Pearls of Algorithms

Part 2: Randomized Algorithms and Probabilistic Analysis

Prof. Dr. Heiko Röglin
Institut für Informatik I

universitätbonn

Winter 2011/12

Efficient Algorithms

When is an algorithm considered efficient?

Efficient Algorithms

When is an algorithm considered efficient?

Engineer
 The algorithm must be efficient in practice, i.e., it must solve practical instances in an appropriate amount of time.

Efficient Algorithms

When is an algorithm considered efficient?

Engineer
 The algorithm must be efficient in practice, i.e., it must solve practical instances in an appropriate amount of time.

Theorist

The algorithm must be efficient in the worst case, i.e., it must solve all instances in polynomial time.

The Knapsack Problem

Knapsack problem (KP)

- Input

- set of items $\{1, \ldots, n\}$
- profits p_{1}, \ldots, p_{n}
- weights w_{1}, \ldots, w_{n}
- capacity b

The Knapsack Problem

Knapsack problem (KP)

- Input
- set of items $\{1, \ldots, n\}$
- profits p_{1}, \ldots, p_{n}
- weights w_{1}, \ldots, w_{n}
- capacity b
- Goal

Find a subset of items that fits into the knapsack and maximizes the profit.

The Knapsack Problem

Knapsack problem (KP)

- Input
- set of items $\{1, \ldots, n\}$
- profits p_{1}, \ldots, p_{n}
- weights w_{1}, \ldots, w_{n}
- capacity b
- Goal

Find a subset of items that fits into the knapsack and maximizes the profit.

- Formal description

$$
\begin{aligned}
\max & p_{1} x_{1}+\cdots+p_{n} x_{n} \\
\text { subject to } & w_{1} x_{1}+\cdots+w_{n} x_{n} \leq b \\
& \text { and } x_{i} \in\{0,1\}
\end{aligned}
$$

Different Opinions

Theorists say...

- KP is NP-hard.
- FPTAS exists.

No efficient algorithm for KP, unless $P=N P$.

Different Opinions

Theorists say...

- KP is NP-hard.
- FPTAS exists.

No efficient algorithm for KP, unless $P=N P$.

Engineers say.

- KP is easy to solve!
- Does not even require quadratic time.

There are very good heuristics for practical instances of KP.

Reason for discrepancy

Reason for discrepancy

- Worst-case complexity is too pessimistic!
- There are (artificial) worst-case instances for KP on which the heuristics are not efficient. These instances, however, do not occur in practice.
- This phenomenon occurs not only for KP, but also for many other problems.

Reason for discrepancy

Reason for discrepancy

- Worst-case complexity is too pessimistic!
- There are (artificial) worst-case instances for KP on which the heuristics are not efficient. These instances, however, do not occur in practice.
- This phenomenon occurs not only for KP, but also for many other problems.

How to make theory more consistent with practice?
Find a more realistic performance measure.

Reason for discrepancy

Reason for discrepancy

- Worst-case complexity is too pessimistic!
- There are (artificial) worst-case instances for KP on which the heuristics are not efficient. These instances, however, do not occur in practice.
- This phenomenon occurs not only for KP, but also for many other problems.

How to make theory more consistent with practice?
Find a more realistic performance measure.

Average-case analysis

Is it realistic to consider the average case behavior instead of the worst case behavior?

Random Inputs are not Typical

Random inputs are not typical!

If real-world data was random, watching TV would be very boring...

What is a typical instance?

What is a typical instance?

It depends very much on the concrete application. We cannot say in general what a typical instance for KP looks like.

Smoothed Analysis

Smoothed Analysis

Step 1:
Adversary chooses input I.

Step 2: Random perturbation.
$I \rightarrow \operatorname{per}(I)$

Smoothed Analysis

Step 1:

Adversary
chooses input I.

Step 2: Random

 perturbation.$I \rightarrow \operatorname{per}(I)$

Smoothed Complexity = worst expected running time the adversary can achieve

Why do we consider this model?

- First step alone: worst case analysis.
- Second step models random influences, e.g., measurement errors, numerical imprecision, rounding, ...
- So we have a combination of both: instances of any structure with some amount of random noise.

Perturbation

Example

- Step 1: Adversary chooses all $p_{i}, w_{i} \in[0,1]$ arbitrarily.

Perturbation

Example

- Step 1: Adversary chooses all $p_{i}, w_{i} \in[0,1]$ arbitrarily.
- Step 2: Add an independent Gaussian random variable to each profit and weight.

Perturbation

Example

- Step 1: Adversary chooses all $p_{i}, w_{i} \in[0,1]$ arbitrarily.
- Step 2: Add an independent Gaussian random variable to each profit and weight.

Perturbation

Example

- Step 1: Adversary chooses all $p_{i}, w_{i} \in[0,1]$ arbitrarily.
- Step 2: Add an independent Gaussian random variable to each profit and weight.

