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Abstract

Congestion games are a fundamental and widely studied model for selfish allocation problems
like routing and load balancing. An intrinsic property of these games is that players allocate
resources simultaneously and instantly. This is particularly unrealistic for many network routing
scenarios, which are one of the prominent application scenarios of congestion games. In many
networks, load travels along routes over time and allocation of edges happens sequentially. In
this paper we consider two frameworks that enhance network congestion games with a notion of
time. We introduce temporal network congestion games that are based on coordination mecha-
nisms — local policies that allow to sequentialize traffic on the edges. In addition, we consider
congestion games with time-dependent costs, in which travel times are fixed but quality of service
of transmission varies with load over time. We study existence and complexity properties of pure
Nash equilibria and best-response strategies in both frameworks for the special case of linear
latency functions. In some cases our results can be used to characterize convergence properties
of various improvement dynamics, by which the population of players can reach equilibrium in
a distributed fashion.
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1 Introduction

As an intuitive game-theoretic model for competitive resource usage, network congestion games
have recently attracted a great deal of attention [2, 24, 48]. These games are central in modeling
routing and scheduling tasks with distributed control [49]. Such games can be described by a
routing network and a set of players who each have a source and a target node in the network and
choose a path connecting these two nodes. The quality of a player’s choice is evaluated in terms
of the total delay or latency of the chosen path. For this, every edge e has a latency function that
increases with the number of players whose paths include edge e. Ignoring the inherent delay in
transmitting packets in networks or routing cars in road networks, this model implicitly assumes
that players use all edges on their paths instantaneously and simultaneously.

Depending on the application, it might not be reasonable to assume that a player instanta-
neously allocates all edges on his chosen path. Consider for instance a road traffic network, in
which players route cars to their destinations. Clearly, a traffic jam that delays people at rush hour
might be harmless to a long distance traveler who reaches the same road segment hours later. In
this case, it is more natural to assume that edges are allocated consecutively, and players take some
time to pass an edge before they reach the next edge on their path. In addition, for connections
in computer networks the system may use a local queuing policy to schedule the players traversing
this edge.

In this paper, we study two different models that extend the standard model of network conges-
tion games by a temporal component. In our first model, we incorporate the assumption that on
each edge, the traffic over the edge must be sequentialized which in turn results in a local scheduling
problem with release times on each edge, and requires a formal description of the local scheduling
or queuing policy on each edge. To model these local scheduling policies, we use the idea of co-
ordination mechanisms [7, 14,20,36] that have been introduced and studied mainly in the context
of machine scheduling and selfish load balancing [55]. In selfish load balancing, each player has a
task and has to assign it to one of several machines in order to minimize his completion time. A
coordination mechanism is a set of local scheduling policies that run locally on machines. Given
an assignment of tasks to machines, the coordination mechanism run on a machine e gets as input
the set of tasks assigned to e and their processing times on e. Based on this information, it decides
on a preemptive or non-preemptive schedule of the tasks on e. The local scheduling policies of the
coordination mechanism do not have access to any global information, like, e.g., the set of all tasks
and their current allocation.

Applying the idea of coordination mechanisms to network congestion games results in the defi-
nition of temporal congestion games, which are studied in Section 3. We assume that each edge in
a network congestion game is a machine equipped with a local scheduling policy, and each player
has a task and chooses a path. Starting from their source, tasks travel along their path from one
edge to another until they reach the target. They become available on the next edge of their path
only after they have been processed completely on the previous edges. The player incurs as latency
the total travel time that his task needs to reach the target. Each player then strives to pick a path
that minimizes his travel time.

In our second model, which we term congestion games with time-dependent costs and study in
Section 4, we assume that the travel time along each edge is a constant independent of the number
of players using that edge. This model captures the property that increased traffic yields decreased
quality of service for transmitting packets. For instance, in wireless networks increased congestion
on a link can increase the failure probability of transmissions and packets get lost. Similarly, in road
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networks increased traffic can increase the probability that a car is involved in a serious accident.
One could try to incorporate this aspect via an adjusted travel time. However, the travel time of
a lost packet or a car involved in a serious accident is usually extremely large compared to normal
travel times. In addition, there are other obvious disadvantages in having an accident than just
increased travel time. Thus, combining these fundamentally different aspects into one function is
an unsuitable approach. Instead, we here use a separate time-dependent cost function to capture
such risks. We assume time is discretized into units (e.g., seconds), and the cost of an edge during
a second depends on the number of players currently traveling on the edge. Each player now strives
to pick a path that minimizes the total time-dependent costs during the travel time along the edges.

Our games extend the model of atomic congestion games, which were initially considered by
Rosenthal [48]. They are a vivid research area in (algorithmic) game theory and have attracted
much research interest, especially over the last decade. A variety of issues have been addressed,
most prominently existence and computational complexity of equilibrium concepts such as pure
Nash equilibria [2, 24, 48], approximate equilibria [1, 8, 15, 18, 26, 51], strong equilibria [34, 35], or
states with no-regret property [11, 37]. Another important direction is bounding the inefficiency
of equilibrium states, which has been done extensively, e.g., for pure Nash equilibria [6, 19, 50],
approximate Nash equilibria [20], Pareto-optimal Nash and strong equilibria [3, 17], or states with
no-regret property [12]. For an overview and introduction to the topic we refer to the recent
expositions by Roughgarden [49] and Vöcking [55].

Addressing algorithmic aspects of congestion games with different notions of time has only
been started very recently in a number of papers [4, 25, 39]. Koch and Skutella [39] consider a
general model for flows over time known in the traffic literature as deterministic queuing model.
In their model traveling times are constant but the time spent in FIFO queues at the nodes
may vary depending on traffic over time. They prove existence of equilibria, provide a structural
characterization and efficient algorithms for computation as well as bounds on the inefficiency of
equilibria. Recently, Macko et al. [40] provide further insights to characterize Braess paradox in
flows over time and stronger lower bounds on the inefficiency of equilibria. Bhaskar et al. [9]
further bound the price of anarchy for different social cost functions and show how to successfully
apply Stackelberg strategies in this scenario. For a similar model of flows over time, Anshelevich
and Ukkusuri [4] derive a number of related results. These papers relate to the classic Wardrop
model of static selfish flows [56]. More generally, they relate to a significant amount of work in the
literature on flows over time. While most related work addresses flows over time with respect to
global optimization [16, 27, 30, 47, 52], there are also a variety of papers that address competitive
situations and equilibria [42, 46, 53, 54, 57]. However, due to the complex dependencies in these
models and their analysis, there are many open problems with respect to characterization and
computation of equilibria. For a deeper discussion of related work in this area, see, e.g., [39].

