Pearls of Algorithms

Part 2: Randomized Algorithms and Probabilistic Analysis

Prof. Dr. Heiko Röglin Institut für Informatik I

Winter 2011/12

Heiko Röglin Pearls of Algorithms

Efficient Algorithms

When is an algorithm considered efficient?

Efficient Algorithms

When is an algorithm considered efficient?

Engineer

The algorithm must be efficient in practice, i.e., it must solve practical instances in an appropriate amount of time.

Efficient Algorithms

When is an algorithm considered efficient?

Engineer

The algorithm must be efficient in practice, i.e., it must solve practical instances in an appropriate amount of time.

Theorist

The algorithm must be efficient in the worst case, i.e., it must solve all instances in polynomial time.

The Knapsack Problem

- Input
 - set of items {1,...,*n*}
 - **profits** *p*₁,...,*p*_n
 - weights *w*₁,...,*w*_n
 - capacity b

The Knapsack Problem

Knapsack problem (KP)

- Input
 - set of items {1,...,*n*}
 - **profits** *p*₁,...,*p*_n
 - weights *w*₁,...,*w*_n
 - capacity b

Goal

Find a subset of items that fits into the knapsack and maximizes the profit.

The Knapsack Problem

Knapsack problem (KP)

- Input
 - set of items {1,...,*n*}
 - **profits** *p*₁,...,*p*_n
 - weights *w*₁,...,*w*_n
 - capacity b

Goal

Find a subset of items that fits into the knapsack and maximizes the profit.

• Formal description

 $\max p_1 x_1 + \dots + p_n x_n$ subject to $w_1 x_1 + \dots + w_n x_n \le b$ and $x_i \in \{0, 1\}$

Different Opinions

Theorists say...

- KP is NP-hard.
- FPTAS exists.

No efficient algorithm for KP, unless P = NP.

Smoothed Analysis of Algorithms Smoothed Analysis of the Simplex Algorithm

Different Opinions

Theorists say...

- KP is NP-hard.
- FPTAS exists.

No efficient algorithm for KP, unless P = NP.

Engineers say...

- KP is easy to solve!
- Does not even require quadratic time.

There are very good heuristics for practical instances of KP.

Reason for discrepancy

Reason for discrepancy

- Worst-case complexity is too pessimistic!
- There are (artificial) worst-case instances for KP on which the heuristics are not efficient. These instances, however, do not occur in practice.
- This phenomenon occurs not only for KP, but also for many other problems.

Reason for discrepancy

Reason for discrepancy

- Worst-case complexity is too pessimistic!
- There are (artificial) worst-case instances for KP on which the heuristics are not efficient. These instances, however, do not occur in practice.
- This phenomenon occurs not only for KP, but also for many other problems.

How to make theory more consistent with practice?

Find a more realistic performance measure.

Reason for discrepancy

Reason for discrepancy

- Worst-case complexity is too pessimistic!
- There are (artificial) worst-case instances for KP on which the heuristics are not efficient. These instances, however, do not occur in practice.
- This phenomenon occurs not only for KP, but also for many other problems.

How to make theory more consistent with practice? Find a more realistic performance measure.

Average-case analysis

Is it realistic to consider the average case behavior instead of the worst case behavior?

Random Inputs are not Typical

Random inputs are not typical!

If real-world data was random, watching TV would be very boring...

Smoothed Analysis of Algorithms Smoothed Analysis of the Simplex Algorithm

What is a typical instance?

What is a typical instance?

It depends very much on the concrete application. We cannot say in general what a typical instance for KP looks like.

Heiko Röglin Pearls of Algorithms

Smoothed Analysis

Smoothed Analysis

Heiko Röglin

Smoothed Analysis

Step 1: Adversary chooses input *I*.

Step 2: Random perturbation. $l \rightarrow per(l)$

Smoothed Complexity = worst expected running time the adversary can achieve

Why do we consider this model?

- First step alone: worst case analysis.
- Second step models random influences, e.g., measurement errors, numerical imprecision, rounding, ...
- So we have a combination of both: instances of any structure with some amount of random noise.

Example

• Step 1: Adversary chooses all $p_i, w_i \in [0, 1]$ arbitrarily.

Example

- Step 1: Adversary chooses all $p_i, w_i \in [0, 1]$ arbitrarily.
- Step 2: Add an independent Gaussian random variable to each profit and weight.

