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Efficient Algorithms

When is an algorithm considered efficient?

Engineer
The algorithm must be efficient in practice,
i.e., it must solve practical instances in an
appropriate amount of time.

Theorist
The algorithm must be efficient in the worst case,
i.e., it must solve all instances in polynomial time.
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The Knapsack Problem

Knapsack problem (KP)
Input

set of items {1, . . . , n}
profits p1, . . . , pn

weights w1, . . . ,wn

capacity b

Goal
Find a subset of items that fits into the
knapsack and maximizes the profit.

Formal description

max p1x1 + · · ·+ pnxn

subject to w1x1 + · · ·+ wnxn ≤ b

and xi ∈ {0, 1}
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Different Opinions

Theorists say. . .

KP is NP-hard.

FPTAS exists.

No efficient algorithm for KP,
unless P = NP.

Engineers say. . .

KP is easy to solve!

Does not even require
quadratic time.

There are very good heuristics
for practical instances of KP.
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Reason for discrepancy

Reason for discrepancy

Worst-case complexity is too pessimistic!

There are (artificial) worst-case instances for KP on which the
heuristics are not efficient. These instances, however, do not
occur in practice.

This phenomenon occurs not only for KP, but also for many other
problems.

How to make theory more consistent with practice?
Find a more realistic performance measure.

Average-case analysis

Is it realistic to consider the average
case behavior instead of the worst
case behavior?
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Random Inputs are not Typical

Random inputs are not typical!
If real-world data was random, watching TV would be very boring...
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What is a typical instance?

What is a typical instance?

Weight

Profit

Weight

Profit

Weight

Profit

Weight

Profit

It depends very much on the concrete application. We cannot say in
general what a typical instance for KP looks like.
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Smoothed Analysis

Step 1:
Adversary

chooses input I.

Weight

Profit

Weight

Profit

Weight

Profit

Weight

Profit

Step 2: Random
perturbation.
I → per(I)

Weight

Profit

Weight

Profit

Weight

Profit

Weight

Profit
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Smoothed Analysis

Step 1:
Adversary
chooses input I.

Step 2: Random
perturbation.
I → per(I)

Smoothed Complexity = worst expected running time the adversary
can achieve

Why do we consider this model?

First step alone: worst case analysis.

Second step models random influences, e.g., measurement
errors, numerical imprecision, rounding, . . .

So we have a combination of both: instances of any structure with
some amount of random noise.
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Perturbation

Example

Step 1: Adversary chooses all pi ,wi ∈ [0, 1] arbitrarily.

Step 2: Add an independent Gaussian random variable to each
profit and weight.

Weight

Profit

 0

 0.5

 1

-5 -4 -3 -2 -1  0  1  2  3  4  5

sigma=0.5
sigma=1
sigma=2
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Heiko Röglin Pearls of Algorithms



Smoothed Analysis of Algorithms
Smoothed Analysis of the Simplex Algorithm

Perturbation

Example

Step 1: Adversary chooses all pi ,wi ∈ [0, 1] arbitrarily.

Step 2: Add an independent Gaussian random variable to each
profit and weight.

Weight

Profit

σ1
 0

 0.5

 1

-5 -4 -3 -2 -1  0  1  2  3  4  5

sigma=0.5
sigma=1
sigma=2
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Perturbation

Example

Step 1: Adversary chooses all pi ,wi ∈ [0, 1] arbitrarily.

Step 2: Add an independent Gaussian random variable to each
profit and weight.

Weight

Profit

σ1 > σ2
 0

 0.5

 1

-5 -4 -3 -2 -1  0  1  2  3  4  5

sigma=0.5
sigma=1
sigma=2
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Complexity Measures

Instances of length n.

CA(I)

CA(I) = running time of algorithm A on input I
Xn = set of inputs of length n,

µn = prob. distribution on Xn

CworstA (n) = maxI∈Xn (CA(I))
CaveA (n) = EI

µn← Xn
[CA(I)]

Csmooth
A (n, σ) = maxI∈Xn E [CA (perσ(I))]

smoothed complexity low⇒ bad instances are isolated peaks
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Linear Programs

Linear Programs (LPs)

variables: x1, . . . , xd ∈ R.

linear objective function:
max c1x1 + . . .+ cnxn.

n linear constraints:

a1,1x1 + . . .+ a1,d xd ≤ b1

...

an,1x1 + . . .+ an,d xd ≤ bn

c

x∗

Complexity of LPs

LPs can be solved in polynomial time by the ellipsoid method
[Khachiyan 1979].
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Simplex Algorithm

c

Simplex Algorithm

The simplex method walks
along the vertices of the
polytope in the direction of
the objective function cT x .

Exponential in the worst
case.

Works well in practice.
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Pivot Rules

c

Pivot Rules

How is a better vertex on the
polytope chosen if there are multiple
options?
Different pivot rules have been
suggested:

random
steepest descent
shadow vertex pivot rule
. . .

Heiko Röglin Pearls of Algorithms
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Shadow Vertex Pivot Rule

Shadow Vertex Pivot Rule
Let x0 be some vertex of
the polytope.

Compute u ∈ Rd such that
x0 maximizes uT x .

Project the polytope onto
the plane spanned by c
and u.

cu

Heiko Röglin Pearls of Algorithms
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Heiko Röglin Pearls of Algorithms



Smoothed Analysis of Algorithms
Smoothed Analysis of the Simplex Algorithm

Shadow Vertex Pivot Rule

2-dimensional projection

The projection is 2-dimensional,
that is, a polygon.

x0 is a vertex of the polygon.

xopt is a vertex of the polygon.

Edges of the polygon correspond
to edges of the polytope.

u

c
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Shadow Vertex Pivot Rule

2-dimensional projection

In 2 dimension the simplex
method is easy; it just follows the
edges of the polygon.

It starts at x0...

... and follows the edges to xopt.

The polygon can have an
exponential number of edges.

u

c

xopt

x0
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Perturbed Linear Programs

Perturbed LPs

Step 1: Adversary specifies arbitrary LP:
max cT x subject to aT

1 x ≤ b1 . . . aT
n x ≤ bn.

W. l. o. g. ‖(ai , bi)‖ = 1.

Step 2: Add Gaussian random variable with standard deviation σ
to each coefficient in the constraints.

Heiko Röglin Pearls of Algorithms
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Smoothed Analysis of the Simplex Algorithm

Theorem [Spielman and Teng 2001]

The expected number of edges on the polygon is

O
(
poly

(
n, d , σ−1)) .

The smoothed running time of the simplex algorithm with shadow
vertex pivot rule is

O
(
poly

(
n, d , σ−1)) .

Running time is polynomial in n, d , and σ−1.

Already for small perturbation it is extremely unlikely to hit a bad
instance.
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Improved Analysis

Theorem [Vershynin 2006]

The smoothed running time of the simplex algorithm with shadow
vertex pivot rule is

O
(
poly

(
log n, d , σ−1)) .

Running time is only polylogarithmic in the number of constraints n.
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Overview of the coming Lectures

Smoothed Analysis

2-Opt heuristic for the traveling salesperson problem

Nemhauser/Ullmann algorithm for the knapsack problem

k -means clustering
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