Let us point out that there are several differences between our model and flows over time. First,
in contrast to our work, all the above surveyed literature addresses non-atomic congestion games,
in which players are infinitesimally small flow particles and thus do not have different weights or
induce different transmission delays. In fact, in many cases it is assumed that transmission time on
an edge is constant. Strategic issues arise only from different waiting times to enter the next edge,
which depend on the queued amount of earlier flow. Second, in flows over time as studied in [9,39],
we have a common source that emits a rate of flow, that is, players enter the game consecutively
at the same source node over time and decide upon arrival on a route through the network to the
(common) destination. Intermediate edges and nodes are assumed to forward traffic according to a
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FIFO strategy. In our work, we assume that all players are present initially at potentially different
sources in the network and want to route to player-specific destinations. Intermediate nodes can
have different queuing policies to forward traffic. However, our model is quite related to [39] for
games with common source and sink, unweighted players and the FIFO policy. In this case, our
existence result in Theorem 1 is similar to their main existence theorem, but the slightly different
and discrete nature of our problem allows a much simpler argumentation. Despite some differences,
tools from the area of flows over time can be of use also for the analysis of our models, e.g., for
congestion games with time-dependent costs we use time-expanded networks in Section 4.

Finally, Farzad et al. [25] consider a priority-based scheme for both, non-atomic and atomic
games. In their model players have priorities, and a resource yields different latencies depending
on the priority of players allocating it. This includes an approach of Harks et al. [31] as a special
case. While there can be different latencies for different players, this model does not include a more
realistic “dynamic” effect that players delay other players only for a certain period of time. This is
the case in our paper, as well as in [4, 39] for the non-atomic case.

1.1 Our Contribution

For temporal congestion games, we study four different (classes of) coordination mechanisms:

1. FIFO, in which tasks are processed non-preemptively in order of arrival, see Section 3.1,

2. Non-preemptive global ranking, in which there is a global ranking among the tasks that deter-
mines in which order tasks are processed non-preemptively (e.g., Shortest-First or Longest-
First), see Section 3.2,

3. Preemptive global ranking, in which there is a global ranking that determines in which order
tasks are processed and higher ranked tasks can preempt lower ranked tasks, see Section 3.3,

4. Fair Time-Sharing, in which all tasks currently located at an edge get processed simultane-
ously and each of them gets the same share of processing time, see Section 3.4.

Our interest is to characterize algorithmic properties of equilibria in these games. In particular,
we are interested in existence of pure Nash equilibria, i.e., states that are resilient against unilateral
player deviations. Pure Nash equilibria are the standard solution concept in static congestion games
and have a natural and intuitive appeal. In addition to existence, an important aspect of equilibria is
their computational complexity. If computing an equilibrium is hard, it is in general unreasonable
to assume that an equilibrium can be obtained by the players. More importantly, we strive to
obtain natural and simple strategy updating procedures that allow players to reach equilibria in a
distributed and decentralized fashion. Our results on these issues are as follows.

For the FIFO policy (in unweighted single-source games) and the Shortest-First policy (in
weighted single-source games) we show an interesting contrast of positive and negative results:
even though computing a best response strategy for a player is NP-hard, there always exists a pure
Nash equilibrium, which can be computed in polynomial time. It turns out that this is also a strong
equilibrium [5], which is resilient to deviations of coalitions of players. In addition, there are a large
number of natural improvement dynamics, using which the population of agents is able to find this
strong equilibrium quickly even without solving computationally hard problems.

We then proceed to show that Shortest-First is the only global ranking that guarantees the
existence of a pure Nash equilibrium in the non-preemptive setting. That is, for any other global
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ranking (e.g., Longest-First) there exist temporal congestion games without pure Nash equilibria.
In contrast to this, we show that preemptive games are potential games for every global ranking
and that uncoordinated agents can reach a pure Nash equilibrium quickly using improvement
dynamics. Again, this pure Nash equilibrium is a strong equilibrium and therefore resilient against
any coalitional deviation. Finally, we show that even though Fair Time-Sharing is an appealing
coordination mechanism, it does not guarantee the existence of pure Nash equilibria, not even for
identical tasks and networks with a common source and a common sink.

For the second model, congestion games with time-dependent costs, we prove that these games
can be reduced to standard congestion games. Hence, they are potential games [41], and they have
pure Nash equilibria and the finite improvement property. In addition, the known results on the
price of anarchy for congestion games with corresponding delay functions carry over. We prove
that computing a best response strategy in these games is NP-hard in general. Additionally, we
show that even for a very restricted class of games with polynomially bounded delays and acyclic
networks computing a pure Nash equilibrium is PLS-complete.

2 Notation

A network congestion game is described by a directed graph G = (V,E), a set N = {1, . . . , n} of
players with source nodes s1, . . . , sn ∈ V and target nodes t1, . . . , tn ∈ V , and a non-decreasing
latency function ℓe : [n] → R≥0 for each edge e. We will only consider linear latency functions of
the form ℓe(x) = aex in this paper. For such functions, we call ae the speed of edge e.1 The strategy
space Σi of a player i ∈ N is the set of all simple paths in G from si to ti. We call a network
congestion game weighted if additionally every player i has a weight wi ≥ 1, and unweighted if
w1 = . . . = wn = 1. Given a state P = (P1, . . . , Pn) ∈ Σ = Σ1 × · · · × Σn of a network congestion
game, we denote by ne(P ) =

∑
i:e∈Pi

wi the congestion of edge e ∈ E. The individual latency that
a player i incurs is ℓi(P ) =

∑
e∈Pi

ℓe(ne(P )), and every player is interested in choosing a path of
minimum individual latency. We call a congestion game a single-source game if every player has
the same source node s. If all players have the same source and target nodes, their strategy spaces
are the same and we call the game an s-t-network game.2 If not explicitly mentioned otherwise, we
consider general unweighted network congestion games.

