
Bounds for the Convergence Time of Local Search in
Scheduling Problems?

Tobias Brunsch, Michael Etscheid, and Heiko Röglin

Department of Computer Science, University of Bonn, Germany
{brunsch,etscheid,roeglin}@cs.uni-bonn.de

Abstract. We study the convergence time of local search for a standard machine schedul-
ing problem in which jobs are assigned to identical or related machines. Local search
corresponds to the best response dynamics that arises when jobs selfishly try to minimize
their costs. We assume that each machine runs a coordination mechanism that determines
the order of execution of jobs assigned to it. We obtain various new polynomial and
pseudo-polynomial bounds for the well-studied coordination mechanisms Makespan and
Shortest-Job-First, using worst-case and smoothed analysis. We also introduce a natural
coordination mechanism FIFO, which takes into account the order in which jobs arrive at
a machine, and study both its impact on the convergence time and its price of anarchy.

1 Introduction

We analyze the following scheduling problem: Given m machines and n jobs, find an
assignment of the jobs to the machines minimizing the maximum costs of a job, which
are defined according to a coordination mechanism. The jobs may have different job
sizes and the machines may have different machine speeds. A typical definition of the
costs of a job is the sum of the job sizes assigned to the same machine divided by the
machine speed, which is a natural choice when the makespan is to be minimized. In
other contexts it might be more realistic to assume an order in which the jobs on a
machine are executed and that a job only pays for the execution time of itself and all
previous jobs.

Even in the case of identical machine speeds, the problem is known to be strongly
NP-hard [10] and local search is a popular tool to approximate good solutions. Here, a
job unilaterally changes its assignment and moves to another machine if it can reduce
its costs this way. Throughout this paper, we assume a best response policy, i.e., a
moving job selects a machine that minimizes its costs. If there is no job left that can
improve its costs, we have attained a local optimum, which is guaranteed to be reached
after a finite number of steps. Although the quality of the worst local optimum has
been thoroughly analyzed [4,6,7,9,17], there is not much work about the convergence
time needed to find one via local search.

1.1 Terminology

Let us first describe the studied problem in detail. Consider an instance with m
machines and n jobs. Each machine i has a speed si ∈ Q>0 and each job j has a

? This research was supported by ERC Starting Grant 306465 (BeyondWorstCase).



2

job size pj ∈ Q>0. Let smin, smax, pmin, and pmax be the minimal and maximal speeds
and job sizes. Let W =

∑n
j=1 pj be the sum of the job sizes. For identical machines,

smax = smin = 1, and for unit-weight jobs, pmax = pmin = 1.
For an assignment σ : {1, . . . , n} → {1, . . . ,m} that maps the jobs to the machines,

let Li =
∑

j∈σ−1(i) pj/si be the load of machine i. The maximum load is called makespan.
The costs of a job j are defined according to a coordination mechanism, which assigns
costs to every job depending only on the set of jobs that have chosen the same machine,
but not on the residual schedule.

1. In the Makespan model, all jobs assigned to the same machine are executed simul-
taneously such that the costs cσj = Lσ(j) of a job j correspond to the load of its
machine. This is the most common coordination mechanism and it corresponds to
linear weighted congestion games on parallel links.

2. In the FIFO model, the jobs on each machine are executed one after another. There-
fore, we need a permutation π on the jobs that determines the order in which the

jobs on a machine get processed. The costs of a job j are then c
(σ,π)
j =

∑
j′∈Jπσ (j)

pj′
sσ(j)

,

where Jπσ (j) is the set of jobs j′ on the same machine with π(j′) ≤ π(j). If a job j
jumps to another machine, it is inserted as the last job, i.e., π(j) = n.

3. In the SJF (shortest job first) model, the jobs are executed one after another,
but the permutation of the jobs is at any time implicitly given by their job sizes
where the smallest job on a machine is executed first. Ties for jobs of equal size
are broken arbitrarily. This means that the costs of a job are defined as cσj =∑

j′ : σ(j′)=σ(j)∧π(j′)≤π(j)
pj′
sσ(j)

, where π is a permutation of the jobs assigned to

machine σ(j) such that π(j′) < π(j) if pj′ < pj and π(j′) > π(j) if pj′ > pj .

The FIFO model is not a coordination mechanism in the classical sense as the order in
which the jobs are executed depends on previous iterations. Nevertheless, we believe
that this model can easily be motivated by many real-world applications where the
first-come, first-served principle is ubiquitous.

In the case of the Makespan and SJF models, we call σ a schedule. In the FIFO
model, we call the tuple (σ, π) a schedule. Often, we omit the parameters σ and π if
they are clear from the context, or we replace them by an iteration number t. Then we
mean the schedule before the move of iteration t gets executed.

We say that a job is unsatisfied if it could improve its costs by jumping to a different
machine. When an unsatisfied job jumps, it always jumps to a machine minimizing
its costs, i.e., we consider best response dynamics. If there is no unsatisfied job, we
call the current schedule a local optimum. The convergence time for an instance is the
maximum number of jumps it can take starting from an arbitrary schedule until a local
optimum is reached. The price of anarchy is the ratio of the makespans of the worst
local optimum and the global optimum.

If there are several unsatisfied jobs, we choose the next job to jump according to a
pivot rule:



3

– Best Improvement : Select a job for which the largest improvement of its costs is
possible.

– Random: Select a job uniformly at random from the set of unsatisfied jobs.
– Min Weight : Select a smallest unsatisfied job.
– Max Weight : Select a largest unsatisfied job.
– Fixed Priority : Select the unsatisfied job with the largest priority according to a

given order on the jobs. This pivot rule includes Min Weight and Max Weight as
special cases.

1.2 Smoothed analysis

Despite its bad running time, which can be exponential, and the large price of anarchy
in theory, local search is a popular tool in practice as it typically delivers good local
optima very quickly. At first glance, this seems like a contradiction, but the instances
in the theoretical proofs are rather contrived and rarely observed in practice. To have a
more realistic understanding of local search in theory, we use the framework of smoothed
analysis introduced by Spielman and Teng [18] to explain the practical success of the
simplex method. This model can be considered as a less pessimistic variant of worst-case
analysis in which the adversarial input is subject to a small amount of random noise
and it is by now a well-established alternative to worst-case analysis. This random
noise can be motivated, for example, by measurement errors, numerical imprecision,
and rounding errors, which often occur in practice. It can also model influences that
cannot be quantified exactly but for which there is no reason to believe that they are
adversarial.

We follow the more general model of smoothed analysis introduced by Beier and
Vöcking [2]. In this model, the adversary is even allowed to specify the probability
distribution of the random noise. The influence he can exert is described by a parame-
ter φ ≥ 1 denoting the maximum density of the noise. The model is formally defined as
follows.

Definition 1. In a φ-smooth instance I, the adversary chooses the following input
data:

– the number m of machines;
– arbitrary machine speeds s1, . . . , sm in the case of non-identical machines;
– the number n of jobs;
– for each pj, a probability density fj : [0, 1]→ [0, φ] according to which pj is chosen

independently of the processing requirements of the other jobs.

The smoothed convergence time is the worst expected convergence time of any φ-smooth
instance and the smoothed price of anarchy is the worst expected price of anarchy of
any φ-smooth instance.

Note that the only perturbed part of the instance are the processing requirements.
Formally, a φ-smooth instance is not a single instance but a distribution over instances.
The parameter φ determines how powerful the adversary is. He can, for example, define



4

an interval of length 1/φ for each job size from which it is drawn uniformly at random.
Hence, for φ = 1 the model corresponds to an average-case analysis and for φ→∞ the
adversary becomes as powerful as in a worst-case analysis.

2 Related Work and Results

Since its invention, smoothed analysis has been successfully applied in a variety of
contexts. Two surveys [15,19] summarize some of these results.

The notion of coordination mechanisms has been introduced by Christodoulou et
al. [5] in the context of congestion games. There has been extensive research about the
price of anarchy for the different coordination mechanisms. In the Makespan model

it is constant for identical machines [9,17] and Θ
(

min
{

logm
log logm , log smax

smin

})
for related

machines [6]. The smoothed price of anarchy for related machines is Θ(log φ) regardless
of whether the job sizes [4] or the machine speeds [7] are perturbed.

Immorlica et al. [13] showed a price of anarchy of 2− 1/m for identical and Θ(logm)
for related machines for the SJF model, which is the same as for list schedules, i.e.,
schedules that are generated by a greedy assignment.

The FIFO model has been introduced implicitly by Brunsch et al. [4] through the
equivalent concept of near list schedules which was used as a generalization of local
optima w.r.t. the Makespan model and list schedules. They showed that the smoothed
price of anarchy is Θ(log φ). We complement this by the corresponding worst-case results
for identical and related machines to obtain the same tight bounds as in the SJF model.