Example

- Step 1: Adversary chooses all $p_i, w_i \in [0, 1]$ arbitrarily.
- Step 2: Add an independent Gaussian random variable to each profit and weight.

Example

- Step 1: Adversary chooses all $p_i, w_i \in [0, 1]$ arbitrarily.
- Step 2: Add an independent Gaussian random variable to each profit and weight.

 $C_A(I)$ = running time of algorithm A on input I X_n = set of inputs of length n,

 $C_A(I)$ = running time of algorithm A on input I X_n = set of inputs of length n,

•
$$\mathcal{C}^{\mathrm{worst}}_{\mathcal{A}}(n) = \max_{I \in X_n} (\mathcal{C}_{\mathcal{A}}(I))$$

 $C_A(I)$ = running time of algorithm A on input I X_n = set of inputs of length n, μ_n = prob. distribution on X_n

•
$$\mathcal{C}_{\mathcal{A}}^{\mathrm{worst}}(n) = \max_{I \in X_n} (\mathcal{C}_{\mathcal{A}}(I))$$

•
$$\mathcal{C}^{\mathrm{ave}}_{\mathcal{A}}(n) = \mathbf{E}_{I \stackrel{\mu_n}{\leftarrow} X_n} [\mathcal{C}_{\mathcal{A}}(I)]$$

 $C_A(I)$ = running time of algorithm A on input I X_n = set of inputs of length n, μ_n = prob. distribution on X_n

•
$$\mathcal{C}_{\mathcal{A}}^{\mathrm{worst}}(n) = \max_{I \in X_n} (\mathcal{C}_{\mathcal{A}}(I))$$

•
$$\mathcal{C}^{\mathrm{ave}}_{\mathcal{A}}(n) = \mathbf{E}_{I \stackrel{\mu_n}{\leftarrow} X_n} [\mathcal{C}_{\mathcal{A}}(I)]$$

• $\mathcal{C}_{\mathcal{A}}^{\mathrm{smooth}}(n,\sigma) = \max_{l \in X_n} \mathsf{E}[\mathcal{C}_{\mathcal{A}}(\mathrm{per}_{\sigma}(l))]$

- $C_A(I)$ = running time of algorithm A on input I X_n = set of inputs of length n, μ_n = prob. distribution on X_n
 - $\mathcal{C}_{\mathcal{A}}^{\mathrm{worst}}(n) = \max_{I \in X_n} (\mathcal{C}_{\mathcal{A}}(I))$

•
$$\mathcal{C}^{\operatorname{ave}}_{\mathcal{A}}(n) = \mathbf{E}_{I \stackrel{\mu_n}{\leftarrow} X_n} [\mathcal{C}_{\mathcal{A}}(I)]$$

• $\mathcal{C}_{\mathcal{A}}^{\mathrm{smooth}}(n,\sigma) = \max_{l \in X_n} \mathsf{E}[\mathcal{C}_{\mathcal{A}}(\mathrm{per}_{\sigma}(l))]$

smoothed complexity low \Rightarrow bad instances are isolated peaks

Linear Programs

Linear Programs (LPs)

- variables: $x_1, \ldots, x_d \in \mathbb{R}$.
- linear objective function: max $c_1 x_1 + \ldots + c_n x_n$.

Linear Programs

Linear Programs (LPs)

- variables: $x_1, \ldots, x_d \in \mathbb{R}$.
- linear objective function: max $c_1 x_1 + \ldots + c_n x_n$.
- *n* linear constraints:

$$a_{1,1}x_1 + \ldots + a_{1,d}x_d \le b_1$$

$$\vdots$$

$$a_{n,1}x_1 + \ldots + a_{n,d}x_d \le b_n$$

Linear Programs

Linear Programs (LPs)

- variables: $x_1, \ldots, x_d \in \mathbb{R}$.
- linear objective function: max $c_1 x_1 + \ldots + c_n x_n$.
- *n* linear constraints:

$$a_{1,1}x_1 + \ldots + a_{1,d}x_d \le b_1$$

$$\vdots$$

$$a_{n,1}x_1 + \ldots + a_{n,d}x_d \le b_n$$

Complexity of LPs

LPs can be solved in polynomial time by the ellipsoid method [Khachiyan 1979].

Simplex Algorithm

Simplex Algorithm

Simplex Algorithm

Simplex Algorithm

Simplex Algorithm

- The simplex method walks along the vertices of the polytope in the direction of the objective function c^Tx.
- Exponential in the worst case.
- Works well in practice.