We incorporate time into the standard model in two different ways. Formally, this alters the
individual latency functions ℓi. The specific definitions will be given in the sections below. For
our altered games we are interested in stable states, which are pure strategy Nash equilibria of
the games. Such an equilibrium is given by the condition that each player plays a best response
and has no unilateral incentive to deviate, i.e., P is a (pure) Nash equilibrium if for every player
i and every state Q that is obtained from P by replacing i’s path by some other path, it holds
ℓi(P ) ≤ ℓi(Q), where ℓi denotes the (altered) latency function of player i. More generally, a state
P has an improving move for a coalition of players C if there is a state Q obtained by replacing
the path of some of the players in C by different paths, such that ℓi(P ) > ℓi(Q) for every player
i ∈ C. A state P is a strong equilibrium if it has no improving move for any arbitrary coalition C.

1It would be more accurate to call ae the inverse of the speed. However, to shorten terminology we call ae just
the speed of edge e.

2Usually, such games are called symmetric network games. In our temporal adjustment, however, s-t-network
games will not be symmetric games because of different task weights and queuing priorities. Therefore, we resort to
a different name here.
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Note that we will not consider mixed Nash equilibria in this paper, and the term Nash equilibrium
will refer to the pure version throughout.

3 Coordination Mechanisms

In this section we consider temporal network congestion games. These games are described by the
same parameters as standard weighted network congestion games with linear latency functions.
However, instead of assuming that a player allocates all edges on his chosen path instantaneously,
we consider a scenario in which players consecutively allocate the edges on their paths. We assume
that each player has a weighted task that needs to be processed by the edges on his chosen path.

Formally, at each point in time τ ∈ R≥0, every task i is located at one edge ei(τ) of its chosen
path, and a certain fraction fi(τ) ∈ [0, 1] of it is yet unprocessed on that edge. The coordination
mechanism run on edge e has to decide in each moment of time which task to process. If it decides
to work on transmitting task i for ∆τ time units starting at time τ , then the unprocessed fraction
fi(τ + ∆τ) of task i at time τ + ∆τ is max(0, fi(τ) − ∆τ/(aewi)). In total, task i needs aewi

time units to finish on edge e. Once fi(τ) = 0, task i arrives at the next edge on its path and
becomes available for processing. The coordination mechanism can base the decision on which
task to process next and for how long only on local information available at the edge — such as
the weights and arrival times of those tasks that have already arrived at the edge. The individual
latency ℓi(P ) of player i in state P is the time at which task i is completely finished on the last
edge of Pi.

3.1 The FIFO Policy

One of the most natural coordination mechanisms is the FIFO policy. If several tasks are currently
located at the same edge, then the one that has arrived first is executed non-preemptively until it
finishes. In the case of ties, there may be an arbitrary tie-breaking that is consistent among the
edges.

3.1.1 Unweighted and Single-Source Games

In this section we treat unweighted temporal network congestion games with a single source. For
these games we obtain an interesting contrast of positive and negative results: even though comput-
ing a best response is NP-hard, there always exists a Nash equilibrium, which can be computed in
polynomial time. Moreover, the equilibrium is not only efficiently computable, but uncoordinated
agents are able to find it quickly even without solving computationally hard problems.

In order to prove that a Nash equilibrium can be computed efficiently, we will use the notion
of greedy best responses. A greedy best response for player i is a path s, v1, . . . , vk = t from s to
t such that for every intermediate node vk′ the subpath s, v1, . . . , vk′ is a shortest path from s to
vk′ . To be more precise, given the current strategies of the other players, there is no possibility for
player i to reach node vk′ earlier than following the subpath s, v1, . . . , vk′ .

Let us remark that greedy best responses are the discrete analog of subpath-optimal flows
introduced by Cole et al. [21]. The basic idea in the proof of Theorem 1 below is that if greedy
best responses are played according to some player ordering, a Nash equilibrium will evolve. This
approach has been used before in weighted network congestion games on parallel links [28] or classes
of series-parallel graphs [29]. Before we turn to the proof, however, we note that, in general, greedy

6



s

v1

v2 v3
t

v4

v5
5

1 3.5 10

50 50

1 2

7
100

4.9

5.1

5

Figure 1: This example shows that not every best response is greedy and that greedy best responses
do not always exist. It uses multi-edges, which can easily be substituted by normal edges if one
adds additional nodes.

best responses are a strict subclass of best responses and do not always exist. Let us consider an
example to illustrate this point.

Example 1. Consider the network depicted in Figure 1. Assume there are four unweighted players.
The highest ranked player has chosen the path s, v2, v4, t. The second highest ranked player has
chosen the path s, v1, v2, v4, v3, v5, t, where he uses edge (s, v1) of speed 5. The third highest ranked
player has chosen the path s, v4, v3, t. Let us consider a best response of the fourth and lowest
ranked player. If he chooses the path s, v1, v2, v3, t with the edge (s, v1) of speed 5.1, then he
reaches node t at time 20.5. If he chooses the same path with (s, v1) of speed 4.9, then he reaches
node t only at time 29 because he is delayed at node v3 by the third player. One can check that
all other paths are even worse for the fourth player. Hence, choosing the aforementioned path with
the edge of speed 5.1 is the only best response. It is, however, not greedy as the fourth player does
not arrive at v1 at the earliest possible time.

Theorem 1. For unweighted single-source temporal network congestion games with the FIFO policy
a Nash equilibrium always exists. Moreover, a Nash equilibrium can be computed efficiently.

Proof. Let us assume without loss of generality that players are numbered according to their rank
in tie-breaking, i.e. 1 is the highest ranked player, and n is the lowest ranked player. We claim that
we obtain an equilibrium from an arbitrary state P = (P1, . . . , Pn) if we let the players 1, 2, . . . , n
play each one greedy best response in this order. Let P̃1, . . . , P̃n denote the paths chosen by the
players in these greedy best responses. We prove the following invariant: in each intermediate state
(P̃1, . . . , P̃i, Pi+1, . . . , Pn) and for each player j ∈ {1, . . . , i} the current path P̃j is a best response
and none of these players can be delayed at any node by a lower ranked player k > i. Both these
properties remain true even if all lower ranked players k > i are allowed to change their paths
arbitrarily.