There is less known about the convergence times in the different models. As we are
up to our knowledge the first ones who consider the FIFO model, there are no previous
results about convergence times. We show tight results for special cases like identical
machines and several upper bounds depending on W/pmin for different pivot rules in
the general case. Although we conjecture polynomial bounds for all cases, we give the
first non-trivial proofs for this natural problem. Immorlica et al. [13] showed for the
SJF model that if the jobs are asked on a rotational basis if they want to jump, the
convergence time is in O(n2). This is in sharp contrast to our result that for the Min
Weight pivot rule it can take an exponential number of iterations even in the case of
two identical machines.

Brucker et al. [3] considered the Makespan model with the difference that only
jobs from a machine with maximum load—a so-called critical machine—are allowed
to jump, i.e., a local optimum is reached as soon as every job on a critical machine is
satisfied. They gave an algorithm that finds a local optimum after O(n2) improving
steps for identical machines. From this, one can easily derive an algorithm for identical
machines in the Makespan model: Run Brucker’s algorithm exhaustively until every
job on a critical machine is satisfied. As on identical machines the minimum load of
a machine is monotonically increasing, these jobs cannot become unsatisfied again by
any sequence of improving steps. Hence, the jobs on the critical machine are fixed and
therefore we can remove the critical machine together with its assigned jobs from the
instance. Repeating this argument yields a running time of O(n2ṁ) improving steps.



5

As the monotonicity argument does not hold anymore in the case of related machines,
we are not aware of a way to use similar results by Schuurman and Vredeveld [17] and
Hurkens and Vredeveld [12] for Brucker’s model on related machines.

In the Makespan model, Even-Dar et al. [8] showed for identical machines that the
Max Weight and the Random pivot rule converge in n and O(n2) steps, respectively,
while the Min Weight pivot rule can take an exponential number of steps. They also
showed an upper bound of (n/m+ 1)m−1 for any pivot rule for identical machines. We
extend this result by showing that every pivot rule converges in O(n ·W/pmin) steps,
which can also be seen as a generalization of their result that every pivot rule converges
in O(W + n) steps in the case of integer weights. For related machines and unit-weight
jobs, Even-Dar et al. [8] showed that there is a pivot rule that converges in mn steps.
We improve this by showing that the convergence time for any pivot rule with best
response policy is exactly n. For the case of related machines and integral job sizes and
machine speeds, they showed that any pivot rule converges in O(W 2 · s2max/smin) steps.
We prove a similar bound for the Best Improvement pivot rule on arbitrary weights. An
overview of our results on convergence times is given in Table 1, Table 2, and Table 3.

identical machines n− 1 (Thm. 1)

unit-weight jobs n (Thm. 4)

two machines Θ(n) (Thm. 5)

Best Improvement O(m2n ·W/pmin) (Thm. 6)

Random O(m2n2 ·W/pmin) (Thm. 7)

Fixed Priority O(n2 ·W/pmin) (Thm. 8)

lower bounds Ω(mn), Ω(m2) for Min Weight (Thm. 9)

Table 1. FIFO convergence times

identical machines O(n ·W/pmin) (Thm. 2)

unit-weight jobs n (Thm. 4)

Best Improvement O(m2n ·W 2/p2min) (Thm. 10)

Table 2. Makespan convergence times

Max Weight on two identical machines 2Ω(n) (Thm. 3)

Max Weight on two identical machines with random weights 2Ω(
√
n) (Thm. 3)

Min Weight n (Thm. 11)

Random O(n2) (Thm. 11)

Table 3. SJF convergence times



6

2.1 Paper organization

The remainder of this paper is organized as follows. In Section 3 we show how to convert
superpolynomial deterministic convergence times to smoothed polynomial convergence
times. In Section 4 and Section 5 we deal with the special cases of identical machines
and unit-weight jobs, respectively, before we turn to the more general case of related
machines in Section 6. We conclude with the analysis of the price of anarchy in the
FIFO model in Section 7 and some remarks in Section 8. Deferred proofs can be found
in the appendix.

3 Smoothed Analysis

Some of our shown convergence times include the factor W/pmin. While in the worst
case this fraction can be exponentially large, in the smoothed setting they turn into
expected polynomial convergence times.

Lemma 1. If the convergence time is bounded by f(m,n) ·W/pmin for some polyno-
mial f , then the smoothed convergence time is bounded by O(f(m,n) · n3 log(m) · φ).

Unfortunately, our result about the convergence time of the Best Improvement pivot
rule in the Makespan model depends quadratically on pmin. This does not allow us to
derive an expected polynomial convergence time, but instead we can show that with
high probability the convergence time is polynomially bounded.

Lemma 2. The convergence time of the Best Improvement pivot rule in the Makespan
model is in m2n7φ2 with probability at least 1− 1/n.

4 Identical Machines

In the FIFO model, the costs of a job decrease monotonically while the minimum load
of a machine increases monotonically when considering identical machines. As a moving
job always jumps to a machine with minimum load, every job can jump at most once.
This leads to the following result.

Theorem 1. In the FIFO model, for any pivot rule the worst-case running time is
exactly n− 1.

For the Makespan model, Even-Dar et al. [8] proved that the Min Weight pivot
rule can take as many as Ω((n/m2)m−1) steps. They also showed that this is near to
the worst case as every pivot rule terminates after O(( nK + 1)K) steps, where K is the
number of different job weights. We derive the bound O(n · W

pmin
) for arbitrary pivot

rules, which is a significant improvement if W
pmin

is small. This bound is almost optimal

as it is easy to see that the worst case instance used in [8] has pmax

pmin
= (n/(m− 1))m−2.

It is also a generalization of the result that every pivot rule converges in O(W + n)
steps in the case of integer weights.



7

Theorem 2. In the Makespan model, every pivot rule terminates after O(n · Wpmin
) steps.

Proof. As Even-Dar et al. [8] pointed out (without proof), after a job j moved to
machine i, it can only be unsatisfied again after a strictly greater job moved to machine
i in the meantime: A job always jumps to a machine with minimum load and the
minimum load increases monotonically. Consider the last job j′ entering machine i in
iteration t′ before job j jumps away from machine i in iteration t. Then machine i must
be a machine with minimum load before iteration t′. Now if pj > pj′ , then Lt+1

i would
by stricly smaller than Lt

′
i , which is a minimum load in a former iteration. If pj = pj′ ,

then job j cannot be unsatisfied because job j′ is not unsatisfied.
Based on their idea of push-out potentials, we define the potential φ :=

∑m
i=1 u

t
i ≤W ,

where uti is the maximum total weight of jobs on machine i that could consecutively
move away from i, starting in the schedule before iteration t. When a job j jumps from
machine i to machine i′, then uti′ was 0 beforehand. As mentioned above, no job from
any other machine than machine i′ can become unsatisfied by the move of job j and
thus the potential φ decreases by at least uti − u

t+1
i − ut+1

i′ .
If ut+1

i′ was larger than pj , then there would be a sequence of moves from jobs away
from machine i′ such that the load of machine i′ after these moves would be less than
Lti′ . But machine i′ was a machine with minimum load before iteration t, a contradiction.
Note also that uti − u

t+1
i ≥ pj : Let J ′ be the jobs on machine i with total weight ut+1

i

which could consecutively jump away from machine i after iteration t. Then J ′∪{j} could
consecutively jump away before iteration t and thus uti ≥

∑
j′∈J ′∪{j} pj′ = ut+1

i + pj′ .

We can conclude that uti − u
t+1
i − ut+1

i′ ≥ 0 and thus that φ is actually a potential.
We call a jump of job j to machine i in iteration t stable if after that jump, another

job moves to i before a job leaves i. As discussed above, through the stable jump the
total potential of all machines except machine i decreases by at least pj ≥ pmin and
ut
′
i = 0 at time t′ when the next job enters or leaves machine i. Hence, every stable

jump induces a potential drop of at least pmin. We maintain a set of indices: In the
initial schedule, every job has an index attached to it. When a job j moves away from
machine i, then the indices attached to j get transferred to the job j′ that moved last
to machine i. If no such job exists, the indices get deleted. Afterwards, a new index gets
attached to job j on its new machine if it was a stable jump.

When a job j moves to machine i, then no job on machine i was unsatisfied
beforehand as j jumps to a machine with minimum load. Thus, when an index gets
reattached from job j′ to job j, then j made j′ unsatisfied and thus pj is strictly greater
than pj′ because only larger jobs can make smaller jobs unsatisfied. Therefore, every
index can be reattached at most n times. Furthermore, every time a job j jumps away
from a machine i, it has at least one index attached to it: Assume to the contrary that
it is the first jump without attached indices. If it is the first jump by job j or its last
jump was stable, then there is by definition an attached index. Otherwise, there is a
job j′ that left machine i such that job j is the last job entering machine i beforehand
and thus job j′ transferred its indices to job j. Hence, the number of indices is at least
one nth of the total number of jumps. There can only be W/pmin many stable jumps as
otherwise φ would be negative. This yields the desired bound. ut



8

Finally let us consider the SJF model. The Max Weight pivot rule in the SJF
model can take an exponential number of steps even on two identical machines. Also an
average-case analysis yields a superpolynomial convergence time. We do not consider
the Random pivot rule and the Min Weight pivot rule in this section because for these
rules we prove in Section 6.3 polynomial upper bounds even for the more general setting
of related machines. We leave it as an open question whether the convergence time of
the Best Improvement pivot rule is polynomial for identical machines.