Complexity Measures

$\mathcal{C}_{\mathcal{A}}(I)=$ running time of algorithm \mathcal{A} on input I $X_{n}=$ set of inputs of length n,

Complexity Measures

$\mathcal{C}_{\mathcal{A}}(I)=$ running time of algorithm \mathcal{A} on input I $X_{n}=$ set of inputs of length n,

- $\mathcal{C}_{\mathcal{A}}^{\text {worst }}(n)=\max _{I \in X_{n}}\left(\mathcal{C}_{\mathcal{A}}(I)\right)$

Complexity Measures

$\mathcal{C}_{\mathcal{A}}(I)=$ running time of algorithm \mathcal{A} on input I $X_{n}=$ set of inputs of length $n, \mu_{n}=$ prob. distribution on X_{n}

- $\mathcal{C}_{\mathcal{A}}^{\text {worst }}(n)=\max _{I \in X_{n}}\left(\mathcal{C}_{\mathcal{A}}(I)\right)$
- $\mathcal{C}_{\mathcal{A}}^{\text {ave }}(n)=\mathbf{E}_{1 \nmid{ }_{2} X_{n}}\left[\mathcal{C}_{\mathcal{A}}(I)\right]$

Complexity Measures

$\mathcal{C}_{\mathcal{A}}(I)=$ running time of algorithm \mathcal{A} on input I
$X_{n}=$ set of inputs of length $n, \mu_{n}=$ prob. distribution on X_{n}

- $\mathcal{C}_{\mathcal{A}}^{\text {worst }}(n)=\max _{I \in X_{n}}\left(\mathcal{C}_{\mathcal{A}}(I)\right)$
- $\mathcal{C}_{\mathcal{A}}^{\text {ave }}(n)=\mathbf{E}_{1 \& \chi_{n}}\left[\mathcal{C}_{\mathcal{A}}(I)\right]$
- $\mathcal{C}_{\mathcal{A}}^{\text {smooth }}(n, \sigma)=\max _{I \in X_{n}} \mathbf{E}\left[\mathcal{C}_{\mathcal{A}}\left(\operatorname{per}_{\sigma}(I)\right)\right]$

Complexity Measures

$\mathcal{C}_{\mathcal{A}}(I)=$ running time of algorithm \mathcal{A} on input I
$X_{n}=$ set of inputs of length $n, \mu_{n}=$ prob. distribution on X_{n}

- $\mathcal{C}_{\mathcal{A}}^{\text {worst }}(n)=\max _{I \in X_{n}}\left(\mathcal{C}_{\mathcal{A}}(I)\right)$
- $\mathcal{C}_{\mathcal{A}}^{\text {ave }}(n)=\mathbf{E}_{1 \& \chi_{n}}\left[\mathcal{C}_{\mathcal{A}}(I)\right]$
- $\mathcal{C}_{\mathcal{A}}^{\text {smooth }}(n, \sigma)=\max _{I \in X_{n}} \mathbf{E}\left[\mathcal{C}_{\mathcal{A}}\left(\operatorname{per}_{\sigma}(I)\right)\right]$
smoothed complexity low \Rightarrow bad instances are isolated peaks

Linear Programs

Linear Programs (LPs)

- variables: $x_{1}, \ldots, x_{d} \in \mathbb{R}$.
- linear objective function:
$\max c_{1} x_{1}+\ldots+c_{n} x_{n}$.

Linear Programs

Linear Programs (LPs)

- variables: $x_{1}, \ldots, x_{d} \in \mathbb{R}$.
\qquad

$$
a_{n, 1} x_{1}+\ldots+\quad a_{n, d} x_{d} \leq b_{n}
$$

Linear Programs

Linear Programs (LPs)

- variables: $x_{1}, \ldots, x_{d} \in \mathbb{R}$.
- linear objective function:
$\max c_{1} x_{1}+\ldots+c_{n} x_{n}$.
- n linear constraints:

$$
\begin{gathered}
a_{1,1} x_{1}+\ldots+a_{1, d} x_{d} \leq b_{1} \\
\vdots \\
a_{n, 1} x_{1}+\ldots+a_{n, d} x_{d} \leq b_{n}
\end{gathered}
$$

Complexity of LPs

LPs can be solved in polynomial time by the ellipsoid method [Khachiyan 1979].

Simplex Algorithm

Simplex Algorithm

- The simplex method walks along the vertices of the polytope in the direction of the objective function $c^{T} x$.

Simplex Algorithm

Simplex Algorithm

- The simplex method walks along the vertices of the polytope in the direction of the objective function $c^{T} x$.

Simplex Algorithm

Simplex Algorithm

- The simplex method walks along the vertices of the polytope in the direction of the objective function $c^{T} x$.

Simplex Algorithm

Simplex Algorithm

- The simplex method walks along the vertices of the polytope in the direction of the objective function $c^{T} x$.

Simplex Algorithm

Simplex Algorithm

- The simplex method walks along the vertices of the polytope in the direction of the objective function $c^{T} x$.
- Exponential in the worst case.
- Works well in practice.

Pivot Rules

Pivot Rules

- How is a better vertex on the polytope chosen if there are multiple options?
- Different pivot rules have been suggested:
- random
- steepest descent
- shadow vertex pivot rule
- ...