For i = 0 this invariant is trivially true. For i > 0 we construct a distance function d : V → R≥0

for the network G = (V,E), which eventually tells us for every node how long it takes player i
to get there. The construction of this distance function follows roughly Dijkstra’s algorithm: Let
I ⊆ V denote the set of nodes that have already an assigned distance. We start with I = {s} and
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d(s) = 0. For extending the set I, we crucially use the fact that the players 1, . . . , i − 1 cannot
be delayed by other players, which means that every edge e ∈ E has a fixed schedule saying when
it is used by the players 1, . . . , i − 1 and when it is available for player i. These fixed schedules
imply in particular that for every node v ∈ V there exists a shortest path s, v1, . . . , vk = v for
player i from s to v such that every subpath s, v1, . . . , vk′ is a shortest path from s to vk′ . Hence,
taking into account the fixed schedules and the possible delays that they induce on player i, we
can extend the set I as in Dijkstra’s algorithm, that is, we insert a node v ∈ V \ I into I that
minimizes minu∈I d(u) + ℓ(u, v), where ℓ(u, v) denotes the time it takes player i to get from u to v
if he arrives at node u at time d(u). The distance d(v) assigned to node v is minu∈I d(u) + ℓ(u, v).
This algorithm implicitly constructs a path from s to any other node.

For any node u the distance d(u) is by construction the earliest time at which player i can reach
node u taking into account the strategies of the higher ranked players. Hence any path from s
to the destination ti of player i that can be constructed by this algorithm (the degree of freedom
is the tie-breaking) is a greedy best response for player i. On any such path player i cannot be
delayed at any node by a lower ranked player. Assume for contradiction that there is a node v and
a player j > i such that j arrives earlier at node v than i. This contradicts the construction of the
path as it implies that there is a faster way to get from s to v. Again this argument crucially uses
the property that the players 1, . . . , i − 1 cannot be delayed by lower ranked players. As player i
cannot be delayed by lower ranked players, he reaches node ti at the earliest possible time d(ti)
if he follows the path computed by the algorithm regardless of the strategies of the lower ranked
players. This proves that choosing such a path is a best response against all other players even if
all lower ranked players are allowed to change their paths arbitrarily. This proves the correctness
of the invariant.

The theorem follows from the correctness of the invariant and the efficient algorithm for com-
puting a greedy best response for player i when players 1, . . . , i − 1 play already greedy best
responses.

The previous result can easily be extended to show that the derived Nash equilibrium is also
a strong equilibrium. Suppose the Nash equilibrium allows an improving move for some coalition
C. Consider the highest ranked player i∗ ∈ C. Any greedy best response is a “dominant” strategy
no matter what lower ranked players do. Thus, there is no way in which a strategy switch of lower
ranked players can lead to a strict improvement in the delay of i∗. This contradicts that the move
is improving for i∗ ∈ C and shows that the Nash equilibrium is really a strong equilibrium.

Corollary 1. For unweighted single-source temporal network congestion games with the FIFO
policy a strong equilibrium always exists. Moreover, a strong equilibrium can be computed efficiently.

In addition to existence, the previous proof also shows that players reach the strong equilibrium
in a distributed fashion using different forms of dynamics. Consider the following Nash dynamics
among the players. At each point in time, one player is picked and allowed to change his strategy.
We show below that in general it is NP-hard for this player to decide whether he can decrease his
latency by changing his path. In that case, the player might stick to his current path or make
an arbitrary strategy change, following some heuristic. However, at each point in time there is
one player who can easily find a (greedy) best response, namely the highest ranked player i + 1
that does not play a greedy best response, but the players 1, . . . , i do. We assume that this player
changes to a greedy best response when he becomes activated. We also assume that a player who
is already playing a greedy best response does not change his strategy when he becomes activated.
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A round is a sequence of activations in which every player gets at least once the chance to change
his strategy. From the proof of Theorem 1 it follows easily that a Nash equilibrium is reached after
at most n rounds. We are interested in particular in the random greedy best response dynamics, in
which in each iteration the activated player is picked uniformly at random, and the concurrent best
response dynamics, in which in each iteration all players are simultaneously allowed to change their
strategy, each one with some constant probability 0 < pi ≤ 1. In both these dynamics, rounds are
polynomially long with high probability. In the random greedy best response dynamics the highest
ranked player who does not yet play a greedy best response is picked with probability 1/n. Hence,
the expected number of rounds is O(n2). For the concurrent best response dynamics the expected
number of rounds until player i is allowed to change his strategy is 1/pi. Hence, the expected
number of rounds is O(

∑n
i=1 1/pi). Summarizing, we obtain the following corollary.

Corollary 2. In every unweighted single-source temporal network congestion game with the FIFO
policy it takes at most n rounds to reach a strong equilibrium. In particular, the random and
concurrent greedy best response dynamics reach a strong equilibrium in expected polynomial time.

Finally, we turn to the hardness result.

Theorem 2. Computing best responses is NP-hard in unweighted temporal s-t-network congestion
games with the FIFO policy.

Proof. We show how to reduce instances of 3-SAT to temporal network games with unweighted
players and a single source and sink. Let an arbitrary instance for 3-SAT with variables x1, . . . , xn
and clauses C1, . . . , Cm be given, and assume that Cj = lj1 ∨ lj2 ∨ lj3, where every literal ljk is
either xi or xi for one i. We assume that the literals are ordered such that lj1 belongs to a variable
xi and lj2 belongs to a variable xi′ with i < i′. We assume the same monotonicity for lj2 and lj3.
The temporal congestion game that we construct has 1 + 7m players, one player pD, who we call
the decider and who is supposed to play a best response, one player pCj for every clause Cj , and the

players p0ij and p̃0ij if clause Cj contains the literal xi or the players p
1
ij and p̃1ij if clause Cj contains

the literal xi. For the construction it is only important that all players have higher priorities than
the decider pD, and that the players p0ij and p1ij have higher priorities than the clause players.

Figure 2 depicts the network that we construct. It is composed of the following parts:

• There are two rows of nodes, and both rows are subdivided into n blocks of m+1 nodes each.
At the end of a block, there is the possibility to switch from the upper to the lower row or
vice versa. Intuitively, each block corresponds to one variable xi and the decider either uses
the upper row in the block, corresponding to xi = 0, or he uses the lower row, corresponding
to xi = 1. Both rows lead to a vertex t′ from which there is a direct edge to the target t. All
edges in the two rows (including the edges from s to the first nodes in the rows) have a speed
of 1. All edges between the two rows also have a speed of 1. The speed of the edges from the
last nodes in the rows to t′ is 5nm. The speed of the edge from t′ to t is 1.