Theorem 3. In the SJF model, the convergence time of the Max Weight pivot rule
is 2Ω(n) even for two identical machines. The smoothed convergence time of the Max
Weight pivot rule is 2Ω(

√
n) even for two identical machines and φ = 1.

5 Unit-Weight Jobs

In the case of unit-weight jobs, Even-Dar et al. [8] claimed that for Makespan, there
exists a pivot rule which converges in mn steps and that there is a pivot rule with
convergence time Ω(mn) if jobs do not necessarily move to the machine yielding the
biggest improvement but only have to improve their costs by jumping. We show that
all pivot rules have linear convergence time if jobs have to jump to the best machine.

Theorem 4. In both the FIFO and the Makespan model for unit-weight jobs, the
convergence time for any pivot rule is n for any number m ≥ 2 of machines.

6 Related Machines

For the most general case of related machines we use potential functions in order to
show pseudo-polynomial convergence times for different pivot rules in both the FIFO
and the Makespan model.

The potential φFIFO used in the FIFO model is the Rosenthal potential introduced
in [16], which is the sum of the execution times of the jobs. It is easy to see that φFIFO
decreases by at least ∆ when the jumping job improves its execution time by ∆. It
decreases even more if the jumping job was not on top of its original machine.

For the Makespan model, we use the potential

φMakespan :=

m∑
i=1

1

si
·

 ∑
j∈σ−1(i)

pj

2

+
∑

j∈σ−1(i)

p2j

 ,

defined by Even-Dar et al. [8].

The fastest machine has always load at most W/smax. If there is a machine with
load greater than 2W/smax, then a job from this machine can improve its costs by at
least W/smax by jumping to the fastest machine. This gives rise to the following lemma.

Lemma 3. The following two statements hold:



9

1. If there is a machine with load greater than 2W/smax, the best improvement can be
achieved by a jump from some job from a machine with load greater than W/smax to
a machine with load at most W/smax.

2. If there is no machine with load greater than 2W/smax, then φFIFO = O(n · W
smax

)

and φMakespan = O( W 2

smax
).

Corollary 1. For the Best Improvement pivot rule after n iterations and for the
Random pivot rule after expected O(n log n) iterations there is no machine left with load
greater than 2W/smax.

6.1 FIFO

Before we come to the general cases, let us first mention a linear-time result for the
special case of m = 2 machines.

Theorem 5. In the FIFO model, the convergence time for any pivot rule on two related
machines is at least n and at most 2n − 2. There are pivot rules for which 2n − 2 is
tight.

The main idea of the following proofs is that if a job jumps that is not on top of
its machine, the costs of all jobs above the moving job and thus the potential φFIFO
decrease by at least pmin/smax. We are able to show that this must happen after a
polynomial number of steps for the Best Improvement and for Fixed Priority pivot
rules.

Theorem 6. In the FIFO model, the convergence time of the Best Improvement pivot
rule is in O(m2n ·W/pmin).

Proof. According to Lemma 3 and Corollary 1, after O(n) iterations the potential φFIFO
is in O(n ·W/smax). Hence, it suffices to show that in every sequence of m2 consecutive
iterations, φFIFO drops by at least pmin/smax. Therefore, let us consider a sequence S
of maximum length in which φFIFO drops by strictly less than pmin/smax. It is obvious
that only jobs that are on top of some machine can jump as the running times of all
the jobs above the moving job decrease by at least pmin/smax.

For a given point in time, we call a job active if it jumps until the end of the
sequence S. At any time, there can only be at most one active job on any machine. To
see this, assume to the contrary that there are two active jobs j1 and j2 at the same
time t1 on a machine i. Let job j1 w.l.o.g. be directly above job j2, and let t2 > t1
be the first iteration in which job j2 leaves machine i again. Define α := ct1j1 − c

t2
j1

as
the difference of j1’s running times at time t1 and t2. As job j2 was a top-most job
in iteration t2 and no job below j2 could jump before j2 jumped, job j1 would have a
running time of Lt1i − pj2/si if it jumped to machine i in the next step, yielding a total
improvement of j1’s running time of at least pmin/smax. If j1 does not jump back to
machine i in the next step, then either we have reached an equilibrium (then pj2/si ≤ α)
or there is a job (possibly also j1) that can improve by strictly more than pj2/si − α.



10

Hence, the potential drops by at least pj2/si ≥ pmin/smax during all the jumps of job j1
between t1 and t2 and the iteration following t2 + 1.

Thus, we have shown that also at the beginning of the sequence S there are at
most m active jobs as on each machine there is at most one active job. It also implies
that no job j can jump back to a machine i it has already been onto as all jobs lying
underneath j stay on machine i until the end of the sequence S. Hence, every job jumps
at most m− 1 times and the length of S is bounded from above by m(m− 1). ut

Theorem 7. In the FIFO model, the expected convergence time of the Random pivot
rule is in O(m2n2 ·W/pmin).

For Fixed Priority pivot rules, we cannot assume anymore that after a linear number
of iterations there is no machine with load more than 2W/smax left and thus that φFIFO
is small. On the other hand, we know that the sum of the running times of all jobs that
have already jumped is bounded by O(n ·W/smax) and we are able to show that during
O(n) consecutive iterations, either a job jumps for the first time or the potential φFIFO
drops by at least pmin/smax. In order to bound the potential by O(n ·W/smax), we use
the modified potential function

φ′FIFO :=
n∑
j=1

min

{
cj ,

W

smax

}
.

Theorem 8. In the FIFO model, the convergence time of any Fixed Priority pivot rule
is in O(n2 ·W/pmin).

Proof. As 0 ≤ φ′FIFO ≤ n ·W/smax, we only have to show that during every sequence of
n+ 1 steps, either φ′FIFO drops by at least pmin/smax or a job must jump for the very
first time. In such a sequence, it must be the case that a job j2 jumps directly after a
job j1, where the priority of j2 is greater than the priority of j1. This means that j2
jumps to the old machine i of job j1 as it could not jump before the move of j1. If it was
not j1’s first jump, let t2 be the point in time between the two jumps by j1 and j2, and
let t1 be the point in time before j1 jumps the last time before t2 − 1. As j2 does not
want to jump to machine i at time t1, but does this later at time t2, it must be the case
that Lt1i > Lt2i . Hence, between t1 +1 and t2−1 a job j′ assigned to machine i at time t1
must leave its machine. But during this time, job j1 lies above job j′ yielding a running
time improvement of pj′/si ≥ pmin/smax for job j1 through the jump by j′. As j1 has
jumped before, its running time before the jump by j′ was already at most W/smax,
meaning that also φ′FIFO drops by at least pmin/smax. ut

The machine speeds do not occur in our bounds for the convergence times. Never-
theless, different machine speeds result in a higher convergence time than in the case of
identical machines, as the following result shows. We believe that our proofs for the upper
bounds on the convergence times are too pessimistic and thus we conjecture polynomial
convergence times for all pivot rules. This is in contrast to the superpolynomial lower
bounds in the Makespan and SJF model but a crucial difference is that the costs of a
job can never increase in the FIFO model.



11

Theorem 9. In the FIFO model, local search can take Ω(mn) steps. The convergence
time for the Min Weight pivot rule is in Ω(m2).

Proof. For the lower bound Ω(mn), let ` ≥ 1 and k ≥ 1 be two integers. There are
m = 2k+ 1 machines and n = k`+ k+ 1 jobs split up in 2k+ 1 job classes J1, . . . , J2k+1.
The machine speeds are si = 2i−1 for 1 ≤ i ≤ 2k and s2k+1 = 22k+1. The job classes
J1, . . . , Jk each contain ` jobs with sizes 20, . . . , 2`−1 and the job classes Jk+1, . . . , J2k+1

each contain a single job with size 2`+j for job class Jj .