Pivot Rules

Pivot Rules

- How is a better vertex on the polytope chosen if there are multiple options?
- Different pivot rules have been suggested:
 - random
 - steepest descent
 - shadow vertex pivot rule
 - ...

Shadow Vertex Pivot Rule

Shadow Vertex Pivot Rule

- Let x₀ be some vertex of the polytope.
- Compute $u \in \mathbb{R}^d$ such that x_0 maximizes $u^T x$.

Shadow Vertex Pivot Rule

- Let x₀ be some vertex of the polytope.
- Compute $u \in \mathbb{R}^d$ such that x_0 maximizes $u^T x$.
- Project the polytope onto the plane spanned by *c* and *u*.

Smoothed Analysis of Algorithms Smoothed Analysis of the Simplex Algorithm

Shadow Vertex Pivot Rule

2-dimensional projection

• The projection is 2-dimensional, that is, a polygon.

- The projection is 2-dimensional, that is, a polygon.
- x₀ is a vertex of the polygon.

- The projection is 2-dimensional, that is, a polygon.
- x₀ is a vertex of the polygon.
- x_{opt} is a vertex of the polygon.

- The projection is 2-dimensional, that is, a polygon.
- x₀ is a vertex of the polygon.
- *x*_{opt} is a vertex of the polygon.
- Edges of the polygon correspond to edges of the polytope.

2-dimensional projection

 In 2 dimension the simplex method is easy; it just follows the edges of the polygon.

- In 2 dimension the simplex method is easy; it just follows the edges of the polygon.
- It starts at x₀...

2-dimensional projection

- In 2 dimension the simplex method is easy; it just follows the edges of the polygon.
- It starts at *x*₀...

• ... and follows the edges to x_{opt} .

2-dimensional projection

- In 2 dimension the simplex method is easy; it just follows the edges of the polygon.
- It starts at *x*₀...

• ... and follows the edges to x_{opt} .

- In 2 dimension the simplex method is easy; it just follows the edges of the polygon.
- It starts at *x*₀...
- ... and follows the edges to x_{opt} .
- The polygon can have an exponential number of edges.

Perturbed Linear Programs

Perturbed LPs

 Step 1: Adversary specifies arbitrary LP: max c^Tx subject to a₁^Tx ≤ b₁ ... a_n^Tx ≤ b_n. W.I.o.g. ||(a_i, b_i)|| = 1.

Perturbed Linear Programs

Perturbed LPs

- Step 1: Adversary specifies arbitrary LP: max $c^T x$ subject to $a_1^T x \le b_1 \dots a_n^T x \le b_n$. W.I.o.g. $||(a_i, b_i)|| = 1$.
- Step 2: Add Gaussian random variable with standard deviation σ to each coefficient in the constraints.

Smoothed Analysis of the Simplex Algorithm

Theorem [Spielman and Teng 2001]

The expected number of edges on the polygon is

 $O\left(\operatorname{poly}\left(n,d,\sigma^{-1}\right)\right)$.

Smoothed Analysis of the Simplex Algorithm

Theorem [Spielman and Teng 2001]

The expected number of edges on the polygon is

 $O\left(\operatorname{poly}\left(n,d,\sigma^{-1}\right)\right)$.

The smoothed running time of the simplex algorithm with shadow vertex pivot rule is

 $O\left(\operatorname{poly}\left(n,d,\sigma^{-1}\right)\right)$.

Smoothed Analysis of the Simplex Algorithm

Theorem [Spielman and Teng 2001]

The expected number of edges on the polygon is

 $O\left(\operatorname{poly}\left(n,d,\sigma^{-1}\right)\right)$.

The smoothed running time of the simplex algorithm with shadow vertex pivot rule is

 $O\left(\operatorname{poly}\left(n,d,\sigma^{-1}\right)\right)$.

Running time is polynomial in *n*, *d*, and σ^{-1} .

Already for small perturbation it is extremely unlikely to hit a bad instance.

Improved Analysis

Theorem [Vershynin 2006]

The smoothed running time of the simplex algorithm with shadow vertex pivot rule is

$$\mathcal{O}\left(\mathrm{poly}\left(\log n, d, \sigma^{-1}
ight)
ight)$$

Running time is only polylogarithmic in the number of constraints *n*.

Overview of the coming Lectures

Smoothed Analysis

- 2-Opt heuristic for the traveling salesperson problem
- Nemhauser/Ullmann algorithm for the knapsack problem
- k-means clustering