• If literal xi occurs in clause Cj , then there is a direct edge from s to the j-th node in the i-th
block in the upper row. If literal xi occurs in clause Cj , then there is a direct edge from s to the
j-th node in the i-th block in the lower row. In any case, we denote the speed of the edge by
Lij . It is chosen such that taking the direct edge is slightly slower than following a path along
the rows (assuming no delays occur). To be more precise, we set Lij = (m+1)(i− 1)+ j+ ε,
for a small ε > 0.
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Figure 2: Construction in the proof of Theorem 2. Gray labels indicate speeds, black labels are the
names of the edges. In this example, n = 3, m = 2, and the shown clause is C1 = x1 ∨ x2 ∨ x3.

• In addition to the direct edges described above, there are additional direct edges. If literal xi
occurs in clause Cj , then there is a direct edge from s to node (j +1) in the i-th block in the
upper row. If literal xi occurs in clause Cj, then there is a direct edge from s to node (j +1)
in the i-th block in the lower row. In any case, the speed of the edge is again Lij. (These
edges are not depicted in Figure 2.)

• For each clause Cj = lj1 ∨ lj2 ∨ lj3, there is a path with seven edges eCj0, . . . , e
C
j6 from the

source node s to the node t′. Let the literals in clause Cj correspond to the variables i1,
i2, and i3, in this order. Then the speeds of the first, third, and fifth edge of the path are
Li1j +2, Li2j −Li1j −1, and Li3j −Li2j −1, respectively. Due to the monotonicity among the
literals, all these speeds are non-negative. The speeds of the second, fourth, and sixth edge
are 1, and the speed of the seventh edge is 6nm+ n−Li3j − 3, which is also non-negative as
Li3j ≤ n(m+ 1).

• Consider the j-th node in the i-th block for j ∈ {1, . . . ,m} and i ∈ {1, . . . , n}. If the k-th
literal of clause Cj is xi, then there is an edge of speed 1 from the (j +1)-th node in the i-th
block of the upper row to the starting node of the edge eCjk′ for k

′ = 2(k − 1) + 1. If the k-th
literal of clause Cj is xi, then there is an edge of speed 1 from the (j +1)-th node in the i-th
block of the lower row to the starting node of the edge eCjk′ for k′ = 2(k − 1) + 1. In both

cases there is a very slow edge (say, with speed 10nm) from the end node of eCjk′ to t.

Now we describe the current strategies of all players except for the decider, for whom we want
to compute a best response.

• For each clause Cj the corresponding clause player pCj uses the path with the seven edges

eCj0, . . . , e
C
j6 from the source node s to the node t′, from which he uses the direct edge to t.

• Let clause Cj be an arbitrary clause and let the k-th literal of Cj be xi Then there are the
two players p1ij and p̃1ij . Player p1ij uses the direct edge with speed Lij from the source node
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s to the j-th node in the i-th block of the upper row, then he follows the edge in this row
to node j + 1 in the i-th block from which goes to the starting node of the edge eCjk′ for

k′ = 2(k− 1)+ 1. He then follows the edge eCjk′ and subsequently uses the slow direct edge to

t. The player p̃1ij is defined analogously with the only difference that he uses the edge with
speed Lij from s to node (j+1) in the i-th block. From there he follows directly the outgoing
edge to the starting node of eCjk′ .

The players p0ij and p̃0ij are defined analogously with the only exception that they use the
lower row.

Now the s-t-network congestion game is completely defined and we claim that there exists a
best response for the decider with latency at most 6nm+ n+1 if and only if the 3-SAT formula is
satisfiable. This follows from the following observations about our construction.

• If the decider pD sticks to the edges in the two rows to reach t′, then he reaches each edge on
his path first and is thus never delayed on his way to t′. This means, he reaches t′ at time
6nm+ n.

• If the clause player pCj for some clause C is not delayed on his way to t′, then he reaches t′

also at time 6nm+ n.

• As the decider has the lowest priority of all players, we can draw the first conclusion: If the
decider sticks to the edges in the two rows to reach t′, then he can only have a delay of at
most 6nm+ n+ 1 if all clause players are delayed.

• If the decider sticks to the edges of the two rows, then the players p̃0ij and p̃1ij do not interfere

with any other player because when p0ij and p1ij arrive at the edges connecting the rows with

the clause paths, the players p̃0ij and p̃1ij are already finished there.

• The decider can delay clause players by making the right choices between the upper and lower
row. Let us consider a clause Cj and the corresponding path of seven edges. The speeds of
these edges are chosen such that the clause player pCj , if not delayed, reaches the starting

nodes of the edges eCj1, e
C
j3, and eCj5 exactly at the same time as the corresponding players p0ij

and p1ij if they are not delayed. As those players have higher priorities than the clause player

pCj , they will delay him and make him reach t′ only after the decider, unless they are delayed
themselves before. To be more precise, for every clause Cj there are three corresponding
players of the form p0ij or p1ij that overlap with the path of pCj . If and only if at least one of

them is not delayed, then pCj will reach t′ later than 6nm+ n.

Assume that the formula is satisfiable and let x1, . . . , xn denote a satisfying assignment. If xi = 0
in this assignment, then the decider pD chooses the upper row of block i. Then he does not delay
players p0ij , but he delays all players p1ij. This means that the clause players pCj of all clauses Cj

that contain the literal xi will reach t′ only after the decider. If xi = 1, then he chooses the lower
row of block i and does not delay p1ij. This means that the clause players pCj of all clauses Cj that
contain the literal xi will reach t′ only after the decider. As the assignment satisfies each clause,
none of the clause players will reach t′ at time 6nm+n. This implies that the decider is not delayed
and reaches t at time 6nm+ n+ 1, as desired.
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Assume on the other hand that the formula is not satisfiable. By the above reasoning we obtain
that the decider cannot delay all clause players if he sticks to the edges in the rows. That implies
that always at least one clause player will reach node t′ at the same time as the decider, which in
turn implies that the decider reaches the node t later than at time 6nm+ n+ 1, as desired.