Initially, each job class Jj is assigned to machine j and the jobs on a machine are
processed in monotonically increasing order of the job sizes. We consider the following
k rounds 1, . . . , k. Before round i begins, the jobs from job class Jj , j ≤ k, are on
machine j + i− 1 such that they are processed in increasing order of the sizes, the jobs
from job classes Jk+1, . . . , Jk+i−1 are on machine 2k + 1 and the other jobs have not
moved before. Then we let the single job from class Jk+i move from machine k + i to
machine 2k + 1. Thereupon, the jobs from class Jk move in ascending order of the sizes
from machine k + i− 1 to machine k + i, the jobs from class Jk−1 move in ascending
order of the sizes from machine k + i − 2 to machine k + i − 1 and so on. One can
easily see that every job strictly decreases its costs while moving. All jobs from the job
classes J1, . . . , Jk move in every round. Hence, there are Ω(k2`) = Ω(mn) iterations.

For the lower bound Ω(m2) for the Min Weight pivot rule, let again k be an integer
and let ε > 0 be appropriately small. There are m = n = 2k + 1 machines and jobs.
The machine speeds are si = 1 + i · ε for 1 ≤ i ≤ 2k and s2k+1 = 4k. The job sizes are
pj = 1− j · ε for 1 ≤ j ≤ k, pj = 2 + 2j · ε for k + 1 ≤ j ≤ 2k, and p2k+1 = 4k. Initially,
every job j is assigned to machine j and the loads on the first k machines are less than
1, Lk+1 = . . . = L2k = 2 and L2k+1 = 1. One can easily see that every job k + 1, . . . , 2k
can move to machine 2k+1 as L2k+1 remains to be less than 2 and that every such jump
induces jumps from the jobs 1, . . . , k. Hence, there are Ω(k2) = Ω(m2) iterations. ut

6.2 Makespan

In this section, we consider the Best Improvement pivot rule in the Makespan model.
We use the fact that the potential φMakespan decreases by at least 2pmin · pmin/smax if a
sequence of jobs decrease their running time by a total of pmin/smax through jumping.
This is due to a lemma by Even-Dar et al. [8] that if a jumping job j improves its
execution time by ∆, then φMakespan drops exactly by 2pj∆.

Suppose that a job j wants to jump away from machine i to machine i′ and there is
a smaller job j′ on machine i. At the current time, the costs of j and j′ are the same
as they are on the same machine. But the additional costs job j′ would generate on
any machine are strictly smaller than the additional costs job j would generate. Hence,
job j′ would have smaller costs on machine i′ than job j. This leads to the following
observation.

Observation 1 When a job jumps away from a machine i according to the Best
Improvement pivot rule, it was a smallest job on machine i.



12

Let us now provide the main ideas of our proof. Imagine there are two jobs j1, j2 on
the same machine i and job j1 jumps away in iteration t1 making a small improvement
directly before job j2 leaves machine i in iteration t2 = t1 +1. Then job j1 could improve
its running time by pj2/si by jumping back to machine i in iteration t2 + 1. If, however,
t2 > t1 + 1, it could happen that another job j3 from job j1’s new machine leaves this
machine leaving job j1 unable to jump back. But then job j3 is smaller than j1 according
to Observation 1 and thus could jump to machine i in iteration t2 + 1 unless it already
made a big improvement or another job from job j3’s new machine jumped away in
the meantime etc. Lemma 4 proves that the potential drops significantly during such a
sequence.

Lemma 4. If two jobs jump away from a machine i at iterations t < t′ and no job
enters machine i between t and t′, then the potential φMakespan drops by at least p2min/smax

during the iterations t, . . . , t′ + 1 when using the Best Improvement pivot rule.

Imagine now there are two jobs j1, j2 entering the same machine i in two consecutive
iterations t1 and t2 = t1 + 1, where job j1 moves first. Then job j2 would improve its
running time by at least pj1/si if it jumped in iteration t1 as it also has the incentive to
move to machine i after job j1’s jump. But if t2 > t1 + 1, it could be that in iteration t1
job j2’s running time is smaller than in iteration t2 and in the meantime another job j3
enters job j2’s machine. If job j3 is much larger than job j2, then job j2 would improve
much by jumping to job j3’s old machine. Otherwise, job j3 could have moved to
machine i in iteration t1 unless another job entered job j3’s old machine in the meantime
etc. Lemma 5 shows that also in this case the potential drops significantly.

Lemma 5. If two jobs enter a machine i at iterations t′ < t and no job leaves machine i
between t′ and t, then the potential φMakespan drops by at least p2min/(2 · smax) between t′

and t+ 1 when using the Best Improvement pivot rule.

Hence, we are able to show that if there is a machine to which two jobs migrate
without a job leaving or from which two jobs leave without a job entering, the poten-
tial φMakespan drops significantly. The proof then concludes with the observation that
this must happen every O(m2n) iterations.

Theorem 10. In the Makespan model, the convergence time of the Best Improvement
pivot rule is in O(m2n ·W 2/p2min).

Proof. According to Lemma 3, after O(n) iterations the potential φMakespan is in
O(W 2/smax). Hence, it suffices to show that in every sequence of m2n consecutive
iterations, φMakespan drops by at least p2min/(2smax).

Let S be a sequence of maximum length such that φMakespan drops by less than
p2min/(2smax), lasting from iteration t0 to iteration t`. We maintain a set of indices,
which is empty at time t0. When a job j jumps from a machine i1 to a machine i2 at
iteration t ∈ {t0, . . . , t`} and if there has not been a job that jumped to machine i1
during the iterations t0, . . . , t, generate a new index which gets attached to machine i2.



13

Otherwise, reattach the index previously attached to machine i1 to machine i2. Lemma 4
shows that this is well-defined as there cannot be another job leaving machine i1 before
another index gets attached to this machine.

At the end of the sequence, there can only be at most m indices. If an index gets
reattached from machine i1 to machine i2 at iteration t, then Lti1 > Lt+1

i2
, i.e., the

running time of the machine an index is attached to is strictly monotonically decreasing.
Consider an index that jumps with job j at iteration t and with job j′ at iteration t′

to the same machine i. Let j = j1, j2, . . . , j` be the jobs that entered machine i and
let j′1, . . . , j

′
` be the jobs that left machine i during the iterations t, . . . , t′ − 1 in this

order. Lemma 4 and Lemma 5 show that the order in which this happened must be
j1, j

′
1, j2, j

′
2, . . . , j`, j

′
` and that the sequences have the same length, i.e., the sequences

are well-defined. As always only a smallest job on a machine is able to achieve the best
improvement and for every k, job jk is on machine i when job j′k leaves this machine, it
must be the case that Lti ≤ Lt

′
i . But in the iterations t+ 1 and t′ + 1, the same index

is attached to machine i, meaning that Lti + pj/si = Lt+1
i > Lt

′+1
i = Lt

′
i + pj′/si, i.e.,

pj > pj′ . This means that an index cannot be attached twice to the same machine by
a jump of the same job and thus an index gets reattached at most n ·m times. This
concludes the proof. ut

6.3 SJF

Theorem 11. In the SJF model, the convergence time of the Min Weight pivot rule is
exactly n, even on two machines. The expected convergence time of the Random pivot
rule is less than n2.

7 Price of Anarchy for FIFO

Brunsch et al. [4] already showed that the smoothed price of anarchy for near list
schedules in the Makespan model, which correspond to local optima in the FIFO model,
is Θ(log φ). We give matching bounds for the deterministic case.

Theorem 12. In the FIFO model, the price of anarchy for local search is Θ(logm) on
related machines and 2− 1/m on identical machines.

8 Concluding Remarks

We have shown several bounds for the convergence times of local search regarding three
different coordination mechanisms on rational inputs. The choice of the right pivot rule
decides in the Shortest Job First model between linear and exponential convergence
times. The FIFO model is new but we believe that it is a realistic choice for many
different real-life applications. We were able to show that every pivot rule converges in
this model in linear time on identical machines and a large class of reasonable pivot rules
converges in smoothed polynomial time on related machines. An interesting observation
is that the machine speeds do not occur in any bound. We leave it as a conjecture that



14

every pivot rule converges in polynomial time in the FIFO model. Another interesting
open problem is whether the Best Improvement pivot rule in the Makespan model
converges in smoothed or even deterministic polynomial time on related machines. We
were only able to show that this happens with high probability when the input is
perturbed.

Acknowledgments. We thank Clemens Rösner for helpful discussions about the lower
bounds for the SJF model and the proof of Theorem 2.