Shadow Vertex Pivot Rule

Shadow Vertex Pivot Rule

- Let x_{0} be some vertex of the polytope.
- Compute $u \in \mathbb{R}^{d}$ such that x_{0} maximizes $u^{T} x$.

Shadow Vertex Pivot Rule

Shadow Vertex Pivot Rule

- Let x_{0} be some vertex of the polytope.
- Compute $u \in \mathbb{R}^{d}$ such that x_{0} maximizes $u^{T} x$.
- Project the polytope onto the plane spanned by c and u.

Shadow Vertex Pivot Rule

2-dimensional projection

- The projection is 2-dimensional, that is, a polygon.

Shadow Vertex Pivot Rule

2-dimensional projection

- The projection is 2-dimensional, that is, a polygon.
- x_{0} is a vertex of the polygon.

Shadow Vertex Pivot Rule

2-dimensional projection

- The projection is 2-dimensional, that is, a polygon.
- x_{0} is a vertex of the polygon.
- $x_{\text {opt }}$ is a vertex of the polygon.

Shadow Vertex Pivot Rule

2-dimensional projection

- The projection is 2-dimensional, that is, a polygon.
- x_{0} is a vertex of the polygon.
- $x_{\text {opt }}$ is a vertex of the polygon.
- Edges of the polygon correspond to edges of the polytope.

Shadow Vertex Pivot Rule

2-dimensional projection

- In 2 dimension the simplex method is easy; it just follows the edges of the polygon.

Shadow Vertex Pivot Rule

2-dimensional projection

- In 2 dimension the simplex method is easy; it just follows the edges of the polygon.
- It starts at $x_{0} \ldots$

Shadow Vertex Pivot Rule

2-dimensional projection

- In 2 dimension the simplex method is easy; it just follows the edges of the polygon.
- It starts at $x_{0} \ldots$
- ... and follows the edges to $x_{\text {opt }}$.

Shadow Vertex Pivot Rule

2-dimensional projection

- In 2 dimension the simplex method is easy; it just follows the edges of the polygon.
- It starts at $x_{0} \ldots$
- ... and follows the edges to $x_{\text {opt }}$.

Shadow Vertex Pivot Rule

2-dimensional projection

- In 2 dimension the simplex method is easy; it just follows the edges of the polygon.
- It starts at $x_{0} \ldots$
- ... and follows the edges to $x_{\text {opt }}$.
- The polygon can have an exponential number of edges.

Perturbed Linear Programs

Perturbed LPs

- Step 1: Adversary specifies arbitrary LP: $\max c^{T} x$ subject to $a_{1}^{T} x \leq b_{1} \ldots a_{n}^{T} x \leq b_{n}$. W.l.o. g. $\left\|\left(a_{i}, b_{i}\right)\right\|=1$.

Perturbed Linear Programs

Perturbed LPs

- Step 1: Adversary specifies arbitrary LP: $\max c^{\top} x$ subject to $a_{1}^{T} x \leq b_{1} \ldots a_{n}^{T} x \leq b_{n}$. W. I. o. g. $\left\|\left(a_{i}, b_{i}\right)\right\|=1$.
- Step 2: Add Gaussian random variable with standard deviation σ to each coefficient in the constraints.

Smoothed Analysis of the Simplex Algorithm

Theorem [Spielman and Teng 2001]
The expected number of edges on the polygon is

$$
O\left(\operatorname{poly}\left(n, d, \sigma^{-1}\right)\right) .
$$

Smoothed Analysis of the Simplex Algorithm

Theorem [Spielman and Teng 2001]

The expected number of edges on the polygon is

$$
O\left(\operatorname{poly}\left(n, d, \sigma^{-1}\right)\right)
$$

The smoothed running time of the simplex algorithm with shadow vertex pivot rule is

$$
O\left(\operatorname{poly}\left(n, d, \sigma^{-1}\right)\right) .
$$

Smoothed Analysis of the Simplex Algorithm

Theorem [Spielman and Teng 2001]

The expected number of edges on the polygon is

$$
O\left(\operatorname{poly}\left(n, d, \sigma^{-1}\right)\right)
$$

The smoothed running time of the simplex algorithm with shadow vertex pivot rule is

$$
O\left(\operatorname{poly}\left(n, d, \sigma^{-1}\right)\right)
$$

Running time is polynomial in n, d, and σ^{-1}.
Already for small perturbation it is extremely unlikely to hit a bad instance.

Improved Analysis

Theorem [Vershynin 2006]

The smoothed running time of the simplex algorithm with shadow vertex pivot rule is

$$
O\left(\operatorname{poly}\left(\log n, d, \sigma^{-1}\right)\right)
$$

Running time is only polylogarithmic in the number of constraints n.

Overview of the coming Lectures

Smoothed Analysis

- 2-Opt heuristic for the traveling salesperson problem
- Nemhauser/Ullmann algorithm for the knapsack problem
- k-means clustering