The only remaining step in the proof is to show that the decider cannot benefit from using edges
not within the rows. As he has a lower priority than the players p0ij, p

1
ij, p̃

0
ij , and p̃1ij he cannot

benefit from using the direct edges from s to nodes in the two rows. So the only possibility left for
the decider is to follow the edges in the rows up to some node and to use the edge to one of the
clause players’ paths from there. Without the players p̃0ij and p̃1ij , this might indeed be beneficial

as the decider reaches a node on the path before the clause player. However, the players p̃0ij and

p̃1ij cause the decider to wait ε time units before the edge to the path of the clause player becomes
available for him. This means he reaches the node on the path of the clause player at exactly the
same time as the clause player. As the decider has the lowest priority he will thus be delayed.
Hence, the players p̃0ij and p̃1ij ensure that the decider sticks to the edges in the two rows, which
concludes the proof.

3.1.2 Weights and General Networks

Now we show that any relaxation of the restrictions in the previous sections leads to games without
Nash equilibria.

Theorem 3. There exist temporal congestion games with the FIFO policy and without Nash equi-
libria that (1) are weighted and s-t-network games, or (2) are unweighted.

Proof. The example for the first case is simple; it consists of three edges: there are three nodes s,
v, and t and two parallel edges from s to v (if multi edges are not allowed, they can be split up into
two edges each by inserting intermediate nodes) and one edge from v to t. All edges have speed 1.
Assume that there are two players with weights 2 and 3, and assume that the player with weight
3 has higher priority. If both players use the same edge from s to v, then the player with weight
2 has an incentive to switch to the free edge. If they use different edges, the player with weight 3
has an incentive to use the same edge as the other player.

Now let us turn to the second case. We consider the instance shown in Figure 3 (a). In this
game there are three unweighted players, and each player i has two possible strategies: the vertical
three edges (denoted by Ai) and another path (denoted by Bi). The following sequence of moves
constitutes a cycle in the best response dynamics: (A1, A2, A3) → (B1, A2, A3) → (B1, B2, A3) →
(B1, B2, B3) → (A1, B2, B3) → (A1, A2, B3) → (A1, A2, A3). It is easy to verify that the remaining
configurations (A1, B2, A3) and (B1, A2, B3) are no Nash equilibria either.

3.2 Non-preemptive Global Ranking

Another natural approach to queuing is to assume that there is a global ranking π : [n] → [n] on
the set of tasks with π(1) being the task with the highest priority and so on. In this case, tasks
are scheduled non-preemptively according to this ranking. When an edge e becomes available,
the highest ranked task i that is currently located at the edge is processed non-preemptively. It
exclusively uses e for aewi time units. After that, task i moves to the next edge on its path, and e
selects the next task if any. In this section, we consider mainly weighted games and assume without
loss of generality that w1 ≤ w2 ≤ · · · ≤ wn.
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Figure 3: (a) General network game without Nash equilibrium for FIFO. Edge labels indicate the
speeds ae. For all unlabeled edges e, we have ae = 1. (b) Unweighted s-t-network game without
Nash equilibrium for Time-Sharing.

3.2.1 Shortest-First Policy

In this section we consider the identity ranking π(i) = i, which corresponds to the Shortest-First
policy. It is easy to see that Theorem 1, Corollary 1 and Corollary 2 carry over to this case. The
proof for FIFO was essentially based on the observation that once all players 1, . . . , i play a (greedy)
best response, they cannot be affected by the lower ranked players. This is even more true for the
Shortest-First policy as the lower ranked players now face the additional disadvantage of having a
longer processing time.

Theorem 4. In every weighted single-source temporal network congestion game with the Shortest-
First policy a strong equilibrium exists. It can be computed efficiently, as it takes at most n rounds to
reach a strong equilibrium. In particular, the random and concurrent greedy best response dynamics
reach a strong equilibrium in expected polynomial time.

Also the hardness result in Theorem 2 carries over easily. We just need to set all weights to 1
and embed the same tie-breaking as in the proof of Theorem 2 in the ranking π. In the construction
only the tie-breaking was important; the FIFO policy was never used, that is, it never happens
that at a busy edge two players arrive one after another.

Theorem 5. In (unweighted) temporal s-t-network congestion games with the Shortest-First policy
computing a best response is NP-hard.

Although the previous arguments guarantee existence and convergence to a Nash equilibrium
for the Shortest-First policy, such games are not necessarily potential games.

Proposition 1. There is a temporal s-t-network congestion game with the Shortest-First policy
that is no potential game.
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Figure 4: For two players with weights w1 = 1 and w2 = 2, this temporal network congestion game
with Shortest-First policy is not a potential game.

Proof. The game is depicted in Figure 4. For w1 = 1 and w2 = 2 the following cycle can be repeated
infinitely by better-response dynamics:

((s, u, t), (s, v, u, t)) → ((s, v, t), (s, v, u, t)) → ((s, v, t), (s, t))

→ ((s, u, t), (s, t)) → ((s, u, t), (s, v, u, t)) .

3.2.2 Other Global Rankings or General Networks

In this section we consider the case of more general rankings. For technical reasons we need to
slightly adjust a ranking in the presence of player tasks with equal weights. In particular, for a
set of task weights we consider a numbering such that w1 ≤ . . . ≤ wn. Consider a ranking π of
the indices and a distinct weight w. The set of tasks with weight w corresponds to a consecutive
interval of task numbers Nw = {x, x + 1, . . . , y}. These tasks occupy a set of positions Pw = {ji |
π(ji) = i, i = x, . . . , y} in π. A ranking is called normalized if the tasks of Nw appear in strictly
increasing order of their numbering at positions of Pw, for any distinct weight w. Note that for
every ranking π there is a unique corresponding normalized ranking. We can normalize a ranking
π with respect to weight w by setting jx = minPw, jx+1 = min{Pw − {jx}} until jy = maxPw,
and then assign π(ji) = i for all i = x, . . . , y. If we apply this ordering step for every weight, we
arrive at the corresponding normalized ranking. As an example, if all weights are the same, there
is only one normalized ranking, which is the identity π(i) = i.

When we use general normalized rankings other than the identity for queuing of player tasks
at intermediate nodes, there always exists a game without a Nash equilibrium.

Theorem 6. For any given set of players with task weights w1 ≤ · · · ≤ wn and any normalized
ranking π other than the identity, there exist a graph and latency functions such that the resulting
temporal s-t-network congestion game does not have a Nash equilibrium.