References

1. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line routing of virtual circuits with
applications to load balancing and machine scheduling. J. ACM 44(3), 486–504 (1997), http:

//dx.doi.org/10.1145/258128.258201

2. Beier, R., Vöcking, B.: Random knapsack in expected polynomial time. Journal of Computer and
System Sciences 69(3), 306–329 (2004)

3. Brucker, P., Hurink, J., Werner, F.: Models and algorithms for planning and scheduling prob-
lems improving local search heuristics for some scheduling problems. part ii. Discrete Ap-
plied Mathematics 72(1), 47 – 69 (1997), http://www.sciencedirect.com/science/article/pii/
S0166218X96000364

4. Brunsch, T., Röglin, H., Rutten, C., Vredeveld, T.: Smoothed performance guarantees for lo-
cal search. Math. Program. 146(1-2, Ser. A), 185–218 (2014), http://dx.doi.org/10.1007/

s10107-013-0683-7

5. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. In: Proc. of ICALP
2004, vol. 3142, pp. 345–357 (2004), http://dx.doi.org/10.1007/978-3-540-27836-8_31

6. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. Transactions on Algorithms ACM
3(1) (2007)

7. Etscheid, M.: Performance guarantees for scheduling algorithms under perturbed machine speeds. In:
Proc. of ISAAC 2013. pp. 207–217 (2013), http://dx.doi.org/10.1007/978-3-642-45030-3_20

8. Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence time to nash equilibria. In: Proc. of ICALP
2003, pp. 502–513 (2003), http://dx.doi.org/10.1007/3-540-45061-0_41

9. Finn, G., Horowitz, E.: A linear time approximation algorithm for multiprocessor scheduling. BIT
19, 312–320 (1979)

10. Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling under resource
constraints. SIAM Journal on Computing 4, 397–411 (1975)

11. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell System Technical Journal, The
45(9), 1563–1581 (Nov 1966)

12. Hurkens, C.A., Vredeveld, T.: Local search for multiprocessor scheduling: how many moves does it
take to a local optimum? Operations Research Letters 31(2), 137–141 (2003)

13. Immorlica, N., Li, L., Mirrokni, V.S., Schulz, A.S.: Coordination mechanisms for selfish scheduling.
Theor. Comput. Sci. 410(17), 1589–1598 (2009), http://dx.doi.org/10.1016/j.tcs.2008.12.032

14. Lueker, G.S.: Exponentially small bounds on the expected optimum of the partition and subset
sum problems. Rand. Struc. and Alg. 12(1), 51–62 (1998), http://dx.doi.org/10.1002/(SICI)
1098-2418(199801)12:1<51::AID-RSA3>3.0.CO;2-S

15. Manthey, B., Röglin, H.: Smoothed analysis: Analysis of algorithms beyond worst case. it - Infor-
mation Technology 53(6), 280–286 (2011)

16. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Internat. J. Game
Theory 2, 65–67 (1973)

17. Schuurman, P., Vredeveld, T.: Performance guarantees of local search for multiprocessor scheduling.
Informs Journal on Computing 19(1), 52–63 (2007)

18. Spielman, D., Teng, S.H.: Smoothed analysis of algorithms: Why the simplex algorithm usually
takes polynomial time. J. ACM 51(3), 385–463 (2004)

http://dx.doi.org/10.1145/258128.258201
http://dx.doi.org/10.1145/258128.258201
http://www.sciencedirect.com/science/article/pii/S0166218X96000364
http://www.sciencedirect.com/science/article/pii/S0166218X96000364
http://dx.doi.org/10.1007/s10107-013-0683-7
http://dx.doi.org/10.1007/s10107-013-0683-7
http://dx.doi.org/10.1007/978-3-540-27836-8_31
http://dx.doi.org/10.1007/978-3-642-45030-3_20
http://dx.doi.org/10.1007/3-540-45061-0_41
http://dx.doi.org/10.1016/j.tcs.2008.12.032
http://dx.doi.org/10.1002/(SICI)1098-2418(199801)12:1<51::AID-RSA3>3.0.CO;2-S
http://dx.doi.org/10.1002/(SICI)1098-2418(199801)12:1<51::AID-RSA3>3.0.CO;2-S


15

19. Spielman, D., Teng, S.H.: Smoothed analysis: An attempt to explain the behavior of algorithms in
practice. Communications of the ACM 52(10), 76–84 (2009)



16

A Deferred Proofs

A.1 Proofs from Section 3

Proof (Lemma 1). Let T be a random variable for the convergence time. Then T is
trivially bounded by mn as there are only mn different schedules and no schedule can
appear twice in a sequence of monotonically improving steps. As the job sizes are each
drawn from the interval [0, 1] and thus the total weight W is at most n, we can bound
the expected value of T in the following way.

E[T ] =

∫ ∞
0

Pr[T ≥ α] dα =

∫ mn

0
Pr[T ≥ α] dα ≤

∫ mn

0
Pr

[
f(m,n) · n

pmin
≥ α

]
dα

= f(m,n) · n ·
∫ mn

f(m,n)·n

0
Pr[pmin ≤ 1/α] dα ≤ f(m,n) · n ·

∫ mn

0
Pr[pmin ≤ 1/α] dα.

The random variable pmin is at least 1/α exactly if all job sizes are at least 1/α. For
every job size pj this happens independently of the other jobs sizes with probability
at least 1 − φ/α as the density function of pj is bounded by φ. Hence, with a Union
Bound it follows

Pr[pmin ≤ 1/α] = Pr[∃j : pj ≤ 1/α] ≤
n∑
j=1

Pr[pj ≤ 1/α] ≤ nφ

α
,

and thus,∫ mn

0
Pr[pmin ≤ 1/α] dα ≤ 1 +

∫ mn

1

nφ

α
dα = 1 + nφ · ln(mn) = 1 + n2φ · lnm. ut

Proof (Lemma 2). Analogously to the proof of Lemma 1, we can bound the probability
of 1/p2min ≥ α for some α using a Union Bound.

Pr[1/p2min ≥ α] ≤ Pr[pmin ≤ 1/
√
α] ≤ nφ√

α
.

This bound is at most 1/n for α ≥ n4φ2. Theorem 10 shows that the Best Improvement
pivot rule converges in the Makespan model in O(m2n ·W 2/p2min) steps. As W 2 ≤ n2,
the probability that the Best Improvement pivot rule does not converge in m2n7φ2

steps is bounded from above by

Pr[m2n3/p2min ≥ m2n7φ2] = Pr[1/p2min ≥ n4φ2] ≤
1

n
. ut

A.2 Proofs from Section 4

Proof (Theorem 1). First consider an instance with m = n machines and every job has
size 1. In the initial schedule all jobs are assigned to the first machine. Then in every



17

step one job moves from the first machine to an empty machine. This happens n− 1
times.

For the upper bound, first observe that the running time of the least loaded machine
is monotonically increasing (this was also observed in [8]). As a job always strictly
decreases its running time by moving and moves to a least loaded machine, each job
can only move once. The first job on each machine does not move. Hence, the number
of iterations is bounded from above by n− 1. ut

The proof idea for Theorem 3 is the following. We consider 2k + 1 jobs with job
sizes p0 � p1 < . . . < p2k < (1 + 1/k) · p1, which are to be assigned to m = 2 identical
machines. Initially, job 1 and all even-numbered jobs j ≥ 4 are assigned to machine 1,
whereas job 2 and all odd-numbered jobs j ≥ 3 are assigned to machine 2. As the job
sizes are all almost equal, only the number of jobs smaller than job j on each machine
and not their exact weights determine on which machine job j wants to be. One can
then show that in every second iteration either job 2k − 1 or job 2k jumps. Then by
induction, the number of iterations grows exponentially in k.

One can use the same idea for the second part of the theorem to prove an expected
superpolynomial convergence time when all job sizes are drawn uniformly at random
from the interval [0, 1]. Let k = Θ(

√
n) and let p1 < . . . < p2k be the 2k largest job sizes.

Then with constant probability p2k < (1 + 1/k) · p1 and the other n− 2k smaller jobs
can be distributed among the two machines in such a way that they generate nearly the
same load on both machines and thus do not affect the jumps of the 2k largest jobs.

Now let us go into detail. Let k ≥ 2. We construct a scheduling instance Ik with m = 2
identical machines and n = 2k+1 jobs and an initial schedule for this instance from which
the Max Weight pivot rule needs 2k−1 steps to a local optimum. The jobs 1, . . . , 2k have
processing requirements p1 < p2 < . . . < p2k−1 < p2k < (1 + 1/k) ·p1. Additionally there
is an extremely small job 0 with processing requirement p0 ≤ (k + 1) · p1 − k · p2k ≤ p1.
Note that (k+1) ·p1−k ·p2k = k · ((1+1/k) ·p1−p2k) is strictly positive. The additional
job 0 is not needed for the proof of the first part of Theorem 3. However, we will see
later that its existence makes it possible to extend the theorem (with a slightly weaker
bound for the convergence time) to φ-perturbed scheduling instances.

Lemma 6. Consider an arbitrary schedule σ on instance Ik. For a job j and a machine
i ∈ {1, 2}, let Ji(j) denote the set of jobs on machine i that have a smaller size than
job j ignoring job 0, i.e.,

Ji(j) =
{
j′ ∈ {1, . . . , j − 1} : job j′ is assigned to machine i

}
.

