r in Sa, then Sa+1
j = Sa

j for all j ∈ N \ {i}.

2. If i is ranked higher in r’s preference list than the players assigned to r in Sa, then
resource r is removed from the strategies of all players assigned to r in Sa, i.e.,
for all these players j we set Sa+1

j = Sa
j \ {r}. The strategies of all other players

remain as in Sa.

3. If i is tied in r’s preference list with the players assigned to r in state Sa, then we
check whether the invariant stays true if additionally i is assigned to r. If this is
not the case, then we remove one player k from r for whom the invariant becomes
false, i.e., we set Sa+1

k = Sa
k \ {r} and Sa+1

j = Sa
j for all j ∈ N \ {i, k}.

First we show that the invariant stays true in all three cases. This is based on the
following property of matroids, which is proven in [2].

Lemma 6.6. Let (R, I) be a matroid with weights w : R → N and let B be a basis of
minimum weight. If the weight of a single resource r ∈ B is increased such that B is
no longer of minimum weight, then, in order to obtain a basis of minimum weight, it
suffices to exchange r with a resource r′ ∈ R of minimum weight such that B∪{r′}\{r}
is a basis.

Consider the first case and assume that the invariant is true in state Sa. Since no
player is assigned to resource r in state Sa, there is no player whose current delay is
increased by assigning i to r, but there can be players j ∈ N with r ∈ Ba

j . For these
players, either Ba

j is still a basis of minimum delay or, due to Lemma 6.6, they can
choose a basis Ba+1

j with Sa
j ⊆ Ba+1

j of minimum delay given that i is assigned to r.
Since players j ∈ N with r /∈ Ba

j are not affected by the strategy change of player i,
the invariant is also true in state Sa+1. In the second case, the invariant stays true
for all players who are assigned to r in state Sa because they just need to exchange r
with another resource to obtain a basis with minimum delay again due to Lemma 6.6.
It stays true for all other players j with r ∈ Ba

j due to Lemma 6.6, and again players
j ∈ N with r /∈ Ba

j are not affected by the strategy change of player i. In the third
case, for all players j ∈ N \ {i, k} the effects of the strategy changes of i and k cancel
each other out, and hence, these players are not affected by the strategy changes of i
and k. The invariant stays true for k due to Lemma 6.6.

It only remains to show that the described process terminates after a polynomial
number of strategy changes in an equilibrium. This follows by the same potential
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function as in the proof of Theorem 4.1. The upper bound on the second component
of the potential function increases by a rk(Γ) factor, which accounts for the increased
number of strategy changes.

The previous proof relies on the fact that players who cannot be assigned to a
complete basis do not leave the game completely but still allocate a basis. In fact, it is
only important that every player i allocates a basis of the matroid obtained from Mi

by deleting the resources to which she cannot be assigned. If we redefine the model that
players who cannot be assigned to a complete basis do not allocate any resource, then,
in general, Nash equilibria do not exist as the following example shows.

Consider a game with three resources R = {r1, r2, r3} and two players who want
to allocate two resources each, i.e., their strategy spaces are the bases of a uniform
matroid of rank 2. Assume that the resources r1 and r2 prefer player 1 to player 2 and
the players are tied in the preference list of r3. If the player-specific delay functions are
defined as follows, then no pure Nash equilibrium exists.

r1 r2 r3

congestion 1 2 1 2 1 2
player 1 1 - 2 - 1 3
player 2 1 - 1 - 1 2

A state in which the first player allocates the resources r1 and r2, cannot be a pure Nash
equilibrium, because in such a state the second player cannot be assigned to a basis,
and hence the resource r3 would be empty. In that case, the first player prefers {r1, r3}
to her current strategy {r1, r2}. A state in which the first player allocates the resources
ri and r3 for either i = 1 or i = 2 cannot be a Nash equilibrium either because in such a
state, the second player would allocate the resources r3−i and r3, which in turn implies
that the first player would prefer {r1, r2} to her current choice {r3−i, r3}.

Next, we consider correlated two-sided matroid markets with ties. Since lazy better
responses can be decomposed into exchanges of single resources, the potential function
defined in the proof of Theorem 5.1 also works for matroid strategy sets if players play
only lazy better responses.

Theorem 6.7. Correlated two-sided matroid markets with ties are potential games with
respect to lazy better responses.

The restriction in Theorem 6.7 to lazy better responses is necessary.

Theorem 6.8. The best response dynamics in correlated two-sided matroid markets
with ties can cycle.

Proof. We choose N , R and the strategy sets as in Theorem 6.3. The payoffs associated
with the possible pairs in N ×R are defined as follows:

p1,a = 5, p1,d = 3, p2,a = 7, p2,b = 1, p2,c = 7, p2,d = 2 .

The cycle in the best response dynamics in Remark 6.3 is also a cycle in this example.
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7 Conclusions and Open Problems

We consider a model of player-specific congestion games with priorities. We show that
pure Nash equilibria exist in these games and we show that the special cases of non-
player-specific and correlated games are potential games. We leave open the question
whether the better response dynamics reaches a Nash equilibrium after a polynomial
number of rounds in these special cases. This is only shown for the special case of
non-player-specific congestion games with consistent priorities.

In our model, players displace other players with lower priorities. As we mentioned
in the introduction, this is reasonable if players control streams of jobs rather than
single ones. It would be interesting to find and analyze different models in which jobs
are only slowed down by jobs with higher priorities, i.e., models in which they incur a
large but finite delay.
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ries. Les Presses de l’Université de Montréal, 1976.
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