Proof. Let j denote the index with the property that for player i ∈ {1, . . . , j − 1} task wi has the
i-th highest priority, but player j with weight wj does not have the j-th highest priority. Let wk

with k > j be the weight of the player with the j-th highest priority. The network we construct
consists of two levels of parallel links. On the first level there are n edges with speed 1. On the
second level there are k − 1 slow edges with speed a, where a is sufficiently large.
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Now consider an arbitrary state of this game and assume that the players w1, . . . , wj−1 have
chosen disjoint paths, which must be true in every Nash equilibrium. If one of the players j, . . . , k−1
has to share his edge on the first level with another player with a higher priority, then he will change
to an unused edge on the first level. This edge is guaranteed to exist because there are n parallel
links. On the other hand, if none of the players j, . . . , k − 1 shares his edge with another task of
higher priority, then players 1, . . . , k − 1 are the first ones that arrive at the intermediate node.
Hence, for a sufficiently large, k has to wait for a long time until he can pass the second level.
Hence, k has an incentive to change to an edge on the first level that is used by player l with
l ∈ {j, . . . , k − 1}. Since k has a higher priority, he will be able to arrive before l and he does not
have to wait at the intermediate node.

The same result holds for general games with the Shortest-First policy. We can simply add
a separate source for each player and connect it via a single edge to the original source. By
appropriately adjusting the delays ae on these edges, we can ensure that smaller tasks are suitably
delayed before arriving at the original source. This results in the same incentives and the absence
of Nash equilibrium.

Corollary 3. For any given set of players with task weights w1 ≤ · · · ≤ wn and the Shortest-First
policy, there exist a graph and latency functions such that the resulting temporal network congestion
game does not have a Nash equilibrium.

3.3 Preemptive Global Ranking

When we assume a global ranking and allow preemptive execution, it is possible to adapt the
arguments of Theorem 1 to general weighted temporal network congestion games. Indeed, all
arguments in this section work for a very general class of preemptive games with unrelated edges.
That is, every player i has its own processing time pie for every edge e. These processing times
may even depend on the time at which player i reaches edge e. The only assumption we need to
make is that the processing times are monotone in the sense that if task i reaches edge e at time
t, then it does not finish later than when it reaches edge e at time t′ > t.

Theorem 7. Every temporal network congestion game with preemptive policy π is a potential game.
A strong equilibrium exists and can be computed in polynomial time. For any state and any player,
a best response can be computed in polynomial time.

Proof. The main observation here is that no task π(i) can influence the travel time of any task
π(j) with j < i, because it will be preempted whenever it is scheduled simultaneously with any
of these tasks on an edge. This means that the vector (ℓπ(1)(P ), . . . , ℓπ(n)(P )) decreases strictly
lexicographically whenever a player changes his path and decreases his individual latency. This
proves that any such game is a potential game, which contrasts e.g. Proposition 1. Note that
the lexicographic decrease implies that the lexicographic minimum is also a strong equilibrium
(c.f. [32]).

For efficient computation of a strong equilibrium, we consider iterative entry dynamics according
to the ranking with best-response computation of players. By previous arguments this process
outputs a strong equilibrium. For efficient computation of a best response strategy, we use the
same variant of Dijkstra’s algorithm that we have already used in the proof of Theorem 1. This
time, however, a lower ranked task π(i) can arrive at a node before a higher ranked task j < i if it
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has a different source node. Then as soon as π(j) arrives, π(i) is preempted and blocked until it
becomes the unfinished task of highest rank at the edge. Hence, the correctness of the algorithm is
not affected by this. Finally, note that the previous algorithm does not rely on the fact that higher
ranked players play a best response. The difference to Theorem 1 is that higher ranked players
can never be delayed by lower ranked players even if they do not play best responses. Hence, the
algorithm can be used in general to compute a best response for any player and any state.

Note that our lexicographical potential function argument is similar to [10, Theorem 2], where
standard congestion games are considered with a directed acyclic social knowledge graph restricting
the latency dependencies among the players. While our scenario with a global ranking can be
formulated in terms of a directed acyclic social knowledge graph, our games are somewhat different
because we consider coordination mechanisms over time with preemption.

Similarly, we can adapt the previous observations in Corollary 2 and show that various improve-
ment dynamics converge in polynomial time.

Corollary 4. In every temporal network congestion game with any preemptive policy π, it takes at
most n rounds to reach a strong equilibrium. The expected number of iterations to reach a strong
equilibrium for random and concurrent best response dynamics is bounded by a polynomial.

3.4 Fair Time-Sharing

In this section we consider fair time-sharing, a natural coordination mechanism based on the clas-
sical idea of fair queuing [43] and uniform processor sharing [38]. When multiple player tasks are
present at an edge e, they are all processed simultaneously, and each one of them gets the same
share of bandwidth or processing time. As in generalized processor sharing [45] we assume round-
robin processing with infinitesimal time slots. Even though such a fairness property is desirable,
the following theorem shows that Nash equilibria are not even guaranteed to exist for unweighted
s-t-network games. This obviously remains true for extensions, where bandwidth is allocated us-
ing player priority weights (that might be different from the task weights), which are used e.g. in
weighted fair queuing [22].

Theorem 8. There is an unweighted temporal s-t-network congestion game with the Time-Sharing
policy without a Nash equilibrium.

Proof. The instance shown in Figure 3 (b) has three players. As the three edges leaving the source
s are very slow, in any Nash equilibrium all three players will use different edges leaving the source.
We assume without loss of generality that the first player chooses the upper edge, the second player
chooses the middle edge, and the third player chooses the lower edge. Then players 1 and 3 still
have two alternatives on how to continue, whereas the path of player 2 is already determined. The
speeds of the edges are chosen such that player 1 wants to use the edge with speed 5+ ε if and only
if player 3 does not use the edge with speed 4 − ε. On the other hand, player 3 wants to use the
edge with speed 4 − ε if and only if player 1 uses the edge with speed 5 + ε, which completes the
proof.