– If |J1(j)| < |J2(j)|, then job j prefers to jump onto (stay on) machine 1.
– If |J1(j)| > |J2(j)|, then job j prefers to jump onto (stay on) machine 2.

Lemma 6 states that in the case |J1(j)| 6= |J2(j)|, the values p0, p1, . . . , p2k are
not of interest when we have to decide which of the machines 1 and 2 is favored by
job j in the current schedule. We only have to count on each machine the jobs whose
indices are smaller than j, ignoring job 0. Only in the case |J1(j)| = |J2(j)|, the values
p0, p1, . . . , p2k matter.



18

Proof (Lemma 6). Due to symmetry, we only have to consider the first claim. For this,
observe that |J1(j)| < k since |J1(j)| < |J2(j)|, J1(j) ∩ J2(j) = ∅, and J1(j) ∪ J2(j) ⊆
{1, . . . , 2k}. We obtain∑

j′∈J2(j)

pj′ −
∑

j′∈J1(j)

pj′ ≥ |J2(j)| · p1 − |J1(j)| · p2k ≥ p1 + |J1(j)| · (p1 − p2k)

> p1 + k · (p1 − p2k) = (k + 1) · p1 − k · p2k ≥ p0 .

Hence, the total processing requirement of all jobs on machine 1 that are smaller than
job j is at most

p0 +
∑

j′∈J1(j)

pj′ <
∑

j′∈J2(j)

pj′ .

The latter sum is a lower bound for the total processing requirement of all jobs on
machine 2 that are smaller than job j. ut

Definition 2. Let σ be an arbitrary schedule on instance Ik. By χ(σ) ∈ Z we denote
the difference between the number of jobs from {1, . . . , 2k} on machine 1 and the number
of jobs from {1, . . . , 2k} on machine 2. We call schedule σ balanced, if χ(σ) = 0.
Otherwise, σ is called imbalanced. In an imbalanced schedule, we call the machine with
more jobs from {1, . . . , 2k} the critical machine.

Now consider the following schedule σk: Job 0 is assigned arbitrarily and job j ∈
{1, . . . , 2k} is assigned to{

machine 1 if j = 1 or (j ≥ 3 and j is even) ,

machine 2 if j = 2 or (j ≥ 3 and j is odd) .

In the remainder of this section, let S denote the sequence of schedules that we
obtain when we consider the Max Weight pivot rule, starting with schedule σk.

Lemma 7. For any schedule σ from the sequence S, χ(σ) ∈ {−2, 0, 2}.

Proof. We prove the claim by induction. For the initial schedule, the claim is true since
χ(σk) = 0. Now consider an arbitrary schedule σ and its predecessor σ′ in S. For σ′, the
induction hypothesis states that χ(σ′) ∈ {−2, 0, 2}. If χ(σ′) = 0, then |χ(σ)| = 2 since
the value χ changes by 2 in each iteration. Let us consider the case |χ(σ′)| = 2. We
show that the largest job j on the critical machine i of σ′ will jump in the next iteration
yielding χ(σ) = 0. Due to |χ(σ′)| = 2, we obtain |Ji(j)| = k and |Ji′(j)| ≤ k − 1 in the
schedule σ′, where i′ = 3 − i denotes the other machine. Hence, in accordance with
Lemma 6, job j desires to jump. Due to the Max Weight pivot rule, it prevents all jobs
j′ < j from jumping. On the other hand, all other jobs j′ > j must be on machine i′ due
to the choice of j. As |Ji(j′)| = |Ji(j)|+ 1 = k + 1 > |Ji′(j′)| for the schedule σ′, these
jobs do not desire to jump. This again follows from Lemma 6. Consequently, job j will
jump from machine i to machine i′ in the next iteration. This concludes the proof. ut



19

Lemma 8. Let σ be an arbitrary imbalanced schedule from the sequence S. Then at
least one of the two largest jobs 2k − 1 or 2k is assigned to the critical machine.

Proof. Assume, to the contrary, that there is an imbalanced schedule σ in S that
assigns both jobs 2k − 1 and 2k to the non-critical machine. We consider the first such
schedule in the sequence and let i and i′ denote the critical and the non-critical machine,
respectively. Since the first schedule σk in the sequence S is balanced and, thus, is not
equal to σ, schedule σ must have a predecessor σ′ in the sequence S. Due to Lemma 7
and the observation, that the value χ changes by 2 in each iteration, schedule σ′ must be
balanced. Furthermore, since machine i becomes the critical machine after the following
iteration, a job must jump from machine i′ to machine i. Consequently, as both, job
2k − 1 and job 2k, are not assigned to machine i in schedule σ, they must be assigned
to machine i′ in schedule σ′. Now let us consider the largest job j that is assigned to
machine i in schedule σ′. We will show that this job is the next to jump, contradicting
the fact that the next jump is from machine i′ to machine i.

As all jobs j′ that are larger than j (including job 2k − 1 and 2k) are assigned to
machine i′, none of these can improve by jumping to machine i as |Ji(j′)| = k > |Ji′(j′)|
because schedule σ′ is balanced and j is the largest job on machine i. On the other
hand, we know that |Ji′(j)| ≤ |Ji′(2k − 1)| = k − 2 < |Ji(j)| since both jobs 2k − 1 and
2k are assigned to machine i′. This implies that job j will be the next job to move. ut

Corollary 2. In the sequence S, the number of jumps involving one of the jobs 2k − 1
or 2k is at least half the number of all jumps.

Proof. Consider an arbitrary imbalanced schedule σ from the sequence S. According to
Lemma 8, at least one job from {2k − 1, 2k} is assigned to the critical machine i. Let
j ≥ 2k − 1 be the largest job on the critical machine. Then, |Ji(j)| = k > |J2−i(j)|, i.e.,
job j desires to change its machine. Hence, the next jump will be performed by job
2k − 1 or job 2k.

Since every second schedule from the sequence S is imbalanced and the last schedule
of S cannot be imbalanced due to the previous argument, at least half of the jumps
involves job 2k − 1 or job 2k. ut

The first part of Theorem 3 follows directly from the following lemma.

Lemma 9. The number of iterations in the sequence S is at least 2k−1.

Proof. We prove the lemma by induction on k. For the base case k = 2, job 1 and job 4
are assigned to machine 1 and job 2 and job 3 are assigned to machine 2 in schedule σ2.
Hence, job 3 will jump to machine 1 in the next iteration because p1 < p2. Afterwards,
job 4 will jump to machine 2. Hence, the number of jumps is at least 2 = 22−1.

For the inductive step let us consider an arbitrary value k ≥ 3. First of all observe
that

p1 < p2 < . . . < p2k < (1 + 1/k) · p1 < (1 + 1/(k − 1)) · p1



20

and

p0 ≤ (k + 1) · p1 − k · p2k
< ((k − 1) + 1) · p1 − (k − 1) · p2k
< ((k − 1) + 1) · p1 − (k − 1) · p2(k−1) .

Particularly, the jobs 0, 1, . . . , 2(k − 1), together with the machines 1 and 2, form a
scheduling instance Ik−1 with the properties required to apply the inductive hypothesis.
Moreover, when we remove the jobs 2k−1 and 2k from schedule σk, then we obtain σk−1
for which we can apply the inductive hypothesis. We classify the iterations that we
obtain starting from schedule σk as follows: if job 2k− 1 or job 2k changes the machine,
then we call this iteration a Type 2 iteration. Otherwise it is a Type 1 iteration. Observe
that the subsequence of all Type 1 iterations is exactly the sequence of iterations that
we get when we start with schedule σk−1. This is due to the fact that the behavior of
the jobs 0, 1, . . . , 2(k − 1) is not affected by the larger jobs 2k − 1 and 2k. Hence, the
number of Type 1 iterations is at least 2k−2 in accordance with the inductive hypothesis.
Finally, Corollary 2 states that there are at least as many Type 2 iterations as Type 1
iterations, yielding the lower bound of 2k−1 for the total number of iterations. ut

Proof (Theorem 3). Only the second part of the theorem is left to show. Let n denote
the number of jobs and let r1, . . . , rn denote the random processing requirements.
For φ = 1, every processing requirement ri is chosen uniformly at random from [0, 1].

Let x = 1
3
√
n
≤ 1

3 and k = bx4 ·nc = b
√
n

12 c. We show that the convergence time is 2Ω(
√
n),

unless at least one of two failure events F1 or F2 occurs.
We define F1 to be the event that fewer than 2k values ri lie in the interval [1−x, 1]

or that fewer than n/3 values ri lie in the interval [0, 1− x]. In expectation, nx =
√
n
3

values ri lie in the interval [1− x, 1]. Due to the Chernoff bound, the probability that
fewer than 2k ≤ nx

2 values ri lie in the interval [1 − x, 1], is bounded from above by
exp(−xn/8) = exp(−

√
n/24), which tends to 0 for n→∞. Additionally, the probability

that at least n · 2x ≤ 2n/3 values ri fall into the interval [1− x, 1] is at most 1/2 due
to Markov’s inequality. Hence, with constant probability the failure event F1 does not
occur. From now on assume that this is the case. Then at least 2k values lie in [1− x, 1]
and at least n/3 values lie in [0, 1− x].

By p1 < . . . < p2k we denote the 2k largest values ri. Observe that, under the
assumption ¬F1, p1 ≥ 1− x and hence

p̄0 := (k + 1) · p1 − k · p2k
= p1 − k · (p2k − p1)
≥ 1− x− k · x
= 1− (k + 1) · x

and

(k + 1) · x = kx+ 2x− x ≤ x2n

4
+ 2x− x ≤ 1

36
+

2

3
− x ≤ 1− x .



21

Consequently, p̄0 ≥ x > 0 and

p2k =
1

k
· ((k + 1) · p1 − p̄0) <

(
1 +

1

k

)
· p1 .

Hence, the jobs with processing requirements p1, . . . , p2k together with the two machines
form an instance Ik as used in the proof of the first part of Theorem 3 (except for the
missing job 0).

This alone does not suffice to prove the theorem because we cannot simply eliminate
the other jobs from the instance. Instead we will distribute them onto the two machines
in such a way that their total contributions to the loads of the two machines are almost
the same. Let R1 ⊆ {i | ri ∈ [1 − x, p1)} denote the remaining values from [1 − x, 1],
let R2 ⊆ {i | ri ∈ [0, 1 − x)}, and let R = R1 ∪ R2. We look for a subset R′ ⊆ R
such that the gap ∆(R′) :=

∣∣∑
i∈R′ ri −

∑
i∈R\R′ ri

∣∣ is small. For this, we first choose

a subset R′1 ⊆ R1 such that α(R′1) :=
∑

i∈R1\R′1
ri −

∑
i∈R′1

ri ∈ [−1, 1]. Such a subset
must always exist and it can be constructed by greedily assigning the jobs from R1 one
after another to the machine with lower load.

Now we use the principle of deferred decisions and assume that the index set R2 is
already fixed. Note that the processing requirements of the jobs in R2 have not been
chosen yet. Then each value ri with i ∈ R2 is uniformly distributed on [0, 1− x]. Since
we assume that the failure event F1 does not occur, we have |R2| ≥ n/3. Our goal is now
to find a subset R′2 ⊆ R2 such that the gap β(R′2) :=

∑
i∈R′2

ri −
∑

i∈R2\R′2
ri is close

to α(R′1) because ∆(R′1 ∪R′2) = β(R′2)− α(R′1). Lueker [14] studied the partition gap
of a set of random numbers. Adapted to our notation, he proved that with probability
exponentially close to 1, for every α ∈ [−1, 1] there exists a subset R′2 ⊆ R2 such
that β(R′2) is exponentially close to α. In particular, the probability that there does not
exist a subset R′2 for which |β(R′2)−α(R′1)| ≤ p̄0 goes to 0 for n→∞. Failure event F2

is defined to be the event that no such subset R′2 exists.

If neither F1 nor F2 occurs, we consider the scheduling instance with jobs 1, . . . , 2k
with sizes p1, . . . , p2k and jobs 2k + 1, . . . , n with sizes corresponding to the remaining,
smaller values ri. The jobs 2k+ 1, . . . , n are assigned to the machines 1 and 2 as induced
by the aforementioned partition, ensuring that the jobs from the larger class are assigned
to machine 1. The jobs 1, . . . , 2k are now assigned to the machines 1 and 2 according
to schedule σk. As long as one of the jobs 1, . . . , 2k can jump, none of the smaller jobs
2k + 1, . . . , n will move due to the Max Weight pivot rule. Hence, as long as the jobs
1, . . . , 2k move, they behave exactly the same as in schedule σk where machine 1 is
assigned jobs from {1, . . . , 2k} and the additional job p0 and machine 2 is only assigned
jobs from {1, . . . , 2k}. By Lemma 9, this takes at least

2k−1 = 2bnx/4c−1 = 2b
√
n/12c−1

iterations. This proves the theorem because with constant probability neither F1 nor F2

occurs. ut



22

A.3 Proofs from Section 5

Proof (Theorem 4). For the lower bound on two machines, assign all jobs to a machine
of speed 1/(2n) and set the speed of the other machine to 1. Then all jobs jump to the
faster machine.

For the upper bound, we show that every job jumps at most once. Assume to the
contrary that there is a job j that jumps twice and let t be the iteration in which job j
is the first time able to move again after its first jump. Then in the previous iteration,
a job j′ 6= j jumped from a machine i1 to a machine i2 and job j is now able to jump
to machine i1 as the load of no other machine decreased during the last iteration. Job j
cannot be on machine i2 because it has the same size as job j′ and thus we would end up
in the same potential as in iteration t− 1 if job j jumped from machine i2 to machine i1.
But then job j could also jump to machine i2 in the previous iteration because

ct−1j = ctj > Lti1 +
1

si1
= Lt−1i1

> Lt−1i2
+

1

si2
.

This contradicts the choice of t. ut

A.4 Proofs from Section 6

Definition 3. Let T := W
smax

. For any given schedule, we categorize the machines in
the following way:

– A machine i is a Type 2 machine if Li > 2T .
– A machine i is a Type 1 machine if 2T ≥ Li > T .
– A machine i is a Type 0 machine if T ≥ Li.

Proof (Lemma 3). Consider a job j on a machine i that can improve by jumping onto
machine i′.

If i is a Type 0 machine, then the costs of j are at most T and thus j can only
improve by at most T . The costs of the top-most job on any Type 2 machine are greater
than 2T . Therefore, such a job can improve by strictly more than T by jumping onto
the fastest machine, where its new costs would be at most W/smax = T .

Second, i′ must be a type 0 machine as the new costs of j are at most its costs if it
would jump to the fastest machine, which is at most W/smax = T . This proves the first
part of the lemma.

If there are no Type 2 machines, then 2T is an upper bound for the costs of any job
and thus also for the makespan of the current schedule. Then φFIFO ≤ n·2T = O(n· Wsmax

).
The Makespan potential for a schedule σ can be bounded in the following way:

φMakespan =

m∑
i=1

1

si
·

 ∑
j∈σ−1(i)

pj

2

+
∑

j∈σ−1(i)

p2j

 ≤ m∑
i=1

2

si
·

 ∑
j∈σ−1(i)

pj

2

=

m∑
i=1

2Li ·
∑

j∈σ−1(i)

pj

 ≤ 4T ·
m∑
i=1

∑
j∈σ−1(i)

pj = O(T ·W ) = O

(
W 2

smax

)
.

ut



23

A.5 Proofs from Section 6.1

Proof (Theorem 5). The lower bound of n for every pivot rule follows directly from
Theorem 4.

For the lower bound of 2n − 2 for some pivot rules, consider two machines with
speeds s1 = 2 and s2 = 1 and n jobs with sizes p1 = 2, p2 = . . . = pn−1 = 1/(2n), and
pn = 1. All jobs are assigned to the slower machine 2 and their permutation π is the
identity, i.e., job 1 is the first job to be processed and job n is on top.

Let the jobs n, . . . , 1 jump from machine 2 to machine 1 in this order. This is valid
as (
∑

j pj)/s1 < 2 = p1/s2. Then let the jobs 2, . . . , n− 1 jump back to machine 2. This
is valid as (n− 2)/(2n) < 1/2 = pn/s1 and n is the first job on machine 1.

For the upper bound, consider the setting of two machines with s1 ≥ s2. We claim
that after a job jumped from the faster machine 1 to the slower machine 2, no job
can jump in the other direction from machine 2 to machine 1. Then there are at most
n jumps from machine 2 to machine 1 and at most n − 2 jumps from machine 1 to
machine 2 as the first job on the faster machine 1 does never jump to machine 2 and
the last job leaving machine 2 does also not jump back.

In order to show the claim, let a job j jump from machine 1 to machine 2 in
iteration t and let j′ be another job on machine 2. Then,

ct+1
j′ = ctj′ ≤ Lt2 < Lt1 −

pj
s2

= Lt+1
1 +

pj
s1
− pj
s2
≤ Lt+1

1 ≤ Lt+1
1 +

pj′

s1
,

i.e., job j′ cannot improve its costs by jumping. The strict inequality comes from the
fact that job j improved its costs by jumping in iteration t. ut

Proof (Theorem 7). Due to Corollary 1, after an expected number ofO(n log n) iterations,
the potential φFIFO is bounded by O(nW/smax). As shown in the proof of Theorem 6,
after at most m(m− 1) iterations there is a job j such that φFIFO decreases by a total
of at least pmin/smax in this sequence if job j jumps next. Hence, after an expected
number of O(n) such sequences the potential φFIFO drops by this amount. ut

A.6 Proofs from Section 6.2

Definition 4. Let (j1, . . . , j`), (i0, . . . , i`), and t1 < . . . < t` be sequences such that for
any k = 1, . . . , `, job jk jumps from machine ik−1 to machine ik in iteration tk. These
sequences are called

1. forward thread if from iteration tk + 1 to iteration tk+1− 1, no job leaves machine ik
for every k = 1, . . . , `− 1.