Dürr and Nguyen [23] show that Time-Sharing on parallel links always yields a potential game,
even for unrelated machines (edges). That is, for parallel links Nash equilibria always exist. Their
potential function can be rewritten as the sum of the completion times (individual latencies) of the
players. It is known [13] that a schedule minimizing this sum can be computed in polynomial time.
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Such a global minimum of the potential function must obviously be a pure Nash equilibrium for
the Time-Sharing policy, yielding the following corollary.

Corollary 5. For games on parallel links with unrelated tasks and the Time-Sharing policy a Nash
equilibrium can be computed efficiently.

4 Constant Travel Times and Quality of Service

Now let us consider network congestion games with time-dependent costs. Again, players consecu-
tively allocate the edges on their paths. However, the travel time along an edge e in the network is
fixed to a constant delay de. If a player chooses a path along the edges e1, e2, . . ., then he arrives
at e2 at time d1 and at e3 at time d1 + d2, and so on. This travel time through the network is
independent of how many other players allocate any of the edges. We here consider the general case
of asymmetric network games. For the strategic part we assume that each edge generates a separate
usage cost ce per time unit. This could, for instance, measure the quality of service that is enjoyed
by the players during transmission. The cost depends on the number of players allocating the edge
at a given point in time. In particular, edge e has a cost function ce : [n] → N that describes the
cost for allocating it for one unit of time (measured, e.g., in milliseconds) in terms of the current
number of players. If for a state P an edge e is shared at time τ by ne(τ, P ) players, all these
players get charged cost ce(ne(τ, P )). The cost incurred by player i on a path Pi = (e1, . . . , el) is

then ℓi(P ) =
∑l

j=1

∑τj+dej−1
τ=τj cej (nej(τ, P )), where τ1 = 0 and τj =

∑j−1
k=1 dek .

It turns out that this model is a subclass of standard congestion games. For each edge and
each time unit we introduce a resource re,τ and modify the strategy spaces as follows: For a path
P = (e1, . . . , el) the new strategy includes all resources rej ,τ for τ = τj , . . . , τj + dej − 1 and
j = 1, . . . , l. This is a standard congestion game with latencies given by the time costs. Hence,
results on the existence of Nash equilibria and the price of anarchy carry over.

Corollary 6. Network congestion games with time-dependent costs are equivalent to a class of
standard congestion games. In particular, there is a pure Nash equilibrium in every game, and any
better-response dynamics converges to Nash equilibrium.

However, the standard congestion game obtained by this reduction might have a large number
of resources. In addition, the standard game is not necessarily a network congestion game. Hence,
the complexity results known for standard network congestion games do not carry over.

Theorem 9. Computing a best response in network congestion games with time-dependent costs is
NP-hard. For games with polynomially bounded delays and acyclic networks, best responses can be
computed efficiently, but computing a Nash equilibrium is PLS-complete.

Proof. The NP-hardness of computing a best response follows easily with a reduction from the
partition problem. The input to this problem consists of n integers w1, . . . , wn. One has to decide
if there exists a subset of these numbers that add up to exactly W/2, where W =

∑n
i=1 wi. We

construct a graph with vertices s = v0, v1, . . . , vn, t and consider the best response of a player whose
source node is s and whose target node is t. Between each pair of nodes (vi, vi+1) there are two
parallel edges with delays wi+1 and 0, respectively, and costs 0. In addition to this, there is one
edge e from vn to t with delay W/2 and cost function ce(ne) = ne. We assume that we have two
additional players, one of which arrives at edge e at time 0 and one of which arrives at edge e at
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time W . That is, only if the player manages to arrive at node vn exactly at time W/2, then his
costs on e will be W/2. Otherwise, it will be at least W/2 + 1. Any path from s to vn corresponds
to a subset of the weights wi, and hence, the player has a strategy with costs W/2 if and only if
the partition instance is solvable. This proves the NP-hardness.

Now we turn to acyclic networks with polynomially bounded delays. For this restricted case
best responses can be computed efficiently by standard dynamic programming on time-expanded
graphs. We store for each of the polynomially many time points τ and every node v the least
expensive path that arrives at v exactly at time τ . First, we fill this table, taking into account only
paths of length at most 1. From this, we can easily compute another table taking into account
paths of length at most 2, and so on. This approach uses the fact that the network is acyclic, and
it proves that the problem of computing a Nash equilibrium belongs to PLS.

For the completeness, we use the reduction in [2] for asymmetric network congestion games.
This reduction has the property that it generates only acyclic networks. We will argue that there
is a generic way to transform a standard network congestion game with acyclic network G into
an acyclic network congestion game with time-dependent costs and polynomially bounded delays.
For this, we take the network G and compute a topological ordering of the nodes. Let us assume
without loss of generality that this ordering is v1, v2, . . . , vk, where v1 has no incoming and vk has
no outgoing edges. If the source node of a player is vi, then we introduce a new source node si for
that player, which is connected by an edge with delay i and costs 0 to node vi. This allows us to
choose polynomially bounded delays for all edges such that every player whose path includes a node
vi arrives at this node at exactly time i. Hence, if we can keep the cost functions, this congestion
game with time-dependent costs behaves exactly as the standard congestion games as players are
now synchronized.

5 Conclusion

In this paper we study atomic network congestion games involving a notion of time, which is an
important aspect of routing that is neglected by standard congestion games. Our results reveal
an interesting contrast of efficient computation and convergence on the one hand and hardness of
computing best responses and/or equilibria on the other hand. An obvious open problem is to
derive a realistic non-preemptive coordination mechanism that always admits pure Nash or even
strong equilibria for all temporal network congestion games. More generally, we have not addressed
the inefficiency of equilibria in our case. It would be interesting to see in which way results and
characterizations for (the cost of) Nash equilibria for coordination mechanisms on parallel links can
be helpful here. Finally, there is always the challenge to improve existing models by incorporating
other important and challenging aspects of realistic routing scenarios.
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[23] Christoph Dürr and Nguyen Kim Thang. Non-clairvoyant scheduling games. In Proc. 2nd Intl.
Symp. Algorithmic Game Theory (SAGT), pages 135–146, 2009.

[24] Alex Fabrikant, Christos Papadimitriou, and Kunal Talwar. The complexity of pure Nash
equilibria. In Proc. 36th Symp. Theory of Computing (STOC), pages 604–612, 2004.

[25] Babak Farzad, Neil Olver, and Adrian Vetta. A priority-based model of routing. Chicago J.
Theoret. Comput. Sci., 2008.
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