2. backward thread if from iteration tk+1 to iteration tk+1−1, no job enters machine ik
for every k = 1, . . . , `− 1.

Intuitively, a forward thread always follows the first job leaving a machine and a
backward thread backtracks the last job entering a machine in the past.



24

Lemma 10. Consider a forward thread ((j1, . . . , j`), (i0, . . . , i`), t1 < . . . < t`). Then
pj1 ≥ . . . ≥ pj` and the potential φMakespan decreases in total by at least 2(Lt1i0 − L

t`+1
i`

) ·
pmin in the iterations t1, . . . , t`.

Proof. The job sizes are monotonically decreasing because at iteration tk for 2 ≤ k ≤ `,
job jk−1 is also on machine ik−1 when job jk leaves this machine and only the smallest
job on a machine is able to leave according to Observation 1.

The improvement of the jumping job in iteration tk is given by Ltkik−1
−Ltk+1

ik
leading

to a potential drop of at least 2(Ltkik−1
− Ltk+1

ik
) · pmin. As no job leaves machine ik

between the iterations tk + 1 and tk+1 − 1, it holds Ltk+1
ik

≤ Ltk+1

ik
. By summing over all

possible choices for k, we attain the desired bound. ut

Proof (Lemma 4). Let job j jump away from machine i at iteration t and let job j′ jump
away from machine i at iteration t′ such that no job enters machine i in the meantime.
W.l.o.g., also no job left machine i in the meantime. Let (j = j1, . . . , j`), (i = i0, . . . , i`),
and t = t1 < . . . < t` be the maximum forward thread starting in iteration t with t` < t′.
If Lt`+1

i`
≤ Lti − pmin/(2smax), the potential drop follows from Lemma 10. Otherwise,

the potential drop gained by letting job j` jump from machine i` to machine i at
iteration t′ + 1 is at least

Lt
′+1
i`
−
(
Lt
′+1
i +

pj`
si

)
≥ Lt`+1

i`
−
(
Lt
′+1
i +

pj`
si

)
> Lti − Lt

′+1
i − pj`

si
− pmin

2smax

=
pj + pj′ − pj`

si
− pmin

2smax
,

where the first inequality stems from the maximality of the chosen thread, i.e., no job
left machine i` in the meantime. Again by Lemma 10, it holds pj ≥ pj` and thus the
improvement for job j` would then be at least pmin/(2smax). The Best Improvement
pivot rule chooses a job in iteration t′ + 1 that gains at least that much leading to a
potential drop of at least p2min/smax. ut

Lemma 11. Consider a backward thread ((j1, . . . , j`), (i0, . . . , i`), t1 < . . . < t`). Then
the potential φMakespan decreases in total by at least (pj1 − pj`) · pmin/smax in the itera-
tions t1, . . . , t` + 1 when using the Best Improvement pivot rule.

Proof. Let 1 ≤ k ≤ ` and consider the iterations tk and tk + 1. If job jk+1 (which could
also be equal to job jk) jumped from machine ik to machine ik−1 in iteration tk + 1,
then the total improvement for the two jumping jobs would be

Ltkik−1
−
(
Ltkik +

pjk
sik

)
+ Ltk+1

ik
−
(
Ltk+1
ik−1

+
pjk+1

sik−1

)
=Ltkik−1

−
(
Ltk+1
ik−1

+
pjk+1

sik−1

)
=
pjk − pjk+1

sik−1

,

where we used that Ltkik +
pjk
sik

= Ltk+1
ik

and Ltk+1
ik−1

= Ltkik−1
− pjk
sik−1

. This leads to a potential

drop of φMakespan by at least 2(pjk − pjk+1
) · pmin/smax. We do not know whether this



25

term is positive and hence whether this move by job jk+1 is legal, but we know that
the job that jumps in iteration tk + 1 improves by at least as much as job jk+1 would
improve by jumping to machine ik−1. By summing over all possible choices for k, we
count every iteration at most twice leading to the lower bound of (pj1 − pj`) · pmin/smax

for the total decrease of φMakespan. ut

Proof (Lemma 5). Let job j′ enter machine i at iteration t′ and let job j enter machine i at
iteration t such that no job leaves machine i in the meantime. W.l.o.g., also no job enters
machine i in the meantime. Let (j1, . . . , j` = j), (i0, . . . , i` = i), and t1 < . . . < t` = t
be the maximum backward thread ending in iteration t with t1 > t′. As job j1 jumps
from machine i0 to machine i1 in iteration t1 and no other job enters machine i1
from then on until iteration t2, it holds Lt1i0 > Lt1i1 +

pj1
si1
≥ Lt2i1 . Reiterating this

argument yields Lt1i0 > Lti +
pj
si

. As the chosen sequence is maximal, it also holds

Lt
′
i0
≥ Lt1i0 > Lti +

pj
si

= Lt
′
i +

pj′+pj
si

and job j1 is on machine i0 during iteration t′. If
pj1 > pj + pmin/2, the potential drop follows from Lemma 11. Otherwise,

Lt
′
i0 ≥ L

t′
i +

pj′ + pj1 − pmin/2

si
≥ Lt′i +

pj1
si

+
pmin

2smax
,

i.e., job j1 would improve by at least pmin/(2smax) by jumping from machine i0 to
machine i in iteration t′. Hence, the job j′ moving in iteration t′ must decrease its
running time by at least as much yielding a potential drop of at least p2min/smax. ut

A.7 Proofs from Section 6.3

Proof (Theorem 11). W.l.o.g., p1 ≤ . . . ≤ pn. When the Min Weight pivot rule selects a
job j to jump, all jobs 1, . . . , j − 1 do not want to jump. As larger jobs do not affect
the decision whether a job wants to jump, the jobs 1, . . . , j − 1 do not want to jump to
job j’s old machine afterwards and thus, the jobs 1, . . . , j will never jump again. Hence,
every job jumps at most once and the convergence time is at most n. On the other
hand, every job jumps if all jobs are initially assigned to an arbitrarily slow machine.

For the analysis of the Random pivot rule, let j be the smallest unsatisfied job. It
takes an expected number of O(n) iterations until job j gets selected to jump. Afterwards,
it will not jump again. By linearity of expectation, the convergence time for the Random
pivot rule is then in O(n2). ut

A.8 Proofs from Section 7

Proof (Theorem 12). It is easy to see that every list schedule is a local optimum w.r.t.
the FIFO model. Hence, the lower bounds Ω(logm) by Aspnes et al. [1] for related
machines and 2− 1/m by Graham [11] for identical machines translate to lower bounds
for local search in the FIFO model. Graham’s proof for the upper bound of 2− 1/m
can be applied to the FIFO model without any changes.

For the upper bound for related machines, we use the notation of near list schedules
defined in the Makespan model by Brunsch et al. [4]:



26

Definition 5. We call a schedule σ on machines 1, . . . ,m with speeds s1, . . . , sm a near
list schedule, if we can index the jobs in such a way that

Li′ +
pj
si′
≥ Li −

∑
`∈σ−1(i) : `<j

p`
si

(1)

for all machines i′ 6= i and all jobs j ∈ Ji(σ).

This definition is equivalent to the definition of a locally optimal schedule w.r.t the
FIFO model if one inverses the order of the jobs. Hence, in order to bound the price
of anarchy of local search in the FIFO model, we can use their results for near list
schedules in the Makespan model.

W.l.o.g., s1 ≥ . . . ≥ sm and let the makespan of an optimal schedule be exactly 1.
Let σ be a near list schedule with a makespan of strictly less than c + 2 for some
integer c, and let i∗ be the fastest machine with Lσi∗ < 2. Brunsch et al. [4] showed that
the total processing requirement on the machines i∗, . . . ,m in any optimal schedule is
at least (c− 1) · s1 (cf. Lemma 9 and Lemma 13 with k = t = 2). On the other hand,
they showed that s1 ≥ 2b(c−1)/6c · si∗ (cf. Lemma 15 with i1 = 1 and i2 = i∗). Since in
any optimal schedule, the running times of the machines i∗, . . . ,m are at most 1 and
the machine speeds are monotonically decreasing, it holds

m ≥ m− i∗ + 1 ≥ (c− 1) · 2b(c−1)/6c,

i.e., c = O(logm) and thus the price of anarchy for FIFO is in O(logm). ut


	Bounds for the Convergence Time of Local Search in Scheduling Problems

